首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
AIMS: Isolation and screening of extreme halophilic archaeon producing extracellular haloalkaliphilic protease and optimization of culture conditions for its maximum production. METHODS AND RESULTS: Halogeometricum sp. TSS101 was isolated from salt samples and screened for the secretion of protease on gelatin and casein plates containing 20% NaCl. The archaeon was grown aerobically in a 250 ml flask containing 50 ml of (w/v) NaCl 20%; MgCl(2) 1%; KCl 0.5%; trisodium citrate 0.3%; and peptone 1%; pH 7.2 at 40 degrees C on rotary shaker. The production of enzyme was investigated at various pH, temperatures, NaCl concentrations, metal ions and different carbon and nitrogen sources. The partially purified protease had activity in a broad pH range (7.0-10.0) with optimum activity at pH 10.0 and a temperature (60 degrees C). The enzyme was thermostable and retained 70% initial activity at 80 degrees C. Maximum protease production occurred at 40 degrees C in a medium containing 20% NaCl (w/v) and 1% skim milk powder after 84 h in shaking culture. Enzyme secretion was observed at a broad pH range of 7.0-10.0. Addition of CaCl(2) (200 mmol) to the culture medium enhanced the production of protease. Protein rich flours proved to be cheap and good alternative source for enzyme production. Different osmolytes were tested for the growth and production of haloalkaliphilc protease and found that betaine and glycerol enhanced growth without secretion of the protease. Immobilization studies showed that whole cells immobilized in 2% alginate beads were stable up to 10 batches and able to secrete the protease, which attained maximum production within 60 h under shaking conditions. CONCLUSIONS: Halogeometricum sp. TSS101 secreted an extracellular haloalkaliphilic and thermostable protease. The optimum conditions required for maximum production are 20% NaCl, 1% skim milk powder and temperature at 40 degrees C. Addition of CaCl(2) (200 mmol) enhanced the enzyme production. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of haloalkaliphilic protease. SIGNIFICANCE AND IMPACT OF THE STudy: The low cost protein rich flours were used as an alternative carbon and nitrogen sources for enzyme production. Immobilization of halophilic cells in alginate beads can be used in continuous production of halophilic enzyme. The halophilic and thermostable protease from Halogeometricum sp. TSS101 is good source for industrial applications and can be a suitable source for preparation of fish sauce.  相似文献   

2.
The production of a protease was investigated under conditions of high salinity by the moderately halophilic bacterium Halobacillus karajensis strain MA-2 in a basal medium containing peptone, beef extract, maltose and NaCl when the culture reached the stationary growth phase. Effect of various temperatures, initial pH, salt and different nutrient sources on protease production revealed that the maximum secretion occurred at 34°C, pH 8.0–8.5, and in the presence of gelatin. Replacement of NaCl by various concentrations of sodium nitrate in the basal medium also increased the protease production. The secreted protease was purified 24-fold with 68% recovery by a simple approach including a combination of acetone precipitation and Q-Sepharose ion exchange chromatography. The enzyme revealed a monomeric structure with a relative molecular mass of 36 kDa by running on SDS-PAGE. Maximum caseinolytic activity of the enzyme was observed at 50°C, pH 9.0 and 0.5 M NaCl, although at higher salinities (up to 3 M) activity still remained. The maximum enzyme activity was obtained at a broad pH range of 8.0–10.0, with 55 and 50% activity remaining at pH 6 and 11, respectively. Moreover, the enzyme activity was strongly inhibited by phenylmethylsulfonyl fluoride (PMSF), Pefabloc SC and EDTA; indicating that it probably belongs to the subclass of serine metalloproteases. These findings suggest that the protease secreted by Halobacillus karajensis has a potential for biotechnological applications from its haloalkaline properties point of view.  相似文献   

3.
An alkaline protease secreting Haloalkaliphilic bacterium (Gene bank accession number EU118361) was isolated from the Saurashtra Coast in Western India. The alkaline protease was purified by a single step chromatography on phenyl sepharose 6 FF with 28% yield. The molecular mass was 40 kDa as judged by SDS-PAGE. The enzyme displayed catalysis and stability over pH 8–13, optimally at 9–11. It was stable with 0–4 M NaCl and required 150 mM NaCl for optimum catalysis at 37 °C; however, the salt requirement for optimal catalysis increased with temperature. While crude enzyme was active at 25–80 °C (optimum at 50 °C), the purified enzyme had temperature optimum at 37 °C, which shifted to 80 °C in the presence of 2 M NaCl. The NaCl not only shifted the temperature profile but also enhanced the substrate affinity of the enzyme as reflected by the increase in the catalytic constant (K cat). The enzyme was also calcium dependent and with 2 mM Ca+2, the activity reached to maximum at 50 °C. The crude enzyme was highly thermostable (37–90 °C); however, the purified enzyme lost its stability above 50 °C and its half life was enhanced by 30 and sevenfold at 60 °C with 1 M NaCl and 50 mM Ca+2, respectively. The activity of the enzyme was inhibited by PMSF, indicating its serine type. While the activity was slightly enhanced by Tween-80 (0.2%) and Triton X-100 (0.05%), it marginally decreased with SDS. In addition, the enzyme was highly stable with oxidizing-reducing agents and commercial detergents and was affected by metal ions to varying extent. The study assumes significance due to the enzyme stability under the dual extremities of pH and salt coupled with moderate thermal tolerance. Besides, the facts emerged on the enzyme stability would add to the limited information on this enzyme from Haloalkaliphilic bacteria.  相似文献   

4.
采用bacitracin-Sepharose 4B亲和层析的方法得到凝胶电泳均一的来自极端嗜盐古生菌(Natrinema sp.)R6-5的胞外嗜盐蛋白酶。经SDS-PAGE分析该酶亚基分子量为62kDa。PMSF对它的活性完全抑制,表明它是一种丝氨酸蛋白酶,该酶反应的最适NaCl浓度为3mol/L,最适温度为45℃,最适pH值为8.0。在高盐条件下能维持高活性并十分稳定,具有重要的潜在应用价值。  相似文献   

5.
An extracellular protease was produced under stress conditions of high temperature and high salinity by a newly isolated moderate halophile, Salinivibrio sp. strain AF-2004 in a basal medium containing peptone, beef extract, glucose and NaCl. A modification of Kunitz method was used for protease assay. The isolate was capable of producing protease in the presence of sodium chloride, sodium sulfate, sodium nitrate, sodium nitrite, potassium chloride, sodium acetate and sodium citrate. The maximum protease was secreted in the presence of 7.5 to 10% (w/v) sodium sulfate or 3% (w/v) sodium acetate (4.6 U ml−1). Various carbon sources including glucose, lactose, casein and peptone were capable of inducing enzyme production. The optimum pH, temperature and aeration for enzyme production were 9.0, 32 °C and 220 rpm, respectively. The enzyme production corresponded with growth and reached a maximum level during the mid-stationary phase. Maximum protease activity was exhibited in the medium containing 1% (w/v) NaCl at 60 °C, with 18% and 41% activity reductions at temperature 50 and 70 °C, respectively. The optimum pH for enzyme activity was 8.5, with 86% and 75% residual activities at pH 10 and 6, respectively. The activity of enzyme was inhibited by EDTA. These results suggest that the protease secreted by Salinivibrio sp. strain AF-2004 is industrially important from the perspectives of its activity at a broad pH ranges (5.0–10.0), its moderate thermoactivity in addition to its high tolerance to a wide range of salt concentration (0–10% NaCl).  相似文献   

6.
A metalloprotease secreted by the moderately halophilic bacterium Salinivibrio sp. strain AF-2004 when the culture reached the stationary growth phase. This enzyme was purified to homogeneity by acetone precipitation and subsequent Q-Sepharose anion exchange and Sephacryl S-200 gel filtration chromatography. The apparent molecular mass of the protease was 31 kDa by SDS-PAGE, whereas it was estimated as approximately 29 kDa by Sephacryl S-200 gel filtration. The purified protease had a specific activity of 116.8 mumol of tyrosine/min per mg protein on casein. The optimum temperature and salinity of the enzyme were at 55 degrees C and 0-0.5 M NaCl, although at salinities up to 4 M NaCl activity still remained. The protease was stable and had a broad pH profile (5.0-10.0) with an optimum of 8.5 for casein hydrolysis. The enzyme was strongly inhibited by phenylmethyl sulfonylfluoride (PMSF), Pefabloc SC, chymostatin and also EDTA, indicating that it belongs to the class of serine metalloproteases. The protease in solutions containing water-soluble organic solvents or alcohols was more stable than that in the absence of organic solvents. These characteristics make it an ideal choice for applications in industrial processes containing organic solvents and/or salts.  相似文献   

7.
Proteolytic Aeromonas caviae P-1-1 growing at wide-ranging pH (7.0–11.0) and moderate salinity (0–5% NaCl) was isolated from cattle shed of Thanjavur, India. It produced lipase, gelatinase, and polyhydroxybutyrate. Different culture conditions, incubation time, carbon and nitrogen sources, vitamins, amino acids, surfactants, and metal ions for optimal growth and protease production of P-1-1 were examined. Maximum protease (0.128?U/mL) production was achieved with 1% fructose, 1% yeast extract, 0.1% ammonium sulfate, 3% NaCl, 0.1% CaCl2?·?2H2O, 1% glycine, 0.1% vitamin E, and 0.1% Tween-40 at pH 8.0 after 42?hr of incubation at 37°C. It was active over broad range of pH (7.0–12.0), temperature (15–100°C), and salinity (0–9% NaCl) with optima at pH 10.0, 55°C, and 3% NaCl. It retained 65 and 48% activities at pH 12.0 and 100°C, respectively. Partially purified protease was highly stable (100%) within pH range 7.0–12.0 and salinities of 0–5% NaCl for 48?hr. Cu2+, Mn2+, Co2+, and Ca2+ did not inhibit its activity. Its stability at extreme pHs, temperatures, and in the presence of surfactants and commercial detergents suggests its possible application in laundry detergents. Partially purified protease was immobilized and reused. This is the first report of alkali-thermotolerant, surfactant–detergent-stable partially purified extracellular protease from A. caviae.  相似文献   

8.
An alkaline protease was isolated from culture filtrate of B. subtilis NCIM 2713 by ammonium sulphate precipitation and was purified by gel filtration. With casein as a substrate, the proteolytic activity of the purified protease was found to be optimal at pH 8.0 and temperature 70 degrees C. The purified protease had molecular weight 20 kDa, Isoelectric point 5.2 and km 2.5 mg ml(-1). The enzyme was stable over the pH range 6.5-9.0 at 37 degrees C for 3 hr. During chromatographic separation this protease was found to be susceptible to autolytic degradation in the absence of Ca2+. Ca2+ was not only required for the enzyme activity but also for the stability of the enzyme above 50 degrees C. About 62% activity was retained after 60 min at pH 8.0 and 55 degrees C. DFP and PMSF completely inhibited the activity of this enzyme, while in the presence of EDTA only 33% activity remained. However, it was not affected either by sulfhydryl reagent, or by divalent metal cations, except SDS and Hg2+. The results indicated that this is a serine protease.  相似文献   

9.
A halophilic isolate Salimicrobium halophilum strain LY20 producing extracellular amylase and protease was isolated from Yuncheng, China. Production of both enzymes was synchronized with bacterial growth and reached a maximum level during the early-stationary phase. The amylase and protease were purified to homogeneity with molecular weights of 81 and 30?kDa, respectively. Optimal amylase activity was observed at 70?°C, pH 10.0% and 10% NaCl. Complete inhibition by EDTA, diethyl pyrocarbonate (DEPC), and phenylarsine oxide (PAO) indicated that the amylase was a metalloenzyme with histidine and cysteine residues essential for its catalysis. Maltose was the main product of starch hydrolysis, indicating an β-amylase activity. The purified protease from LY20 showed highest activity at 80?°C, pH 10.0% and 12.5% NaCl. Complete inhibition was shown by phenylmethylsulfonyl fluoride, DEPC, and PAO, indicating that the enzyme probably belonged to the subclass of the serine proteases with histidine and cysteine residues essential for catalysis. Furthermore, both enzymes were highly stable over broad temperature (30-80?°C), pH (6.0-12.0) and NaCl concentration (2.5-20%) ranges, showing excellent thermostable, alkalistable, and halotolerant nature. The surfactants (SDS, Tween 80, and Triton X-100) did not affect their activities. In addition, both enzymes from LY20 displayed remarkable stability in the presence of water-soluble organic solvents with log P(ow) (?) ≤?-0.24.  相似文献   

10.
A protease producing marine bacterium, Bacillus halodurans CAS6 isolated from marine sediments, was found to produce higher enzyme by utilizing shrimp shell powder. Optimum culture conditions for protease production were 50 °C, pH 9.0, 30 % NaCl and 1 % shrimp shell powder (SSP) and the protease purified with a specific activity of 509.84 U/mg. The enzyme retained 100 % of its original activity even at 70 °C, pH 10.0 and 30 % NaCl for 1 h. The purified protease exhibited higher stability when treated with ionic, non-ionic (72–94 %) and commercial detergents (76–88 %), and organic solvents (88–126 %). Significant blood stain removal activity was found with the enzyme in washing experiments. The culture supernatant supplemented with 1 % SSP showed 93.67 ± 2.52 % scavenging activity and FT-IR analysis of the reaction mixture confirmed the presence of antioxidants such as cyclohexane and cyclic depsipeptide with aliphatic amino groups. These remarkable qualities found with this enzyme produced by Bacillus halodurans CAS6 could make this as an ideal candidate to develop the industrial process for bioconversion of marine wastes and antioxidant synthesis.  相似文献   

11.
碱性蛋白酶工程菌发酵条件及重组酶的纯化和性质的研究   总被引:16,自引:0,他引:16  
在5L发酵罐中对重组碱性蛋白酶工程菌株BP071高产碱性蛋白酶的条件进行了研究,通过提高通气量和改变搅拌转速,BP071可在发酵40 h内达到产酶高峰,酶活力最高可达24480 u/mL。利用快速蛋白液相层析(FPLC)技术,建立了快速高效纯化碱性蛋白酶的方案。发酵液通过硫酸铵沉淀、DEAE-A-50脱色及聚乙二醇浓缩得粗酶,再经过CM-Sephadex-C-50、Sephadex-G-75柱层析后得到了单一组份的重组碱性蛋白酶,酶纯度提高了76.2倍。SDS-PAGE显示重组碱性蛋白酶分子量为28 kD。酶学性质研究表明,酶的最适作用pH为11,最适作用温度为60℃,具有良好的pH稳定性和热稳定性。Ca2+、Mg2+对酶的稳定性有促进作用,Hg2+、Ag+、PMFS和DFP能强烈抑制酶的活力。SDS和Urea对酶的活力无影响。  相似文献   

12.
An extremely halophilic Chromohalobacter sp. TVSP101 was isolated from solar salterns and screened for the production of extracellular halothermophilic protease. Identification of the bacterium was done based upon biochemical tests and the 16S rRNA sequence. The partially purified enzyme displayed maximum activity at pH 8 and required 4.5 M of NaCl for optimum proteolytic activity. In addition, this enzyme was thermophilic and active in broad range of temperature 60–80°C with 80°C as optimum. The Chromohalobacter sp. required 4 M NaCl for its optimum growth and protease secretion and no growth was observed below 1 M of NaCl. The initial pH of the medium for growth and enzyme production was in the range 7.0–8.0 with optimum at pH 7.2. Various cations at 1 mM concentration in the growth medium had no significant effect in enhancing the growth and enzyme production but 0.5 M MgCl2 concentration enhanced enzyme production. Casein or skim milk powder 1% (w/v) along with 1% peptone proved to be the best nitrogen sources for maximum biomass and enzyme production. The carbon sources glucose and glycerol repressed the protease secretion. Immobilization of whole cells in absence of NaCl proved to be useful for continuous production of halophilic protease.  相似文献   

13.
An isolate of Streptomyces tendae produced a extracellular protease which was purified to apparent homogeneity giving a single band on SDS-PAGE with a molecular mass of 21 kDa. Optimum activity was at 70 degrees C and pH 6. It was stable at 55 degrees C for 30 min and between pH 4 and 9. It was resistant to neutral detergents and organic solvents such as Triton X-100, Tween 80, methanol, ethanol, acetone, and 2-propanol at 5% (v/v). The enzyme was completely inhibited by 5 mM PMSF, indicating it to be a serine protease. N-terminal amino acid sequence did not show any homology with other known proteolytic enzymes. The protease may therefore be a novel neutral serine protease, which is stable at high temperature and over a broad range of pH.  相似文献   

14.
The stability of crude extracellular protease produced by Bacillus licheniformis RP1, isolated from polluted water, in various solid laundry detergents was investigated. The enzyme had an optimum pH and temperature at pH 10.0–11.0 and 65–70 °C. Enzyme activity was inhibited by PMSF, suggesting that the preparation contains a serine-protease. The alkaline protease showed extreme stability towards non-ionic (5% Tween 20% and 5% Triton X-100) and anionic (0.5% SDS) surfactants, which retained 100% and above 73%, respectively, of its initial activity after preincubation 60 min at 40 °C.

The RP1 protease showed excellent stability and compatibility with a wide range of commercial solid detergents at temperatures from 40 to 50 °C, suggesting its further application in detergent industry. The enzyme retained 95% of its initial activity with Ariel followed by Axion (94%) then Dixan (93.5%) after preincubation 60 min at 40 °C in the presence of 7 mg/ml of detergents. In the presence of Nadhif and New Det, the enzyme retained about 83.5% of the original activity. The effects of additives such as maltodextrin, sucrose and PEG 4000 on the stability of the enzyme during spray-drying and during subsequent storage in New Det detergent were also examined. All additives tested enhanced stability of the enzyme.  相似文献   


15.
An unidentified halophilic archaebacterium strain 172 P1 produced three extracellular proteases in media containing 15-27% salts. One component, F-II, was purified to homogeneity. It is a serine protease that can be inhibited by phenylmethylsulfonyl fluoride and chymostatin. A high concentration of NaCl was required for its stability; in the presence of 25% NaCl, only 4% of the activity was lost by incubating at 60 degrees C for 30 min, while complete inactivation occurred in the presence of 5% NaCl. F-II is a thermophilic and halophilic protease. High activity was obtained at 75-80 degrees C when F-II was assayed in the presence of 25% NaCl. The optimal concentration of NaCl required was 10-14% when assayed at 70 degrees C with azocasein as substrate, though a halophilic characteristic was not distinct at lower temperatures. Hydrolyses of the synthetic substrates succinyl-alanyl-alanyl-prolyl-phenylalanyl-4-methylcoumaryl-7-amide or succinyl-alanyl-alanyl-alanyl-p-nitroanilide at 26 degrees C were maximal at 25 and 30% NaCl, respectively. F-II was most stable at pH 6-7, and its optimal pH was 10.7. Its molecular weight was estimated as 44,000-46,000 by sodium dodecyl sulfate--polyacrylamide gel electrophoresis and by gel filtration--high-pressure liquid chromatography. The sequence of the 35 N-terminal amino acid residues was determined and compared with that of other serine proteases.  相似文献   

16.
Bacteriocin release proteins (BRPs) can be used for the release of heterologous proteins from the Escherichia coli cytoplasm into the culture medium. The gene for a highly thermostable alkaline protease was cloned from Bacillus stearothermophilus F1 by the polymerase chain reaction. The recombinant F1 protease was efficiently excreted into the culture medium using E. coli XL1-Blue harboring two vectors: pTrcHis bearing the protease gene and pJL3 containing the BRPs. Both vectors contain the E. coli lac promoter-operator system. In the presence of 40 microM IPTG, the recombinant F1 protease and the BRP were expressed and mature F1 protease was released into the culture medium. This opens the way for the large-scale production of this protease in E. coli. The recombinant enzyme was purified through a one-step heat treatment at 70 degrees C for 3h and this method purified the protease to near homogeneity. The purified enzyme showed a pH optimum of 9.0, temperature optimum of 80 degrees C, and was stable at 70 degrees C for 24h in the pH range from 8.0 to 10.0. The enzyme exhibited a high degree of thermostability with a half-life of 4 h at 85 degrees C, 25 min at 90 degrees C, and was inhibited by the serine protease inhibitor phenylmethylsulfonyl fluoride (PMSF).  相似文献   

17.
嗜热脂肪芽孢杆菌高温蛋白酶的产生条件及酶学性质   总被引:31,自引:0,他引:31  
对嗜热脂肪芽孢杆菌(Bacillusstearothermophilis)WF146的产蛋白酶的条件进行了研究,在58℃条件下,WF146在pH值为75的Fd培养基中振荡发酵培养48h后,发酵液中高温蛋白酶产量可达600u/mL以上。对该酶性质的研究表明,酶分子量为34kD,最适作用pH为80,最适作用温度为80℃,具有良好的pH稳定性及热稳定性。Ca2+对该酶的稳定性具有重要影响,PMSF、DFP及IAA能强烈抑制酶活力,而DTT对该蛋白酶活力无影响  相似文献   

18.
Marine endosymbiontic Roseobacter sp. (MMD040), which produced high yields of protease, was isolated from marine sponge Fasciospongia cavernosa, collected from the peninsular coast of India. Maximum production of enzyme was obtained in Luria-Bertani broth. Catabolite repression was observed when the medium was supplemented with readily available carbon sources. The optimum temperature and pH for the enzyme production was 37 degrees C and 7.0, respectively. The enzyme exhibited maximum activity in pH range of 6-9 with an optimum pH of 8.0 and retained nearly 92.5% activity at pH 9.0. The enzyme was stable at 40 degrees C and showed 89% activity at 50 degrees C. Based on the present findings, the enzyme was characterized as thermotolerant alkaline protease, which can be developed for industrial applications.  相似文献   

19.
Proteases are the hydrolytic enzymes which hydrolyzes peptide bond between proteins with paramount applications in pharmaceutical and industrial sector. Therefore production of proteases with efficient characteristics of biotechnological interest from novel strain is significant. Hence, in this study, an alkaline serine protease produced by Bacillus cereus strain S8 (MTCC NO 11901) was purified and characterized. The alkaline protease was purified by ammonium sulfate precipitation (50%), ion exchange (DEAE-Cellulose) and gel filtration (Sephadex G-100) chromatographic techniques. As a result of this purification, a protein with specific activity of 300U/mg protein was obtained with purification fold 17.04 and recovery percentage of 34.6%. The molecular weight of the purified protease was determined using SDS-PAGE under non-reducing (71?kDa) and reducing conditions (35?kDa and 22?kDa). Zymogram analysis revealed that proteolytic activity was only associated with 22?kDa. These results indicate that existence of the enzyme as dimer in its native state. The molecular weight of the protease (22?kDa) was also determined by gel filtration (Sephadex G-200) chromatography and it was calculated as 21.8?kDa. The optimum activity of the protease was observed at pH 10.0 and temperature 70?°C with great stability towards pH and temperature with casein as a specific substrate. The enzyme was completely inhibited by PMSF and TLCK indicating that it is a serine protease of trypsin type. The enzyme exhibits a great stability towards organic solvents, oxidizing and bleaching agents and it is negatively influenced by Li2+ and Co2+ metal ions. The purified protein was further characterized by Matrix Assisted Laser Desorption Ionization/Mass Spectroscopy (MALDI/MS) analysis which reveals that total number of amino acids is 208 with isoelectric point 9.52.  相似文献   

20.
A serine protease secreted by the haloalkaliphilic archaeon Natrialba magadii at the end of the exponential growth phase was isolated. This enzyme was purified 83 fold with a total yield of 25% by ethanol precipitation, affinity chromatography, and gel filtration. The native molecular mass of the enzyme determined by gel filtration was 45 kDa. Na. magadii extracellular protease was dependent on high salt concentrations for activity and stability, and it had an optimum temperature of 60°C in the presence of 1.5 M NaCl. The enzyme was stable and had a broad pH profile (6–12) with an optimum pH of 8–10 for azocasein hydrolysis. The protease was strongly inhibited by diisopropyl fluorophosphate (DFP), phenylmethyl sulfonylfluoride (PMSF), and chymostatin, indicating that it is a serine protease. It was sensitive to denaturing agents such as SDS, urea, and guanidine HCl and activated by thiol-containing reducing agents such as dithiotreitol (DTT) and 2-mercaptoethanol. This protease degraded casein and gelatin and showed substrate specificity for synthetic peptides containing Phe, Tyr, and Leu at the carboxyl terminus, showing that it has chymotrypsin-like activity. Na. magadii protease presented no cross-reactivity with polyclonal antibodies raised against the extracellular protease of Natronococcus occultus, suggesting that although these proteases share several biochemical traits, they might be antigenically unrelated. Received: October 1, 1999 / Accepted: February 1, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号