首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 159 毫秒
1.
采用水培试验测定了6个大白菜品种幼苗根系的硫素吸收动力学参数,并对大田试验条件下不同品种大白菜对硫素的吸收及其增产效应进行比较分析.结果表明:(1)6个大白菜品种的硫素吸收动力学参数差别很大,其中Vmax值为3.54~9.36,Km值为7.34~28.56;(2)大田施用硫肥能不同程度地提高各品种的单株产量和植株的S含量,同时降低其P、K含量,且以硫素敏感品种的变幅更大;(3)不同大白菜品种根系的硫素吸收动力学参数与其大田施用硫肥后产量及其叶、根中S的含量变化有密切联系.研究发现,四季王和超级强春是硫素敏感品种,德高春和阳春是不敏感品种,大白菜苗期根系的硫素吸收动力学参数可以作为其吸收利用硫素效率的鉴定指标.  相似文献   

2.
研究了我国北方地区主要轮作制度下,土壤一植物生态系统中硫的主要输入(归还)与输出(攫取)途径.结果表明,在我国北方普遍推行的小麦-玉米轮作制中,作物收获物从土壤中攫取的硫素总量为每年26.4kg·hm^-2,由根系和植物其它残留物归还给土壤的硫素为每年6.8kg·hm^-2;在小麦.大豆轮作制中。作物收获物从土壤中攫取的硫素总量为每年24.4kg·hm^-2,对土壤的归还量为每年7.2kg·hm^-2;而在玉米-油菜轮作制中,收获物从土壤中攫取的硫量为每年45.4kg·hm^-2,归还给土壤的硫量为每年8.7kg·hm^-2;其它作物如棉花、高粱、花生、水稻种植一季通过收获物从土壤中带走的硫量分别为每年7.9、6.4、6.7和18.9kg·hm^-2。对土壤的归还量分别为每年2.6、1.8、4.3和5.6kg·hm^-2.通过对系统主要输入输出通量的估算,几种主要农田生态系统硫盈亏的状况计算结果说明,供试作物皆存在硫亏缺状况:小麦每年6kg·hm^-2、玉米8.5kg·hm^-2、油菜24kg·hm^-2、水稻7.1kg·hm^-2.  相似文献   

3.
控释肥硫膜降解对微域土壤性质的影响   总被引:1,自引:0,他引:1  
隋常玲  张民 《生态学杂志》2012,31(8):2050-2058
硫包膜控释肥在农业上的大面积应用,引起了硫膜降解产物对土壤环境影响的广泛关注。选用山东有代表性的耕作土壤棕壤和潮土,设置处理包括硫加树脂残膜、硫残膜、硫磺片,采用尼龙滤网分隔法获取受控释肥硫膜影响较强的微域土壤,对比研究了硫膜对微域和非微域土壤某些化学性质的影响。结果表明,在棕壤上施用各含硫材料会显著影响微域土壤的pH值,微域各含硫材料的氧化高峰期出现在60d左右。硫膜降解对潮土pH值影响与棕壤相比不显著,但肥际微域与非微域相比下降明显。硫残膜对土壤中的微量元素能起到一定的活化作用,尤其是对潮土肥际微域有效铁的影响最为显著,培养结束时硫加树脂残膜处理是空白处理的6.58倍。潮土中施用含硫包膜控释肥可活化土壤养分,从而提高土壤中有效硫和有效磷的含量。控释肥硫膜降解对土壤性质影响显著的区域是在硫膜≤5mm范围内的土壤,而对非肥际微域土壤的化学性质无显著影响。  相似文献   

4.
丛枝菌根真菌是土壤微生物群落的重要组成部分,是最常见的地下共生菌,对植物和土壤具有多种有益作用。本文阐述了近年来丛枝菌根真菌对植物吸收土壤硫素的最新进展,在目前耕地缺硫状况下,着重分析了丛枝菌根真菌改善植物硫素营养以及丛枝菌根真菌利用硫素的分子调控机制,总结了影响菌根硫代谢的因素,并指出该研究方向仍存在的一些问题以及未来的研究侧重点。  相似文献   

5.
植物硫素同化途径及其调控   总被引:9,自引:0,他引:9  
介绍了植物硫素吸收和同化途径以及硫、氮、碳等因素对其调控的研究进展.  相似文献   

6.
近年来硫被认为是植物生长发育所需的四大营养元素之一,仅次于氮、磷、钾。几乎所有蛋白质都含有含硫氨基酸,这些含硫氨基酸中的硫构成了植物体中全硫含量的90%,可以说硫是原生质等稳定结构物质的构成成分之一。硫特别有利于豆科植物的固氮作用,是苜蓿等豆科牧草增产不可缺少的营养成分。在缺硫地区,施硫肥能加快苜蓿的生长速度和再生速度、缩短刈割时间间隔,使茎杆粗壮,枝叶繁  相似文献   

7.
海河流域植物硫素含量特征的研究   总被引:9,自引:0,他引:9  
本文研究了海流域各类植物硫元素含量特征及与土壤硫素的关系,结果表明:海河流域植物全硫量平均值为0.232%,为正常含量的下限值,与我国南,北方一些地区比较属中等水平,其中栽培植物略高于野生植物,植物硫含量范围差别悬殊,最大值可为最小值的26倍,以沿大城市的水系和地区的植物含硫量高,海流域的土壤全硫含量平均值为0.043%(指耕地和天然植被的土壤),为正常土壤含量的中上水平,植物硫元素含量与土壤硫含  相似文献   

8.
植物硫营养代谢、调控与生物学功能   总被引:14,自引:0,他引:14  
植物作为无机硫的主要还原者,在全球的硫循环中起着关键作用。植物对土壤中硫酸盐的吸收运输和同化代谢,以及一系列具有重要生物学功能的含硫代谢产物的合成,不但与植物生长发育、耐逆和抗病虫害等密切相关,而且影响农作物产量与品质。硫营养的代谢和调控非常复杂,且生物学功能众多。本文综述了近年来植物硫营养代谢及调控及其在逆境胁迫中的生物学功能等方面的新进展,同时讨论了该领域悬而未决的重要生物学问题和研究动向,进而提出硫营养在农业生产上的重要性和所面临的新问题。  相似文献   

9.
植物作为无机硫的主要还原者, 在全球的硫循环中起着关键作用。植物对土壤中硫酸盐的吸收运输和同化代谢, 以及一系列具有重要生物学功能的含硫代谢产物的合成, 不但与植物生长发育、耐逆和抗病虫害等密切相关, 而且影响农作物产量与品质。硫营养的代谢和调控非常复杂, 且生物学功能众多。本文综述了近年来植物硫营养代谢及调控及其在逆境胁迫中的生物学功能等方面的新进展, 同时讨论了该领域悬而未决的重要生物学问题和研究动向, 进而提出硫营养在农业生产上的重要性和所面临的新问题。  相似文献   

10.
植物的硫营养   总被引:10,自引:0,他引:10  
植物硫营养是生产中值得注意研究的问题。本文内容共分六部分。首先讨论了植物的含硫量和含硫有机物及其功能,其次讨论了植物根系对SO_4~(2-)的吸收和叶片对SO_2的吸收以及硫在植物体内的运输,再次讨论了硫化氢的释放,最后分别讨论了硫营养与氮代谢的关系,硫对光合作用的影响以及硫与生长的关系。  相似文献   

11.
Sulfur assimilation and production of sulfur-containing compounds are essential biological activities that play critical roles in many biological processes, including the role of sulfur containing compounds such as glutathione and phytochelatin in trace element homeostasis in plants. This review will discuss the role of sulfur assimilation and the biosynthesis of sulfur containing compounds in both mechanisms of trace element hyperaccumulation and heavy metal stress responses in plants.  相似文献   

12.
As sulfur constitutes one of the macronutrients necessary for the plant life cycle, sulfur uptake and assimilation in higher plants is one of the crucial factors determining plant growth and vigour, crop yield and even resistance to pests and stresses. Inorganic sulfate is mostly taken up as sulfate from the soil through the root system or to a lesser extent as volatile sulfur compounds from the air. In a cascade of enzymatic steps inorganic sulfur is converted to the nutritionally important sulfur-containing amino acids cysteine and methionine (Hell, 1997; Hell and Rennenberg, 1998; Saito, 1999). Sulfate uptake and allocation between plant organs or within the cell is mediated by specific transporters localised in plant membranes. Several functionally different sulfate transporters have to be postulated and have been already cloned from a number of plant species (Clarkson et al., 1993; Hawkesford and Smith, 1997; Takahashi et al., 1997; Yamaguchi, 1997). Following import into the plant and transport to the final site of reduction, the plastid, the chemically relatively inert sulfate molecule is activated through binding to ATP forming adenosine-5'-phosphosulfate (APS). This enzymatic step is controlled through the enzyme ATP-sulfurylase (ATP-S). APS can be further phosphorylated to form 3'-phosphoadenosine-5'-phosphosulfate (PAPS) which serves as sulfate donor for the formation of sulfate esters such as the biosynthesis of sulfolipids (Schmidt and J?ger, 1992). However, most of the APS is reduced to sulfide through the enzymes APS-reductase (APR) and sulfite reductase (SIR). The carbon backbone of cysteine is provided through serine, thus directly coupling photosynthetic processes and nitrogen metabolism to sulfur assimilation. L-serine is activated by serine acetyltransferase (SAT) through the transfer to an acetyl-group from acetyl coenzyme A to form O-acetyl-L-serine (OAS) which is then sulhydrylated using sulfide through the enzyme O-acetyl-L-serine thiol lyase (OAS-TL) forming cysteine. Cysteine is the central precursor of all organic molecules containing reduced sulfur ranging from the amino acid methionine to peptides as glutathione or phytochelatines, proteines, vitamines, cofactors as SAM and hormones. Cysteine and derived metabolites display essential roles within plant metabolism such as protein stabilisation through disulfide bridges, stress tolerance to active oxygen species and metals, cofactors for enzymatic reactions as e.g. SAM as major methylgroup donor and plant development and signalling through the volatile hormone ethylene. Cysteine and other metabolites carrying free sulfhydryl groups are commonly termed thioles (confer Fig. 1). The physiological control of the sulfate reduction pathway in higher plants is still not completely understood in all details. The objective of this paper is to summarise the available data on the molecular analysis and control of cysteine biosynthesis in plants, and to discuss potentials for manipulating the pathway using transgenic approaches.  相似文献   

13.
The effects of sulfur and 6-Benzyladeine on the nitrate reductase activity in rice seedlings were studied by the water culture method. The activity of nitrate reductase was decreased, when plants were grown in sulfur deficient solution. Both sulfur deficient plant and the control were treated in nutrient solution with 6-Benzyladenine concentration of 0.01, 0.1 or 1ppm. It was found that the nitrate reductase activity of former plant was increased, while the activity of the latter one was decreased. When the plants were treated in untrient solution with 6-Benzyladenine concentration of 1 ppm, the transformation of inorganic sulfur to organic compounds was markedly increased in the sulfur deficient plant. However it was decreased in control plant.  相似文献   

14.
15.
缺硫培养6天的水稻幼苗,其叶片和根中的硝酸还原酶(NR)活性明显下降。用1pPm 的6-苄氨基腺嘌呤(6-BA)处理培养了10天的水稻幼苗根系,24小时后缺硫培养的水稻幼苗叶片和根系的 NR 活性升高,加硫培养的水稻幼苗叶片和根中的 NR 活性下降。用~(35)S示踪发现,6-BA 可降低加硫幼苗对~(35)S 的吸收和转化,但促进缺硫幼苗对~(35)S 的转化。  相似文献   

16.
Hell R  Jost R  Berkowitz O  Wirtz M 《Amino acids》2002,22(3):245-257
Summary. Among the amino acids produced by plants cysteine plays a special role as a mediator between assimilatory sulfate reduction and provision of reduced sulfur for cell metabolism. Part of this characteristic feature is the presence of cysteine synthesis in plastids, mitochondria and cytosol. Plants are the major source of reduced sulfur for human and animal nutrition. Cysteine biosynthesis deserves special attention, since reduced sulfur is channelled from cysteine into many sulfur-containing compounds in food and feed. Recent investigations are reviewed that focus on structure and regulation of cysteine synthesis in the model plant Arabidopsis thaliana. These data indicate that cysteine synthesis is not just an intermediate reaction step but that it is part of a regulatory network that mediates between inorganic sulfur supply and the demand for reduced sulfur during plant growth and in response to environmental changes. Received December 3, 2001 Accepted December 21, 2001  相似文献   

17.
18.
Abstract Among sulfur compounds, thiosulfate and polythionates are present at least transiently in many environments. These compounds have a similar chemical structure and their metabolism appears closely related. They are commonly used as energy sources for photoautotrophic or chemolithotrophic microorganisms, but their assimilation has been seldom studied and their importance in bacterial physiology is not well understood. Almost all bacterial strains are able to cleave these compounds since they possess thiosulfate sulfur transferase, thiosulfate reductace or S -sulfocysteine synthase activities. However, the role of these enzymes in the assimilation of thiosulfate or polythionates has not always been clearly established.
Elemental sulfur is, on the contrary, very common in the environmental. It is an energy source for sulfur-reducing eubacteria and archaebacteria and many sulfur-oxidizing archaebacteria. A phenomenon still not well understood is the 'excessive assimilatory sulfur metabolism' as observed in methanogens which perform a sulfur reduction which exceeds their anabolic needs without any apparent benefit. In heterotrophs, assimilation of elemental sulfur is seldom described and it is uncertain whether this process actually has a physiological significance.
Thus, reduction of thiosulfate and elemental sulfur is a common by incompletely understood feature among bacteria. These activities could give bacteria a selective advantage, but futher investigations are needed to clarify this possibility. Presence of thiosulfate, polythionates and sulfur reductase activities does not imply obligatorily that these activities play a role in thiosulfate, polythionates or sulfur assimilation as these compounds could be merely intermediates in bacterial metabolism. The possibility also exists that the assimilation of these sulfur compounds is just a side effect of an enzymatic activity with a completely different function.  相似文献   

19.
Numerous microbial species are reported to utilize oxidation and/or reduction of sulfur containing compounds in the energy producing portions of their metabolism Halothiobacillus neapolitanus cultures obtained from different commercial sources appear to display considerable variability in terms of growth rate, carbonate consumption and activity of individual enzymes.  相似文献   

20.
It is well known that oxidation caused by reactive oxygen species (ROS) is a major cause of cellular damage and death and has been implicated in cancer, neurodegenerative, and cardiovascular diseases. Small-molecule antioxidants containing sulfur and selenium can ameliorate oxidative damage, and cells employ multiple antioxidant mechanisms to prevent this cellular damage. However, current research has focused mainly on clinical, epidemiological, and in vivo studies with little emphasis on the antioxidant mechanisms responsible for observed sulfur and selenium antioxidant activities. In addition, the antioxidant properties of sulfur compounds are commonly compared to selenium antioxidant properties; however, sulfur and selenium antioxidant activities can be quite distinct, with each utilizing different antioxidant mechanisms to prevent oxidative cellular damage. In the present review, we discuss the antioxidant activities of sulfur and selenium compounds, focusing on several antioxidant mechanisms, including ROS scavenging, glutathione peroxidase, and metal-binding antioxidant mechanisms. Findings of several recent clinical, epidemiological, and in vivo studies highlight the need for future studies that specifically focus on the chemical mechanisms of sulfur and selenium antioxidant behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号