首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alistair Dawson 《Ibis》2003,145(2):E69-E76
During moult, the rate that protein can be synthesized and used to grow new feathers must be a critical factor influencing the quality of new plumage. However, the rate that new feather mass accrues during moult has not been assessed in detail. To estimate this, the increase in length of each of the nine primary feathers (P1–P9) in 16 captive Common Starlings Sturnus vulgaris was measured at weekly intervals throughout moult. The rate of increase in length was similar for all primary feathers except P9, which increased more slowly. After completion of moult, these feathers were plucked, accurately measured and weighed. The distribution of mass along the length of each primary was assessed. Using these data, I estimated the rate that mass had increased for each feather during moult. For each individual primary, mass increased at a steady rate until almost fully grown. The rate of increase in mass was least for P1 and greatest for P9. The number of feathers growing concurrently decreased as moult progressed. The net result was that total new primary feather mass increased at a steady rate throughout most of moult (linear regression between start of growth of P2 and end of growth of P8; r 2 = 0.991). Retrospective conversion of feather lengths into moult score showed that the increase in score was not linear. It was greatest early in moult and decreased as moult progressed. A scoring system that factors in distribution of mass within and between feathers may provide a more physiologically relevant measure of the progress of moult.  相似文献   

2.
Moult is a costly but necessary process in avian life, which displays two main temporal patterns within the annual cycle of birds (summer and winter moult). Timing of moult can affect its duration and consequently the amount of material invested in feathers, which could have a considerable influence on feather structure and functionality. In this study, we used two complementary approaches to test whether moult duration and feather mass vary in relation to the timing of moult. Firstly, we conducted a comparative study between a sample of long‐distance migratory passerine species which differ in moult pattern. Secondly, we took advantage of the willow warbler's Phylloscopus trochilus biannual moult, for which it is well‐known that winter moult takes longer than summer moult, to assess between‐moult variation in feather mass. Our comparative analysis showed that summer moulting species performed significantly shorter moults than winter moulters. We also detected that feathers produced in winter were comparatively heavier than those produced in summer, both in between‐species comparison and between moults of the willow warbler. These results suggest the existence of a trade‐off between moult speed and feather mass mediated by timing of moult, which could contribute to explain the diversity of moult patterns in passerines.  相似文献   

3.
Growing evidence suggests that structural feather colours honestly reflect individual quality or body condition but, contrary to pigment‐based colours, it is not clear what mechanism links condition to reflectance in structural feather colours. We experimentally accelerated the moult speed of a group of blue tits (Cyanistes caeruleus) by exposing them to a rapidly decreasing photoperiod and compared the spectral characteristics of their structural feather colours with those of control birds. Blue tits were sexually dimorphic on the UV/blue crown and on the white cheek feathers. Moult speed, however, dramatically reduced brightness and the saturation only on the UV/blue crown feathers, whereas structural white on the cheek feathers was basically unaffected by moult speed. Given that the time available for moulting is usually confined to the period between the end of the breeding season and migration or wintering, UV/blue colours, but not structural white, may convey long‐term information about an individual’s performance during the previous breeding season. The trade‐off between fast moulting and structural colour expression may represent a previously unrecognized selective advantage for early‐breeding birds.  相似文献   

4.
Here we investigate the change in feather quality during partial post‐juvenile and complete post‐breeding moult in great tit Parus major by measuring the change in the number of fault bars and feather holes on wing and tail feathers. Feathers grown during ontogeny usually are of lower quality than feathers grown following subsequent moults at independence. This is reflected by higher number of fault bars and feather holes on juveniles compared to adults. Fault bars are significantly more common on tail and proximal wing feathers than on the distal remiges, indicating a mechanism of adaptive allocation of stress induced abnormalities during ontogeny into the aerodynamically less important flight feathers. On the contrary, feather holes produced probably by chewing lice have a more uniform distribution on wing and tail feathers, which may reflect the inability of birds to control their distribution, or the weak natural selection imposed by them. The adaptive value of the differential allocation of fault bar between groups of feathers seems to be supported by the significantly higher recapture probability of those juvenile great tits which have fewer fault bars at fledging on the aerodynamically most important primaries, but not on other groups of flight feathers. The selection imposed by feather holes seems to be smaller, since except for the positive association between hatching date, brood size and the number of feather holes at fledging, great tits' survival was not affected by the number of feather holes. During post‐juvenile moult, the intensity of fault bars drops significantly through the replacement of tail feathers and tertials, resulting in disproportional reduction of the total number of fault bars on flight feathers related to the number of feathers replaced. The reduction in the number of fault bars during post‐juvenile moult associated with their adaptive allocation to proximal wing feathers and rectrices may explain the evolution of partial post‐juvenile moult in the great tit, since the quality of flight feathers can be increased significantly at a relatively small cost. Our results may explain the widespread phenomenon of partial post‐juvenile moult of flight feathers among Palearctic passerines. During the next complete post‐breeding moult, the total number of fault bars on flight feathers has remained unchanged, indicating the effectiveness of partial post‐juvenile moult in reducing the number of adaptively allocated fault bars. The number of feather holes has also decreased on groups of feathers replaced during partial post‐juvenile moult, but the reduction is proportional with the number of feathers moulted. In line with this observation, the number of feather holes is further reduced during post‐breeding moult on primaries and secondaries, resulting in an increase in feather quality of adult great tits.  相似文献   

5.
Migratory birds have less time for moulting than sedentary birds, which may force them to produce their feathers faster at the expense of reducing feather quality. However, the effects of migration on the trade-off between moult speed and plumage quality remain to be studied in natural populations. We analysed the relationship between growth rate and quality of individual feathers, taking advantage of natural variation between migratory and sedentary populations of blackcaps Sylvia atricapilla . As predicted by life-history theory, individual blackcaps showed variable individual quality, which was revealed by positive correlations between feather growth rate and feather mass within populations. However, migrants grew up their feathers faster, producing lighter feathers than sedentary blackcaps. These results support the idea that feather growth rate and feather quality are traded against each other in blackcaps. Such a trade-off is apparently caused by different selection associated to migratory and sedentary life styles, which opens new insights into the diversification of moult patterns in birds.  © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 98–105.  相似文献   

6.
7.
Large‐scale spatial gradients of environmental conditions shape organisms, populations and ecosystems. Even though environmental gradients are a key research theme in macro‐ecology and biogeography, the effects of large‐scale, east–west, environmental gradients are largely overlooked compared with north–south gradients. Our study focused on feather moult, an important and energy demanding process in birds. By comparing Western and Eastern Palearctic populations of 21 species, we found that juvenile passerines in the Western and Eastern Palearctic differ in the number of feathers moulted as part of their post‐juvenile moult. This difference is most likely the result of a large‐scale climatic gradient in cold season duration and consequent differences in the time available for moulting. Eastern populations were characterized by a limited extent of feather moult that was additionally affected by migration distance and body mass. The longer migration distance in the Eastern Palearctic caused a generally less extensive moult while high body mass was correlated with a low difference in moult extent between the Western and Eastern Palearctic regions. These results highlight the importance of linking annual cycle processes at the organismal level to the specific environmental conditions within the distribution range of each species.  相似文献   

8.
Phenotypic flexibility of organs in migratory birds has been documented for a variety of species of different genera during the migratory period. However, very little is known about phenotypic mass changes of organs with respect to other events within the annual cycle. This seems particularly interesting when birds face different physiological challenges in quick succession. We investigated mass changes of 13 organs from garden warblers (Sylvia borin) during the transition from moult to migration. These long-distance migratory birds perform a complete moult within their wintering area just shortly before the onset of spring migration. Birds were sampled in three successive stages according to their moult status: group I consisted of birds with growing primary or secondary wing feathers, group II consisted of birds with completed wing moult but with still moulting body feathers, and group III consisted of birds that had completed wing moult and body moult. Size-corrected flight muscle, kidney mass, and pancreas mass differed significantly among the three groups. Flight muscle was heaviest in birds that were about to leave their wintering area (group III) compared with birds still in body moult (group II). Kidney and pancreas showed a pattern similar to each other, with the heaviest mass occurring in birds with moulting wing feathers (group I) and significantly reduced mass in birds that had completed wing moult (group II) or both wing and body moult (group III). Mass reductions of kidney and pancreas during the transition from moult to migration are considered to be related to the demands of moult, while increased flight muscle may be due to moult, migration, or both. Phenotypic mass changes of organs in birds occur during their migration, but they also occur during the transition between other phases of the annual cycle such as moult and migration and are not restricted to the flight muscle.  相似文献   

9.
Captured free‐living male mallard Anas platyrhynchos at Abberton in southern Britain showed peak mass gain immediately prior to simultaneous remex moult. Individuals of both sexes were heavier before shedding wing feathers than when flightless confirming literature accounts that show mallard accumulate fat stores in anticipation of moult to contribute to meeting energy needs during remex re‐growth. Over the course of four seasons, males lost 13 17% of initial body mass on average during re‐growth of flight feathers, females 13 23%. Based on energy expenditure of 1.3 times BMR, male mallard were estimated to be able to fulfil 42 60% and females 41 82% of their energy needs throughout moult from stores. Free‐flying male mallard fed ad libitum in a predator‐free environment did not differ in starting body mass or rate of mass loss during wing moult compared to free‐living Abberton birds, suggesting depletion of fat stores, irrespective of available sources of exogenous energy. Based on this evidence, we reject that the hypotheses that mass loss in moulting mallard is due to 1) simple energy stress and 2) restrictions on feeding and consider that 3) attaining the ability to fly at an earlier stage on incompletely grown flight feathers is not the primary factor shaping this trait. Rather, we consider the accumulation and subsequent depletion of fat stores, together with reductions in energy expenditure, enable mallard to re‐grow feathers as rapidly as possible by exploiting habitats that offer safety from predators, but do not necessarily enable them to balance energy budgets during the flightless period of remex feather re‐growth.  相似文献   

10.
Environmental constraints are strong in migratory species that breed in the Arctic. In addition to breeding, Anatidae have to renew all their flight feathers during the short arctic summer. We examine how temporal constraints and climate affect the phenology of flight feather moult in the greater snow goose Chen caerulescens atlantica, a High Arctic nesting species. We used a database of 1412 moulting adult females measured over 15 yr on Bylot Island, Nunavut. Ninth (9th) primary length was used to determine the moult stage and speed of feather growth. We found a positive relationship between median annual hatching and moult initiation dates and the slope did not differ from 1. The interval between hatching and moult initiation was thus rather fixed and geese did not initiate moult earlier when reproductive phenology was delayed. Nonetheless, there was no relationship between median hatching date and the date at which birds regained flight capacity, suggesting that date of end of moult is independent of the reproductive phenology. There was a trend for an increase in the speed of flight feather growth in years with delayed hatching date. This is the most likely mechanism that could explain moult phenology adjustment in this species. Finally, we found a positive relationship between 9th primary length (corrected for inter‐annual variations) and body condition, suggesting a delay in moulting for individuals in poor condition. These results suggest that moult plasticity is primarily governed by variations in feather growth speed. This phenotypic plasticity could be necessary to complete flight feather renewal before the end of the arctic summer, independently of reproductive phenology and spring environmental conditions. Our novel results suggest possible phenological adjustments through moult speed, which was considered constant in geese until now.  相似文献   

11.
There is growing evidence that moult speed affects plumage quality. In many bird species, males and females differ in terms of breeding effort, survival expectation and the relationship between fitness and plumage quality. Consequently, differences in moult strategies between the sexes can be expected. The aim of this study was to assess whether, under simulated time constraints and with no parental investment in the previous breeding season, males and females differed in: a) timing and duration of primary moult, b) growth rates of individual primary feathers, and c) number of concurrently growing feathers. We investigated the effect of time constraints generated by a treatment consisting of two decreasing photoperiods (slow changing photoperiod, SCP=2 min day?1 and fast changing photoperiod, FCP=8 min day?1) on the primary post‐nuptial moult of captive rock sparrows Petronia petronia. Females started to moult on average 14 and 15 days later than males in both experimental groups. Primary moult duration was 10 (FCP) and 24 (SCP) days longer in males than in females, and, within sex, 34 (females) and 48 (males) days longer in SCP birds than in FCP ones. Females renewed a larger number of primaries simultaneously (5.7% in FCP and 12.8% in SCP) and had a higher total daily feather mass grown (9.9% in FCP and 22.4% in SCP), even though daily growth rates of individual primaries did not differ between sexes. As a result, males and females completed their primary moult at the same time within treatment. The observed differences in timing, duration and energy allocation for primary moult between the sexes probably have a genetic basis, as birds did not engage in reproduction during the preceding breeding season.  相似文献   

12.
Understanding the causes of variation in feather colour in free-living migratory birds has been challenging owing to our inability to track individuals during the moulting period when colours are acquired. Using stable-hydrogen isotopes to estimate moulting locality, we show that the carotenoid-based yellow-orange colour of American redstart (Setophaga ruticilla) tail feathers sampled on the wintering grounds in Central America and the Caribbean is related to the location where feathers were grown the previous season across North America. Males that moulted at southerly latitudes were more likely to grow yellowish feathers compared with males that moulted more orange-red feathers further north. Independent samples obtained on both the breeding and the wintering grounds showed that red chroma-an index of carotenoid content-was not related to the mean daily feather growth rate, suggesting that condition during moult did not influence feather colour. Thus, our results support the hypothesis that feather colour is influenced by ecological conditions at the locations where the birds moulted. We suggest that these colour signals may be influenced by geographical variation in diet related to the availability of carotenoids.  相似文献   

13.
Gregorio Moreno‐Rueda 《Ibis》2014,156(2):457-460
Feather holes represent damage to the plumage of birds and are correlated with delayed moult. Uropygial gland size is negatively correlated with feather holes. Consequently, it was predicted that birds with smaller uropygial glands would have more feather holes, and that this would affect moult performance. I examined this prediction in the House Sparrow Passer domesticus. Individuals with smaller uropygial glands had more feather holes, and those with more feather holes moulted later and faster. Therefore, uropygial gland size seemed to affect moult performance via its effect on feather holes. Uropygial gland size may have a positive effect on plumage quality, through a negative effect on feather holes, and therefore on moult timing and speed.  相似文献   

14.
Life-history theory proposes that costs must be associated with reproduction. Many direct costs are incurred during breeding. There is also evidence for indirect costs, incurred after breeding, which decrease survival and future reproductive success. One possible indirect cost identified in birds is that breeding activity in some way compromises plumage quality in the subsequent moult. Here we propose a mechanism by which this could occur. Breeding activity delays the start of moult. Birds that start to moult later also moult more rapidly--an effect of decreasing daylength. Could this result in poorer quality plumage? We kept two groups of male European starlings, Sturnus vulgaris, one on constant long days and the other on decreasing daylengths from the start of moult. Decreasing daylengths reduced the duration of moult from 103 +/- 4 days to 73 +/- 3 days (p < 0.0001). Newly grown primary feathers of birds that moulted fast were slightly shorter, weighed less (p < 0.05) and were more asymmetrical. They had a thinner rachis (p < 0.005), were less hard (p < 0.01) and less rigid (p < 0.05). They were also less resistant to wear so that differences in mass and asymmetry increased with time. There was no difference in Young''s modulus. Poorer quality plumage will lead to decreased survival due to decreased flight performance and increased thermoregulatory costs. Thus, reproduction incurs costs through a mechanism that operates after the end of breeding.  相似文献   

15.
The mechanisms by which melanin‐based colour polymorphism can evolve and be maintained in wild populations are poorly known. Theory predicts that colour morphs have differential sensitivity to environmental conditions. Recently it has been proposed that colour polymorphism covaries genetically with intrinsic and behavioural properties. Plumage moult is a costly and crucial somatic maintenance function in birds. We used a long‐term data set consisting of 761 observations on 307 individuals captured between 1985 and 2010 to examine differences in partial flight feather moult between grey (pale) and brown (pheomelanic dark) colour morphs of the tawny owl. We find that the brown morph consistently moult more primary flight feathers than the grey morph whereas there is no clear difference between colour morphs in the moulting of secondary feathers. Contrary to expectations, the difference in the number of moulted flight feathers between the morphs was independent of environmental conditions, as quantified by the abundance of prey. We discuss the potential physiological and behavioural causes for and costs of the observed difference in maintenance functions between colour morphs.  相似文献   

16.
Phenotypic flexibility during moult has never been explored in austral nomadic ducks. We investigated whether the body condition, organ (pectoral muscle, gizzard, liver and heart) mass and flight‐feather growth Egyptian geese Alopochen aegyptiaca in southern Africa show phenotypic flexibility over their 53‐day period of flightless moult. Changes in body mass and condition were examined in Egyptian geese caught at Barberspan and Strandfontein in South Africa. Mean daily change in primary feather length was calculated for moulting geese and birds were dissected for pectoral muscle and internal organ assessment. Mean body mass and condition varied significantly during moult. Body mass and condition started to decrease soon after flight feathers were dropped and continued to do so until the new feathers were at least two‐thirds grown, after which birds started to regain body mass and condition. Non‐moulting geese had large pectoral muscles, accounting for at least 26% of total body mass. Once moult started, pectoral muscle mass decreased and continued to do so until the flight feathers were at least one‐third grown, after which pectoral muscle mass started to increase. The regeneration of pectoral muscles during moult started before birds started to gain overall body mass. Gizzard mass started to increase soon after the onset of moult, reaching a maximum when the flight feathers were two‐thirds grown, after which gizzard mass again decreased. Liver mass increased significantly as moult progressed, but heart mass remained constant throughout moult. Flight feather growth was initially rapid, but slowed towards the completion of moult. Our results show that Egyptian geese exhibit a significant level of phenotypic flexibility when they moult. We interpret the phenotypic changes that we observed as an adaptive strategy to minimize the duration of the flightless period. Moulting Egyptian geese in South Africa undergo more substantial phenotypic changes than those reported for ducks in the northern hemisphere.  相似文献   

17.
van den Brink, B., Bijlsma, R.G. & van der Have, T.M. 2000. European swallows Hirundo rustica in Botswana during three non-breeding seasons: the effects of rainfall on moult. Ostrich: 71 (1): 198–204.

The rate of moult of European Swallows spending the non-breeding season in Botswana was studied during December-January of 1992/93,1993/94 and 1994/95 to investigate the effects of variability in rainfall and roosting habitat availability. In January 1994, 2–3 million European Swallows were counted at a traditional roost along the Boteti River. The rate of moult was relatively slow, about one feather (primary, secondary or tail feather) was replaced every two weeks in both adults and juveniles. The speed of moult in juveniles was generally lower than in adults, in particular of secondaries and tail feathers. Moulting rate of both primaries and tail feathers was lowest in 1994/95 during a period of drought and coincided with the almost complete destruction of roosting habitat. In 1992/93, moulting rate was highest when rainfall was moderate and roosting habitat abundant. Moulting rate was intermediate in 1993/94 when rainfall was frequent but roosting habitat reduced because of the low water level in the Boteti River. The combined effect of reduced food availability during droughts and higher densities and longer foraging flights when roosting habitat is scarce might explain the annual variation in moulting rate. From the second week of January onwards many adults started moulting the outermost tail feather before the penultimate feathers. This phenomenon could indicate the importance of long tail streamers in aerial manoeuvring when foraging during the return migration to the breeding grounds.  相似文献   

18.
THE MOULT OF THE BULLFINCH PYRRHULA PYRRHULA   总被引:1,自引:0,他引:1  
I. Newton 《Ibis》1966,108(1):41-67
The distribution of feather tracts and their sequence of moult in the Bullfinch is described. The adult post-nuptial moult, which is complete, lasted 10–12 weeks, and the post-juvenile moult, which is partial, 7–9 weeks. Adult moult began with the shedding of the first (innermost) primary and ended with the replacement of the last. Variations in the rate of moult in the flight feathers were mainly achieved, not by changes in the growth rates of individual feathers, but in the number of feathers growing concurrently. The primaries were shed more slowly, and the onset of body moult delayed, in birds which were still feeding late young. In 1962, the onset of moult in the adults was spread over 11 weeks from thc end of July to the beginning of October, and in the two following years over the six weeks, from the end of July to the beginning of September. The onset of moult was delayed by late breeding, which itself occurred in response to a comparative abundance of food in late summer, markedly in 1962. In all years, the first juveniles to moult started at the end of July, and the last, three weeks after the latest adults. Juveniles moulting late in the season retained more juvenile feathers than those moulting earlier. During moult, adult and juvenile Bullfinches produce feathers equivalent to 40% and 33% respectively of their dry weights. In both, for much of the moult, an average of nearly 40 mgm. of feather material—some 0.6% of their dry-weight–is laid down each day. The remiges of the adult comprise only a seventh of the weight of the entire plumage, and it is suggested that their protracted moult results not so much from their energy requirements, as from the need to maintain efficient flight. Variation in the rate of moult in the remiges was much less pronounced than in the body feathers. Bullfinches were less active during moult than at other times of the year. The weights of both adults and juveniles increased during moult. The food during the moult period is described. In all years, most Bullfinches finished moulting just before food became scarce, even though this occurred at different times in different years. In one year, adults moulting latest in the season probably survived less well than those moulting earlier; the same was apparently true of the juveniles in all years. The timing of moult in the Bullfinch, and the factors initiating it, are discussed in relation to the breeding season and foodsupply near Oxford.  相似文献   

19.
In a periodically changing environment it is important for animals to properly time the major events of their life in order to maximise their lifetime fitness. For a non-migratory bird the timing of breeding and moult are thought to be the most crucial. We develop a state-dependent optimal annual routine model that incorporates explicit density dependence in the food supply. In the model the birds' decisions depend on the time of year, their energy reserves, breeding status, experience, and the quality of two types of feathers (outer and inner primaries). Our model predicts that, under a seasonal environment, feathers with large effects on flight ability, higher abrasion rate and lower energetic cost of moult should be moulted closer to the winter (i.e. later) than those with the opposite attributes. Therefore, we argue that the sequence of moult may be an adaptive response to the problem of optimal timing of moult of differing feathers within the same feather tract. The model also predicts that environmental seasonality greatly affects optimal annual routines. Under high seasonality birds breed first then immediately moult, whereas under low seasonality an alternation occurs between breeding and moulting some of the feathers in one year and having a complete moult but no breeding in the other year. Increasing food abundance has a similar effect.  相似文献   

20.
Moult speed constrains the expression of a carotenoid-based sexual ornament   总被引:1,自引:0,他引:1  
We investigated the effect of moult speed on the expression of a sexually selected, carotenoid-based feather ornament in the rock sparrow (Petronia petronia). We experimentally accelerated the moult speed of a group of birds by exposing them to a rapidly decreasing photoperiod and compared the area and the spectral characteristics of their ornaments with those of control birds. Birds with accelerated moulting rate showed a smaller yellow patch with lower yellow reflectance compared to their slow-moulting counterparts. Considering that the time available for moulting is usually constrained between the end of the breeding season and migration or wintering, carotenoid feather ornaments, whose expression is mediated by moult speed, may convey long term information about an individual's condition, potentially encompassing the previous breeding season. Furthermore, the observed trade-off between moult speed and ornament expression may represent a previously unrecognized selective advantage for early breeding birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号