首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Nitrogen accumulation was studied in mica and sand mining wastes of Cornwall after twelve forage legume varieties were established with the use of lime and fertilizers containing phosphorus and potassium. In the finetextured mica waste legume productivity and nitrogen accumulation were similar to those for upland pastures in Cornwall; but legume growth was limited by summer drought on the coarse-textured sand waste. Native perennial legumes well adapted to the British climate were the most productive and showed the highest potential for nitrogen fixation. More than 500 kg N/ha accumulated during the 2-year period whenTrifolium pratense andLotus corniculatus were established on mica waste, and more than 250 kg N/ha was accumulated by these legumes on sand waste.Trifolium pratense andLotus corniculatus were persistent on both the mica and sand waste, andMedicago lupulina showed an unusually high tolerance for competition from invading and sown grass on the sand waste.Trifolium repens andT. hybridum are recommended for waste sites where grazing is a part of management.Nitrogen accumulation on mica waste was consistent with N fixation rates expected from climatic conditions. Nitrogen fixation by free-living bacteria is limited by the low organic matter content of the wastes. The nitrogen fixation potential by legumes on sand wastes has been underestimated because leaching losses were not adequately evaluated. Since nitrogen accumulation rates by earlyTrifolium pratense andT. repens were 70 percent higher than the maximum rate estimated for natural legumesi.e. (Ulex europaeus) on sand waste, the use of forage legumes should reduce reclamation time considerably. re]19760512Department of Botany Liverpool University  相似文献   

2.
Global inputs of biological nitrogen fixation in agricultural systems   总被引:13,自引:0,他引:13  
Biological dinitrogen (N2) fixation is a natural process of significant importance in world agriculture. The demand for accurate determinations of global inputs of biologically-fixed nitrogen (N) is strong and will continue to be fuelled by the need to understand and effectively manage the global N cycle. In this paper we review and update long-standing and more recent estimates of biological N2 fixation for the different agricultural systems, including the extensive, uncultivated tropical savannas used for grazing. Our methodology was to combine data on the areas and yields of legumes and cereals from the Food and Agriculture Organization (FAO) database on world agricultural production (FAOSTAT) with published and unpublished data on N2 fixation. As the FAO lists grain legumes only, and not forage, fodder and green manure legumes, other literature was accessed to obtain approximate estimates in these cases. Below-ground plant N was factored into the estimations. The most important N2-fixing agents in agricultural systems are the symbiotic associations between crop and forage/fodder legumes and rhizobia. Annual inputs of fixed N are calculated to be 2.95 Tg for the pulses and 18.5 Tg for the oilseed legumes. Soybean (Glycine max) is the dominant crop legume, representing 50% of the global crop legume area and 68% of global production. We calculate soybean to fix 16.4 Tg N annually, representing 77% of the N fixed by the crop legumes. Annual N2 fixation by soybean in the U.S., Brazil and Argentina is calculated at 5.7, 4.6 and 3.4 Tg, respectively. Accurately estimating global N2 fixation for the symbioses of the forage and fodder legumes is challenging because statistics on the areas and productivity of these legumes are almost impossible to obtain. The uncertainty increases as we move to the other agricultural-production systems—rice (Oryza sativa), sugar cane (Saccharum spp.), cereal and oilseed (non-legume) crop lands and extensive, grazed savannas. Nonetheless, the estimates of annual N2 fixation inputs are 12–25 Tg (pasture and fodder legumes), 5 Tg (rice), 0.5 Tg (sugar cane), <4 Tg (non-legume crop lands) and <14 Tg (extensive savannas). Aggregating these individual estimates provides an overall estimate of 50–70 Tg N fixed biologically in agricultural systems. The uncertainty of this range would be reduced with the publication of more accurate statistics on areas and productivity of forage and fodder legumes and the publication of many more estimates of N2 fixation, particularly in the cereal, oilseed and non-legume crop lands and extensive tropical savannas used for grazing.  相似文献   

3.
Biological nitrogen fixation in mixed legume/grass pastures   总被引:18,自引:2,他引:16  
Biological nitrogen fixation (BNF) in mixed legume/grass pastures is reviewed along with the importance of transfer of fixed nitrogen (N) to associated grasses. Estimates of BNF depend on the method of measurement and some of the advantages and limitations of the main methods are outlined. The amounts of N fixed from atmospheric N2 in legume/grass pastures throughout the world is summarised and range from 13 to 682 kg N ha-1 yr-1. the corresponding range for grazed pastures, which have been assessed for white clover pastures only, is 55 to 296 kg N ha-1 yr-1.Biological nitrogen fixation by legumes in mixed pastures is influenced by three primary factors; legume persistence and production, soil N status, and competition with the associated grass(es). These factors and the interactions between them are discussed. Legume persistence, production and BNF is also influenced by many factors and this review centres on the important effects of soil moisture status, soil acidity, nutrition, and pests and disease.Soil N status interacts directly with BNF in the short and long term. In the short-term, increases in soil inorganic N occurs during dry conditions and where N fertiliser is used, and these will reduce BNF. In the long-term, BNF leads to accumulation of soil N, grass dominance, and reduced BNF. However, cyclical patterns of legume and grass dominance can occur due, at least in part, to temporal changes in plant-available N levels in soil. Thus, there is a dynamic relationship between legumes and grasses whereby uptake of soil N by grass reduces the inhibitory effect of soil N on BNF and competition by grasses reduces legume production and BNF. Factors affecting the competition between legumes and grasses are considered including grass species, grazing animals, and grazing or cutting management.Some fixed N is transferred from legumes to associated grasses. The amount of N transferred below-ground, predominantly through decomposition of legume roots and nodules, has been estimated at 3 to 102 kg N ha-1 yr-1 or 2 to 26% of BNF. In grazed pasture, N is also transferred above-ground via return in animal excreta and this can be of a similar magnitude to below-ground transfer.Increased BNF in mixed legume/grass pastures is being obtained through selection or breeding of legumes for increased productivity and/or to minimise effects of nutrient limitations, low soil moisture, soil acidity, and pests and disease. Ultimately, this will reduce the need to modify the pasture environment and increase the role of legumes in low-input, sustainable agriculture.  相似文献   

4.
Nodulation and nitrogen fixation in extreme environments   总被引:6,自引:0,他引:6  
Biological nitrogen fixation is a phenomenon occurring in all known ecosystems. Symbiotic nitrogen fixation is dependent on the host plant genotype, theRhizobium strain, and the interaction of these symbionts with the pedoclimatic factors and the environmental conditions. Extremes of pH affect nodulation by reducing the colonization of soil and the legume rhizosphere by rhizobia. Highly acidic soils (pH<4.0) frequently have low levels of phosphorus, calcium, and molybdenum and high concentrations of aluminium and manganese which are often toxic for both partners; nodulation is more affected than host-plant growth and nitrogen fixation. Highly alkaline soils (pH>8.0) tend to be high in sodium chloride, bicarbonate, and borate, and are often associated with high salinity which reduce nitrogen fixation. Nodulation and N-fixation are observed under a wide range of temperatures with optima between 20–30°C. Elevated temperatures may delay nodule initiation and development, and interfere with nodule structure and functioning in temperate Iegumes, whereas in tropical legumes nitrogen fixation efficiency is mainly affected. Furthermore, temperature changes affect the competitive ability ofRhizobium strains. Low temperatures reduce nodule formation and nitrogen fixation in temperate legumes; however, in the extreme environment of the high arctic, native legumes can nodulate and fix nitrogen at rates comparable to those observed with legumes in temperate climates, indicating that both the plants and their rhizobia have successfully adapted to arctic conditions. In addition to low temperatures, arctic legumes are exposed to a short growing season, a long photoperiod, low precipitation and low soil nitrogen levels. In this review, we present results on a number of structural and physiological characteristics which allow arctic legumes to function in extreme environments.  相似文献   

5.
Data collated from around the world indicate that, for every tonne of shoot dry matter produced by crop legumes, the symbiotic relationship with rhizobia is responsible for fixing, on average on a whole plant basis (shoots and nodulated roots), the equivalent of 30–40 kg of nitrogen (N). Consequently, factors that directly influence legume growth (e.g. water and nutrient availability, disease incidence and pests) tend to be the main determinants of the amounts of N2 fixed. However, practices that either limit the presence of effective rhizobia in the soil (no inoculation, poor inoculant quality), increase soil concentrations of nitrate (excessive tillage, extended fallows, fertilizer N), or enhance competition for soil mineral N (intercropping legumes with cereals) can also be critical. Much of the N2 fixed by the legume is usually removed at harvest in high-protein seed so that the net residual contributions of fixed N to agricultural soils after the harvest of legumegrain may be relatively small.Nonetheless, the inclusion of legumes in a cropping sequence generally improves the productivity of following crops. Whilesome of these rotational effects may be associated with improvements in availability of N in soils, factors unrelated to N also play an important role. Recent results suggest that one such non-N benefit may be due to the impact on soil biology of hydrogenemitted from nodules as a by-product of N2, fixation.  相似文献   

6.
Peoples  M.B.  Bowman  A.M.  Gault  R.R.  Herridge  D.F.  McCallum  M.H.  McCormick  K.M.  Norton  R.M.  Rochester  I.J.  Scammell  G.J.  Schwenke  G.D. 《Plant and Soil》2001,228(1):29-41
On-farm and experimental measures of the proportion (%Ndfa) and amounts of N2 fixed were undertaken for 158 pastures either based on annual legume species (annual medics, clovers or vetch), or lucerne (alfalfa), and 170 winter pulse crops (chickpea, faba bean, field pea, lentil, lupin) over a 1200 km north-south transect of eastern Australia. The average annual amounts of N2 fixed ranged from 30 to 160 kg shoot N fixed ha–1 yr–1 for annual pasture species, 37–128 kg N ha–1 yr–1 for lucerne, and 14 to 160 kg N ha–1 yr–1 by pulses. These data have provided new insights into differences in factors controlling N2 fixation in the main agricultural systems. Mean levels of %Ndfa were uniformly high (65–94%) for legumes growing at different locations under dryland (rainfed) conditions in the winter-dominant rainfall areas of the cereal-livestock belt of Victoria and southern New South Wales, and under irrigation in the main cotton-growing areas of northern New South Wales. Consequently N2 fixation was primarily regulated by biomass production in these areas and both pasture and crop legumes fixed between 20 and 25 kg shoot N for every tonne of shoot dry matter (DM) produced. Nitrogen fixation by legumes in the dryland systems of the summer-dominant rainfall regions of central and northern New South Wales on the other hand was greatly influenced by large variations in %Ndfa (0–81%) caused by yearly fluctuations in growing season (April–October) rainfall and common farmer practice which resulted in a build up of soil mineral-N prior to sowing. The net result was a lower average reliance of legumes upon N2 fixation for growth (19–74%) and more variable relationships between N2 fixation and DM accumulation (9–16 kg shoot N fixed/t legume DM). Although pulses often fixed more N than pastures, legume-dominant pastures provided greater net inputs of fixed N, since a much larger fraction of the total plant N was removed when pulses were harvested for grain than was estimated to be removed or lost from grazed pastures. Conclusions about the relative size of the contributions of fixed N to the N-economies of the different farming systems depended upon the inclusion or omission of an estimate of fixed N associated with the nodulated roots. The net amounts of fixed N remaining after each year of either legume-based pasture or pulse crop were calculated to be sufficient to balance the N removed by at least one subsequent non-legume crop only when below-ground N components were included. This has important implications for the interpretation of the results of previous N2 fixation studies undertaken in Australia and elsewhere in the world, which have either ignored or underestimated the N present in the nodulated root when evaluating the contributions of fixed N to rotations.  相似文献   

7.
豆科草本植物固氮是陆地生态系统重要的自然氮输入方式, 影响着草地生产的经济性和可持续性。为探讨氮磷交互作用影响豆科草本植物生物固氮率的潜在生理生态机制, 该研究选取8种豆科草本植物分别种植在对照、氮肥添加、磷肥添加和氮磷耦合添加处理的土壤中, 进行野外盆栽实验。测定了初花期植物生物量和营养含量、根部碳水化合物含量、根际pH、根际柠檬酸含量、根际有效磷含量、植物根瘤生物量、磷含量及其生物固氮率。主要结果: 依赖于豆科物种, 氮添加显著促进了豆科草本植物根际磷的活化, 降低了根生物量分配以及根系非结构性碳水化合物含量。在两种磷添加处理下, 氮添加导致8种豆科草本植物根瘤生物量平均下降27%-36%, 生物固氮率平均下降20%-33%。磷添加降低了根际的磷活化, 但促进了豆科草本植物根系发育和非结构性碳水化合物的积累。在施氮和不施氮条件下, 磷添加分别使8种豆科草本植物的生物固氮率提高了45%-69%和0-47%。氮添加降低豆科草本植物生物固氮率, 其原因是氮添加提高了植物磷需求, 为活化更多磷, 豆科草本植物降低根系生物量和根系非结构性碳水化合物的含量, 导致根瘤发育受到限制。在氮添加的同时进行磷添加, 能够改善土壤氮磷平衡, 促进根系生长和非结构性碳水化合物积累, 缓解了增氮对生物固氮的抑制作用。  相似文献   

8.
Symbiotic dinitrogen (N2) fixation of crop and pasture legumes is a critical component of agricultural systems, but its measurement is expensive and labour intensive. Simple models which can provide approximations based on crop or pasture dry matter production would be useful for agrononomists and those interested in regional nitrogen (N) cycle fluxes. We investigate meta analysis of published data on legume shoot dry matter production, shoot %N and legume %N fixed (%Ndfa) and look for relationships among these, as a possible way of providing useful approximations of N2 fixation. We restricted our analysis to Australian studies where we have ready access to the primary data and where cultivars, management and climate are more constrained compared to a universal dataset. Regression analysis between shoot dry matter and amounts of shoot N2 fixed were strong for all crop and pasture legumes with significant differences in slope and intercept values being obtained between pastures and crops, and between chickpea (Cicer arietinium) and all other crop and pasture legumes. Annual pasture legumes showed the strongest linear relationship between N2 fixation and shoot dry matter and had the greatest slope (20.2–24.3 kg N2 fixed/t), compared to 18.7 kg N2 fixed/t for the perennial pasture legume lucerne (alfalfa, Medicago sativa), and between 10.7 to 23.0 kg N2/t for crop legumes, depending upon species. It was recognised that the use of such shoot-based relationships would underestimate the total amounts of N2 fixed since the contributions of fixed N present in, or derived from, roots and nodules are not included. Furthermore there needs to be careful consideration of the validity of an intercept term, which might reflect suppression of N2 fixation at low dry matter and high soil mineral N availability, or possibly the use of non-linear regression. For chickpea crops grown in north-eastern Australia, multiple regression indicated that N2 fixation was much more closely correlated with %Ndfa than dry matter production. Evidence presented also indicated that %Ndfa of other crops and lucerne in this region may similarly be influenced by soil mineral N. The regression approach presented provides a statistical basis to approximate N2 fixation in the first instance. This work highlights some of the dangers of fitting single regressions to aggregated datasets and using these to approximate symbiotic N2 fixation. The analysis indicates that where pasture legumes are grown in mixtures with non-legumes, and driven to high dependence on N2 fixation, simple linear regressions may be quite useful, provided that possible differences between species are investigated as the slopes of the regressions between these can be quite different. For crop legumes, where low dependence on N2 fixation can occur at higher mineral N availability, there is a need to carefully consider the intercept term, obtain estimates of mineral N availability, and/or resort to non-linear models. The gross generalisations presented in scatter plots cannot be reliably applied any more specifically, even within the datasets from which they were generated, and in some cases even within legume species between regions. They cannot substitute for direct measurement where any certainty is required under a particular set of defined conditions.  相似文献   

9.
Increasing use of herbaceous legumes such as mucuna ( Mucuna pruriens var. utilis [Wright] Bruck) and lablab ( Lablab purpureus [L.] Sweet) in the derived savannas of West Africa can be attributed to their potential to fix atmospheric nitrogen (N2). The effects of management practices on N2 fixation in mucuna and lablab were examined using 15N isotope dilution technique. Dry matter yield of both legumes at 12 weeks was two to five times more in in situ mulch (IM) than live mulch (LM) systems. Land Equivalent Ratios, however, showed 8 to 30% more efficient utilization of resources required for biomass production under LM than IM systems. Live mulching reduced nodule numbers in the legumes by one third compared to values in the IM systems. Similarly, nodule mass was reduced by 34 to 58% under LM compared to the IM systems. The proportion of fixed N2 in the legumes was 18% higher in LM than IM systems. Except for inoculated mucuna, the amounts of N fixed by both legumes were greater in IM than LM systems. Rhizobia inoculation of the legumes did not significantly increase N2 fixation compared to uninoculated plots. Application of N fertilizer reduced N2 fixed in the legumes by 36 to 51% compared to inoculated or uninoculated systems. The implications of cover cropping, N fertilization, and rhizobia inoculation on N contributions of legumes into tropical low-input systems were discussed.  相似文献   

10.
Inputs of biologically fixed N into agricultural systems may be derived from symbiotic relationships involving legumes and Rhizobium spp., partnerships between plants and Frankia spp. or cyanobacteria, or from non-symbiotic associations between free-living diazotrophs and plant roots. It is assumed that these N2-fixing systems will satisfy a large portion of their own N requirements from atmospheric N2, and that additional fixed N will be contributed to soil reserves for the benefit of other crops or forage species. This paper reviews the actual levels of N2 fixation attained by legume and non-legume associations and assesses their role as a source of N in tropical and sub-tropical agriculture. We discuss factors influencing N2 fixation and identify possible strategies for improving the amount of N2 fixed.  相似文献   

11.
Potassium (K) is reported to improve plant's resistance against environmental stress. A frequently experienced stress for plants in the tropics is water shortage. It is not known if sufficient K supply would help plants to partially overcome the effects of water stress, especially that of symbiotic nitrogen fixation which is often rather low in the tropics when compared to that of temperate regions. Thus, the impact of three levels of fertilizer potassium (0.1, 0.8 and 3.0 mM K) on symbiotic nitrogen fixation was evaluated with two legumes under high (field capacity to 25% depletion) and low (less than 50% of field capacity) water regimes. Plants were grown in single pots in silica sand under controlled conditions with 1.5 mM N (15N enriched NH4NO3). The species were faba bean (Vicia faba L.), a temperate, amide producing legume and common bean (Phaseolus vulgaris L.), a tropical, ureide producing species. In both species, 0.1 mM K was insufficient for nodulation at both moisture regimes, although plant growth was observed. The supply of 0.8 or 3.0 mM K allowed nodulation and subsequent nitrogen fixation which appeared to be adequate for respective plant growth. High potassium supply had a positive effect on nitrogen fixation, on shoot and root growth and on water potential in both water regimes. Where nodulation occurred, variations caused by either K or water supply had no consequences on the percentage of nitrogen derived from the symbiosis. The present data indicate that K can apparently alleviate water shortage to a certain extent. Moreover it is shown that the symbiotic system in both faba bean and common bean is less tolerant to limiting K supply than plants themselves. However, as long as nodulation occurs, N assimilation from the symbiotic source is not selectively affected by K as opposed to N assimilation from fertilizer.  相似文献   

12.
Low input legume-based agriculture exists in a continuum between subsistence farming and intensive arable and pastoral systems. This review covers this range, but with most emphasis on temperate legume/grass pastures under grazing by livestock. Key determinants of nitrogen (N) flows in grazed legume/grass pastures are: inputs of N from symbiotic N2 fixation which are constrained through self-regulation via grass/legume interactions; large quantities of N cycling through grazing animals with localised return in excreta; low direct conversion of pasture N into produce (typically 5–20%) but with N recycling under intensive grazing the farm efficiency of product N: fixed N can be up to 50%; and regulation of N flows by mineralisation/immobilisation reactions. Pastoral systems reliant solely on fixed N are capable of moderate-high production with modest N losses e.g. average denitrification and leaching losses from grazed pastures of 6 and 23 kg N ha–1 yr–1. Methods for improving efficiency of N cycling in legume-based cropping and legume/grass pasture systems are discussed. In legume/arable rotations, the utilisation of fixed N by crops is influenced greatly by the timing of management practices for synchrony of N supply via mineralisation and crop N uptake. In legume/grass pastures, the spatial return of excreta and the uptake of excreta N by pastures can potentially be improved through dietary manipulation and management strategies. Plant species selection and plant constituent modification also offer the potential to increase N efficiency through greater conversion into animal produce, improved N uptake from soil and manipulation of mineralisation/immobilisation/nitrification reactions.  相似文献   

13.
M. Becker  J. K. Ladha  M. Ali 《Plant and Soil》1995,174(1-2):181-194
The growing concern about the sustainability of tropical agricultural systems stands in striking contrast to a world-wide decline in the use of soil-improving legumes. It is timely to assess the future role that soil-improving legumes may play in agricultural systems. This paper reviews recent progress, potential, and limitations of green manure technology, using lowland rice cropping systems as the example.Only a few legume species are currently used as green manures in lowland rice. Sesbania cannabina is the most widely used pre-rice green manure for rice in the humid tropics of Africa and Asia. Astragalus sinicus is the prototype post-rice green manure species for the cool tropics. Stem-nodulating S. rostrata has been most prominent in recent research. Many green manure legumes show a high N accumulation (80–100 kg N ha-1 in 45–60 days of growth) of which the major portion (about 80%) is derived from biological N2 fixation. The average amounts of N accumulated by green manures can entirely substitute for mineral fertilizer N at current average application rates. With similar N use efficiencies, green manure N is less prone to loss mechanisms than mineral N fertilizers and may therefore contribute to long-term residual effects on soil productivity.Despite a high N2-fixing potential and positive effects on soil physical and chemical parameters, the use of green manure legumes for lowland rice production has declined dramatically world-wide over the last 30 years. Land scarcity due to increasing demographic pressure and a relatively low price of urea N are probably the main determining factors for the long-term reduction in pre-rice green manure use. Post-rice green manures were largely substituted for by high-yielding early-maturing grain legumes. Unreliability of green manure performance, non-availability of seeds, and labor intensive operations are the major agronomic constraints. The recognition and extrapolation of niches where green manures have a comparative advantage may improve an often unfavorable economic comparison of green manure with cash crop or fertilizer N. Socio-economic factors like the cost of land, labor, and mineral N fertilizer are seen to determine the cost-effectiveness and thereby farmers' adoption of sustainable pre-rice green manure technology. Hydrology and soil texture determine the agronomic competitiveness of a green manure with N fertilizers and with alternative cash crops. In general, the niches for pre-rice green manure are characterized by a relatively short time span available for green manure growth and a soil moisture regime that is unfavorable for cash crops (flood-prone rainfed lowlands with coarse-textured soils).Given the numerous agronomic and socio-economic constraints, green manure use is not seen to become a relevant feature of favourable rice-growing environments in the foreseeable future. However, in environments where soil properties and hydrology are marginal for food crop production, but which farmers may be compelled to cultivate in order to meet their subsistence food requirements, green manures may have a realistic and applicable potential.  相似文献   

14.
Management strategies for increasing ruminant legume consumption and mitigating methane emissions from tropical livestock production systems require further study. The aim of this work was to evaluate the herbage intake, animal performance and enteric methane emissions of cattle grazing dwarf elephant grass (DEG) (Pennisetum purpureum cv. BRS Kurumi) alone or DEG with peanut (Arachis pintoi cv. Amarillo). The experimental treatments were the following: DEG pastures receiving nitrogen fertilization (150 kg N/ha as ammonium nitrate) and DEG intercropped with peanut plus an adjacent area of peanut that was accessible to grazing animals for 5 h/day (from 0700 to 1200 h). The animals grazing legume pastures showed greater average daily gain and herbage intake, and shorter morning and total grazing times. Daily methane emissions were greater from the animals grazing legume pastures, whereas methane emissions per unit of herbage intake did not differ between treatments. Allowing animals access to an exclusive area of legumes in a tropical grass-pasture-based system can improve animal performance without increasing methane production per kg of dry matter intake.  相似文献   

15.
Species composition in successional dry forests in the tropics varies widely, but the effect of this variation on biogeochemical processes is not well known. We examined fluxes of N oxides (nitrous and nitric oxide), soil N cycling, and litter chemistry (C/N ratio) in four successional dry forests on similar soils in western Puerto Rico with differing species compositions and land-use histories. Forests patch-cut for charcoal 60 years ago had few legumes, high litter C/N ratios, low soil nitrate and low N oxide fluxes. In contrast, successional forests from pastures abandoned several decades ago had high legume densities, low litter C/N ratios, high mean soil nitrate concentrations and high N oxide fluxes. These post-pasture forests were dominated by the naturalized legume Leuceana leucocephala, which was likely responsible for the rapid N cycling in those forests. We conclude that agriculturally induced successional pathways leading to dominance by a legume serve as a mechanism for increasing N oxide emissions from tropical regions. As expected for dry regions, nitric oxide dominated total N oxide emissions. Nitric oxide emissions increased with increasing soil moisture up to about 30% water-filled pore space then stabilized, while nitrous oxide emissions, albeit low, continued to increase with increasing soil wetness. Inorganic N pools and net N mineralization were greatest during peak rainfalls and at the post-agricultural site with the highest fluxes. Soil nitrate and the nitrate/ammonium ratio correlated positively with average N oxide fluxes. N oxide fluxes were negatively and exponentially related to litter C/N ratio for these dry forests and the relationship was upheld with the addition of data from seven wet forests in northeastern Puerto Rico. This finding suggests that species determination of litter C/N ratio may partly determine N oxide fluxes across widely differing tropical environments.  相似文献   

16.
The legume-rhizobia symbiosis is a classical mutualism where fixed carbon and nitrogen are exchanged between the species. Nonetheless, the plant carbon that fuels nitrogen (N(2)) fixation could be diverted to rhizobial reproduction by 'cheaters'--rhizobial strains that fix less N(2) but potentially gain the benefit of fixation by other rhizobia. Host sanctions can decrease the relative fitness of less-beneficial reproductive bacteroids and prevent cheaters from breaking down the mutualism. However, in certain legume species, only undifferentiated rhizobia reproduce, while only terminally differentiated rhizobial bacteroids fix nitrogen. Sanctions were, therefore, tested in two legume species that host non-reproductive bacteroids. We demonstrate that even legume species that host non-reproductive bacteroids, specifically pea and alfalfa, can severely sanction undifferentiated rhizobia when bacteroids within the same nodule fail to fix N(2). Hence, host sanctions by a diverse set of legumes play a role in maintaining N(2) fixation.  相似文献   

17.
* Leguminous trees are very common in the tropical rainforests of Guyana. Here, species-specific differences in N(2) fixation capability among nodulating legumes growing on different soils and a possible limitation of N(2) fixation by a relatively high nitrogen (N) and low phosphorus (P) availability in the forest were investigated. * Leaves of 17 nodulating species and 17 non-nodulating reference trees were sampled and their delta(15)N values measured. Estimates of N(2) fixation rates were calculated using the (15)N natural abundance method. Pot experiments were conducted on the effect of N and P availability on N(2) fixation using the (15)N-enriched isotope dilution method. * Nine species showed estimates of > 33% leaf N derived from N(2) fixation, while the others had low or undetectable N(2) fixation rates. High N and low P availability reduced N(2) fixation substantially. * The results suggest that a high N and low P availability in the forest limit N(2) fixation. At the forest ecosystem level, N(2) fixation was estimated at c. 6% of total N uptake by the tree community. We conclude that symbiotic N(2) fixation plays an important role in maintaining high amounts of soil available N in undisturbed forest.  相似文献   

18.
Sustainable agriculture relies greatly on renewable resources like biologically fixed nitrogen. Biological nitrogen fixation plays an important role in maintaining soil fertility. However, as BNF is dependent upon physical, environmental, nutritional and biological factors, mere inclusion of any N2-fixing plant system does not guarantee increased contributions to the soil N pool. In the SAT where plant stover is also removed to feed animals, most legumes might be expected to deplete soil N. Yet beneficial legume effects in terms of increased yields in succeeding cereal crops have been reported. Such benefits are partly due to N contribution from legumes through BNF and soil N saving effect. In addition, other non-N rotational benefits, for example, improved nutrient availability, improved soil structure, reduced pests and diseases, hormonal effects are also responsible. In this paper we have reviewed the research on the contribution of grain legumes in cropping systems and the factors affecting BNF. Based on the information available, we have suggested ways for exploiting BNF for developing sustainable agriculture in the semi-arid tropics (SAT). A holistic approach involving host-plant, bacteria, environment and proper management practices including need based inoculation for enhancing BNF in the cropping systems in the SAT is suggested.  相似文献   

19.
Barron AR  Purves DW  Hedin LO 《Oecologia》2011,165(2):511-520
Symbiotic dinitrogen (N2) fixation is often invoked to explain the N richness of tropical forests as ostensibly N2-fixing trees can be a major component of the community. Such arguments assume N2 fixers are fixing N when present. However, in laboratory experiments, legumes consistently reduce N2 fixation in response to increased soil N availability. These contrasting views of N2 fixation as either obligate or facultative have drastically different implications for the N cycle of tropical forests. We tested these models by directly measuring N2-fixing root nodules and nitrogenase activity of individual canopy-dominant legume trees (Inga sp.) across several lowland forest types. Fixation was substantial in disturbed forests and some gaps but near zero in the high N soils of mature forest. Our findings suggest that canopy legumes closely regulate N2 fixation, leading to large variations in N inputs across the landscape, and low symbiotic fixation in mature forests despite abundant legumes.  相似文献   

20.
豆科树种回接根瘤菌的研究   总被引:2,自引:0,他引:2       下载免费PDF全文
 作者对八种豆科树种的根瘤菌回接进行了研究,不回接根瘤菌的对照植株不结瘤或有少且小的根瘤,而接菌植株的根瘤数量多且个体大;接菌植株的株高、干重及总氮量分别比不接菌的对照植株高出0.7~3.2、1.3~15.8和11.3~14.8倍。根瘤固定的氮量占幼苗生长所需氮的一半以上,固定的氮绝大部分运输到植株其它部位,分配到地上部分的氮素多于根部。固氮量与幼苗生物量显著相关。固氮作用增加了植物对磷、钾元素的吸收和积累。速生树种南洋楹(Albizia falcata)和非速生树种格木(Erythrophloeum fordii)幼苗的结瘤、固氮及生长状况较好,表现出较高的结瘤固氮潜能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号