首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
van den Brink, B., Bijlsma, R.G. & van der Have, T.M. 2000. European swallows Hirundo rustica in Botswana during three non-breeding seasons: the effects of rainfall on moult. Ostrich: 71 (1): 198–204.

The rate of moult of European Swallows spending the non-breeding season in Botswana was studied during December-January of 1992/93,1993/94 and 1994/95 to investigate the effects of variability in rainfall and roosting habitat availability. In January 1994, 2–3 million European Swallows were counted at a traditional roost along the Boteti River. The rate of moult was relatively slow, about one feather (primary, secondary or tail feather) was replaced every two weeks in both adults and juveniles. The speed of moult in juveniles was generally lower than in adults, in particular of secondaries and tail feathers. Moulting rate of both primaries and tail feathers was lowest in 1994/95 during a period of drought and coincided with the almost complete destruction of roosting habitat. In 1992/93, moulting rate was highest when rainfall was moderate and roosting habitat abundant. Moulting rate was intermediate in 1993/94 when rainfall was frequent but roosting habitat reduced because of the low water level in the Boteti River. The combined effect of reduced food availability during droughts and higher densities and longer foraging flights when roosting habitat is scarce might explain the annual variation in moulting rate. From the second week of January onwards many adults started moulting the outermost tail feather before the penultimate feathers. This phenomenon could indicate the importance of long tail streamers in aerial manoeuvring when foraging during the return migration to the breeding grounds.  相似文献   

2.
I. NEWTON  & P. ROTHERY 《Ibis》2005,147(4):667-679
Moult was studied in 1 year among Greenfinches trapped in a garden in east‐central England. Over the period June–December 2003, 333 captures of 179 individual adults provided information on breeding condition, moult, body weight, sex and age (yearling or older adult, equivalent to birds in their second or later calendar years, respectively). About 95% of all birds (sex and age groups combined) started primary feather moult from 2 July to 14 August, and finished from 10 October to 22 November. The mean date of moult onset in the population as a whole was 24 July. On average, males began 8 days before females, and yearlings began 6 days before older birds. The mean duration of moult was 100 days, whether the figure was calculated for the population as a whole or just for the 36 individual birds that were caught more than once during moult. However, moult rate was slightly slower, and moult duration slightly longer, in yearlings than in older adults of both sexes. No evidence was found for any systematic relationship between moult onset date and rate (duration). Breeding and moult overlapped by up to 5 weeks or more in individual birds, and some birds probably started to moult as early as the incubation stage of their last clutch of the season. The cloacal protuberance (taken as indicative of breeding condition) had regressed in all males by the time the fifth primary was shed, and the brood patch had regressed and re‐feathered in all females by the time the fourth primary was shed. The bulk of feather replacement in the secondary, tail and body tracts occurred in the second half of primary moult, and after cloacal protuberances and brood patches were completely regressed. In all birds examined near the end of primary moult the secondaries were still growing, and would have continued growth for up to another 19 days or more, extending the end of the moulting season into December. Body mass during moult was affected significantly by sex and age, as well as by time of day, amount of food in gullet, reproductive condition and date. No firm evidence emerged that body mass was affected by moult stage, after allowing for effects of date and other variables (although there was a non‐significant negative relationship between moult stage and body mass in males). In the population as a whole, the breeding season (from first egg‐laying to independence of last young) was spread over 21 weeks and moult over 24 weeks. With an overlap between the two events at the population level of up to 9 weeks, the two processes together took up to 36 weeks, some 69% of the year.  相似文献   

3.
Alistair Dawson 《Ibis》2004,146(3):493-500
In many species of birds there is a close relationship between the end of breeding and the start of moult. Late-breeding birds therefore often start to moult late, but then moult more rapidly. This is an adaptive mechanism mediated by decreasing day lengths that allows late-breeding birds to complete moult in time. This study asked how these birds complete moult of the primary feathers more rapidly, and the consequences of this on the mass of primary feathers. Common Starlings Sturnus vulgaris were induced to moult rapidly in one of two ways. In the first experiment, one group was exposed to artificially decreasing photoperiods from the start of moult, whereas the control group remained on a constant long photoperiod. The second experiment was a more realistic simulation. Two groups were allowed to moult in an outdoor aviary. One group started to moult at the normal time. In the other, the start of moult was delayed by 3 weeks with an implant of testosterone. The duration of moult was significantly reduced in both the group experiencing artificially decreasing photoperiods and the group in which the start of moult was delayed. The faster moult rate was achieved by moulting more feathers concurrently. The rate of increase in length of each of the primary feathers, and their final length, did not differ between groups. The rate at which total new primary feather mass was accumulated was greater in more rapidly moulting birds, but this was insufficient to compensate for the greater numbers of feathers being grown concurrently. Consequently, the rate of increase in mass of individual feathers, and the final feather mass, were less in the rapidly moulting birds. A 3-week delay in the start of moult is not an unrealistic scenario. That this caused a measurable decrease in feather mass suggests that late-breeding birds are indeed likely to suffer a real decrease in the quality of plumage grown during the subsequent moult.  相似文献   

4.
Here we investigate the change in feather quality during partial post‐juvenile and complete post‐breeding moult in great tit Parus major by measuring the change in the number of fault bars and feather holes on wing and tail feathers. Feathers grown during ontogeny usually are of lower quality than feathers grown following subsequent moults at independence. This is reflected by higher number of fault bars and feather holes on juveniles compared to adults. Fault bars are significantly more common on tail and proximal wing feathers than on the distal remiges, indicating a mechanism of adaptive allocation of stress induced abnormalities during ontogeny into the aerodynamically less important flight feathers. On the contrary, feather holes produced probably by chewing lice have a more uniform distribution on wing and tail feathers, which may reflect the inability of birds to control their distribution, or the weak natural selection imposed by them. The adaptive value of the differential allocation of fault bar between groups of feathers seems to be supported by the significantly higher recapture probability of those juvenile great tits which have fewer fault bars at fledging on the aerodynamically most important primaries, but not on other groups of flight feathers. The selection imposed by feather holes seems to be smaller, since except for the positive association between hatching date, brood size and the number of feather holes at fledging, great tits' survival was not affected by the number of feather holes. During post‐juvenile moult, the intensity of fault bars drops significantly through the replacement of tail feathers and tertials, resulting in disproportional reduction of the total number of fault bars on flight feathers related to the number of feathers replaced. The reduction in the number of fault bars during post‐juvenile moult associated with their adaptive allocation to proximal wing feathers and rectrices may explain the evolution of partial post‐juvenile moult in the great tit, since the quality of flight feathers can be increased significantly at a relatively small cost. Our results may explain the widespread phenomenon of partial post‐juvenile moult of flight feathers among Palearctic passerines. During the next complete post‐breeding moult, the total number of fault bars on flight feathers has remained unchanged, indicating the effectiveness of partial post‐juvenile moult in reducing the number of adaptively allocated fault bars. The number of feather holes has also decreased on groups of feathers replaced during partial post‐juvenile moult, but the reduction is proportional with the number of feathers moulted. In line with this observation, the number of feather holes is further reduced during post‐breeding moult on primaries and secondaries, resulting in an increase in feather quality of adult great tits.  相似文献   

5.
From August to December, thousands of Black‐necked Grebes Podiceps nigricollis concentrate during the flightless moult period in salt ponds in the Odiel Marshes, southern Spain, where they feed on the brine shrimp Artemia parthenogenetica. We predicted that because Black‐necked Grebes moulted in a food‐rich, predator‐free environment, there would be no net loss of body mass caused by the use of fat stored to meet energy needs during remigial feather replacement (as is the case for some other diving waterbirds). However, because the food resource disappears in winter, we predicted that grebes moulting later in the season would put on more body mass prior to moult because of the increasing risk of an Artemia population crash before the moult period is completed. Body mass determinations of thousands of birds captured during 2000–2010 showed that grebes in active wing‐moult showed greater mass with date of capture. Early‐moulting grebes were significantly lighter at all stages than late‐moulting birds. Grebes captured with new feathers post‐moult were significantly lighter than those in moult. This is the first study to support the hypothesis that individual waterbirds adopt different strategies in body mass accumulation according to timing of moult: early‐season grebes were able to acquire an excess of energy over expenditure and accumulate fat stores while moulting. Delayed moulters acquired greater fat stores in advance of moult to contribute to energy expenditure for feather replacement and retained extra stores later, most likely as a bet hedge against the increasing probability of failing food supply and higher thermoregulatory demands late in the season. An alternative hypothesis, that mass change is affected by a trophically transmitted cestode using brine shrimps as an intermediate host and Black‐necked Grebes as final host, was not supported by the data.  相似文献   

6.
Some theories about moult strategies of Palaearctic passerine migrants assume that birds adapt timing of moult to environmental conditions such as rainfall on their African wintering grounds. Species wintering in the northern tropics should limit moult to the period shortly after their arrival at the end of the rainy season. Passerine migrants wintering in West Africa should also moult more rapidly compared to related species or conspecific populations that moult elsewhere. We investigated the moult of melodious warblers Hippolais polyglotta, willow warblers Phylloscopus trochilus and pied flycatchers Ficedula hypoleuca wintering in Comoé National Park, Ivory Coast, between October 1994 and April 1998. In contrast to previous studies we did not restrict our analyses to moult of flight feathers but also included moult of body feathers. The results differed partially from the general assumptions of previous authors. Melodious warblers moulted twice: a complete moult shortly after their arrival, and a moult of body feathers and in some cases some tertials and secondaries in spring. Willow warblers moulting flight feathers were found between December and March with the majority moulting in January and February. Primary moult was not faster compared to populations moulting in central Africa and South Africa. Body feather moult varied strongly among individuals with birds in heavy moult between December and April. Pied flycatchers moulted body feathers and tertials between January and April. Birds with growing feathers were found throughout the whole period including the entire dry season. Moult strategies are thus not readily related to a few environmental factors in general and our results show that factors other than mere resource availability during certain times on the wintering grounds are likely to govern the timing of moult.Communicated by F.Bairlein  相似文献   

7.
P. R. Evans 《Ibis》1966,108(2):183-216
The annual cycle of Lesser Redpolls breeding in Northumberland is described. Birds return in late April and could rear at least two broods, in the absence of predation, before they begin to moult in early August. The complete moult of both sexes usually begins just after the last brood of young reaches independence. Moult ends in late September and the adults then move southwards immediately. Juveniles also finish their partial moult before they migrate, but those which finish moult well before the adults, apparently wait for the latter before undertaking extensive southward movements, though some disperse over short distances in early September. Some adults and juveniles caught during moult at one site returned to moult there in later autumns, even though they did not breed there. Movement in autumn from Britain to the Continent takes place only at the short sea-crossings. More recoveries are obtained abroad in years of poor birch seed crop in southern England. Moult of the remiges and rectrices of the adults is described, and its progress recorded by a numerical scoring system whose merits are discussed. The moult score of the primary feathers follows an approximately linear relationship with date, and the moult scores of all individuals of each sex in each year have been used in regression analyses to yield averages of the duration, start and end of moult, an average daily increase of primary moult score, and the spread of the start of moult within each sample of birds. The results are discussed in relation to breeding and migration. The rates of moult of the primaries, secondaries and tail are not independent of each other, though, in contrast to the primaries, the secondary moult score does not increase linearly with date. The average daily increase of primary moult score is closely correlated with the number of primaries growing simultaneously. Each primary took about 16 days to complete growth in each year, but the duration of moult varied between 43 and 56 days in different years. Variation in the timing and duration of moult of Redpolls in Norway, Iceland and Britain is discussed in relation to the breeding season. Plumage sequences of the Lesser Redpoll are reviewed, with emphasis on their application to separation of sex and age classes. Wing lengths of the males and females of a given age overlap considerably, and abrasion alters these lengths only slightly. Older birds have longer wings. Weight changes of adults and juveniles in autumn are examined in detail. Weight variation of individual birds in August and September is more often due to hourly changes in response to feeding than day-to-day changes in response to temperature. Weights of adults, but not first-year birds, decrease at the start but then increase towards the end of the moult, but apparently there is no deposition of fat for migration. Weights of birds caught during their southward movement also show no increase, nor did a group of Lesser Redpolls caught near Oxford in December. It is suggested that day length may be an additional reason for southward migration, besides a reduction in food supply.  相似文献   

8.
Ptilochronology does not appear to be a reliable measure of the daily growth rate of contour feathers or the nutritional state of nestling Pied Flycatchers Ficedula hypoleuca . Growth bars on primary remiges, which according to ptilochronology represent a day's increment of feather growth, are only about half as wide as the actual daily increase in the length of these feathers while they are growing. The average width of the growth bars on primaries was also uncorrelated with other commonly used measures of growth or nutritional status (increase in body mass or in the size of the wing or tarsus), although these were highly correlated with each other. In adult flycatchers, the average width of the growth bars on tertials was unrelated to the average bar width on greater coverts, although both feathers are replaced during the winter (prenuptial) moult. This suggests that the growth bars either do not reflect the nutritional status of adults during normal periods of moult or that contour feathers in different tracts vary in their sensitivity to the nutritional status of the moulting bird. To our knowledge, this is the first time that anyone has attempted to apply ptilochronology to nestlings. It is noteworthy that a method of measuring growth and nutritional state that has shown promise when applied to induced feathers of adult birds seems to be unreliable when applied to the developing plumage of nestlings, and perhaps the normal (not-induced) replacement plumage of adults.  相似文献   

9.
Growing evidence suggests that structural feather colours honestly reflect individual quality or body condition but, contrary to pigment‐based colours, it is not clear what mechanism links condition to reflectance in structural feather colours. We experimentally accelerated the moult speed of a group of blue tits (Cyanistes caeruleus) by exposing them to a rapidly decreasing photoperiod and compared the spectral characteristics of their structural feather colours with those of control birds. Blue tits were sexually dimorphic on the UV/blue crown and on the white cheek feathers. Moult speed, however, dramatically reduced brightness and the saturation only on the UV/blue crown feathers, whereas structural white on the cheek feathers was basically unaffected by moult speed. Given that the time available for moulting is usually confined to the period between the end of the breeding season and migration or wintering, UV/blue colours, but not structural white, may convey long‐term information about an individual’s performance during the previous breeding season. The trade‐off between fast moulting and structural colour expression may represent a previously unrecognized selective advantage for early‐breeding birds.  相似文献   

10.
We investigated whether trace elements in tail feathers of an insectivorous and long-distance migratory bird species could be used to identify moulting areas and hence migratory pathways. We analysed tail feathers from birds of different age and sex collected from a range of different breeding sites across Europe. The site of moult had a large effect on elemental composition of feathers of birds, both at the European and African moulting sites. Analysis of feathers of nestlings with known origin suggested that the elemental composition of feathers depended largely upon the micro-geographical location of the colony. The distance between moulting areas could not explain the level of differences in trace elements. Analysis of feathers grown by the same individuals on the African wintering grounds and in the following breeding season in Europe showed a large difference in composition indicating that moulting site affects elemental composition. Tail feathers moulted in winter in Africa by adults breeding in different European regions differed markedly in elemental composition, indicating that they used different moulting areas. Analysis of tail feathers of the same adult individuals in two consecutive years showed that sand martins in their first and second wintering season grew feathers with largely similar elemental composition, although the amounts of several elements in tail feathers of the older birds was lower. There was no difference between the sexes in the elemental composition of their feathers grown in Africa. Investigation of the trace element composition of feathers could be a useful method for studying similarity among groups of individuals in their use of moulting areas.  相似文献   

11.
Trade‐offs between moult and fuelling in migrant birds vary with migration distance and the environmental conditions they encounter. We compared wing moult and fuelling at the northern and southern ends of migration in two populations of adult Common Whitethroats Sylvia communis. The western population moults most remiges at the breeding grounds in Europe (e.g. Poland) and migrates 4000–5000 km to western Africa (e.g. Nigeria). The eastern population moults all remiges at the non‐breeding grounds and migrates 7000–10 000 km from western Asia (e.g. southwestern Siberia) to eastern and southern Africa. We tested the hypotheses that: (1) Whitethroats moult their wing feathers slowly in South Africa, where they face fewer time constraints than in Poland, and (2) fuelling is slower when it coincides with moulting (Poland, South Africa) than when it occurs alone (Siberia, Nigeria). We estimated moult timing of primaries, secondaries and tertials from moult records of Polish and South African Whitethroats ringed in 1987–2017 and determined fuelling patterns from the body mass of Whitethroats ringed in all four regions. The western population moulted wing feathers in Poland over 55 days (2 July–26 August) at a varying rate, up to 13 feathers simultaneously, but fuelled slowly until departure in August–mid‐September. In Nigeria, during the drier period of mid‐February–March they fuelled slowly, but the fuelling rate increased three‐fold in April–May after the rains before mid‐April–May departure. The eastern population did not moult in Siberia but fuelled three times faster before mid‐July–early August departure than did the western birds moulting in Poland. In South Africa, the Whitethroats moulted over 57 days (2 January–28 February) at a constant rate of up to nine feathers simultaneously and fuelled slowly from mid‐December until mid‐April–May departure. These results suggest the two populations use contrasting strategies to capitalize on food supplies before departure from breeding and non‐breeding grounds.  相似文献   

12.
Nathan O.  Okia 《Ibis》1976,118(1):1-13
Monthly mist-netting of low-flying forest birds was conducted in three lake-shore forests in southern Uganda from September 1970 to July 1972. It was found that the edge of the forest formed a distinct ecological barrier that was rarely crossed by species on either side of it. Catches were concentrated in the hours of daylight, in two peaks, a morning peak at 09.00 hrs and an afternoon peak at 16.00 hrs (sun-time) for all birds combined, although there were slight species differences. Most bird species were found to be sedentary in a fixed home-range, and covered lateral distances of up to c. 300 m. No movement between the different forests was recorded.
The most common birds such as bulbuls were often caught at heights between 0·6 and 1·8 m above the ground, but the upper limit of their vertical range was not determined. It is suggested that the bi-modality of flight activity may be intrinsic, even though it may be correlated with such extrinsic factors as light and radiation. On a month to month basis, the numbers of birds caught reflected breeding and moult activity. This was best shown by the Pygmy Kingfisher, taken in higher numbers towards the end of the first rainy season when a majority of the birds caught were young and many birds were moulting the remiges. On the other hand higher numbers of Olive Sunbird were found during the second rainy season, again at a time corresponding to a general moulting of remiges. The bulbuls showed fluctuations in numbers caught that were matched by an equally fluctuating pattern of moult. The role of food as a possible limiting factor in bird breeding is discussed.  相似文献   

13.
D. J. Pearson 《Ibis》1981,123(2):158-182
Some 5700 Ruffs were ringed in the southern Kenyan rift valley during 1967–79, mainly at Lakes Nakuru and Magadi. These have produced 15 recoveries outside East Africa, 14 in Siberia between 73° and 154°E and one in India. Adult males returned to Kenya mainly during August, and females during late August and early September. Females greatly outnumbered males at all times. Most wintering males departed late in March and early in April, but females not until about a month later. First-year birds appeared from the end of August, but remained in low numbers until late October or November. Most departed during April and May, but a few females oversummered. First-year birds typically accounted for about 25% of the wintering Nakuru females, but about 50% of those at Magadi. At both sites they accounted for a higher proportion of male birds than females. Most of the birds at Nakuru throughout late August to May appeared to be local winterers, and many individuals remained in the area for many months each year. Retrapping indicated that approximately 60% of each season's birds returned the following season. Adult males and most adult females commenced pre-winter wing moult before arrival, but completed most of it in Kenya. Males moulted 3–4 weeks ahead of females, and most had finished before December. Females typically finished during December and early January. Most second year birds timed their pre-winter moult similarly to older adults. Suspension was recorded in over 15% of all moulting birds examined. Adult pre-summer moult involved most or all of the tertials, some or all of the tail feathers, most of the inner wing coverts and the body and head plumage. It occurred mainly during January to March (males) or February to April (females), although tertial renewal commonly began a month earlier. Males showed no sign in Kenya of the supplementary prenuptial moult. First-year birds moulted from juvenile into first winter body plumage during late September to November. They underwent a pre-summer moult similar in extent and timing to that of adults, and again about a month earlier in males than females. Spring feathers acquired were often as brightly coloured as those of adults. About 15% of first-year birds renewed their outer 2–4 pairs of large primaries during January to April. Adult and first-year birds fattened before spring departure, commonly reaching weights 30–60% above winter mean. Weights of adult males peaked early in April, those of adult females early in May, and those of first-winter females later in May. Weights were relatively high also during August and September. This was due to the arrival of wintering birds carrying ‘spare’ reserves, and also apparently to the presence of a late moulting fattening passage contingent. The wing length of newly moulted adults was about 3 mm longer than that of newly arrived first-year birds, but there was no evidence of an increase in the wing kngth of adults with successive moults. Adult wing length decreased by 4–5 mm between the completion of one moult and the middle stages of the next. The migrations and annual timetable of Kenyan wintering Ruffs are discussed, and their moult strategy is compared with that of other Holarctic waders.  相似文献   

14.
Zusammenfassung Die Mauserperiode westspanischer Weidensperlinge(Passer hispaniolensis) und Haussperlinge(P. domesticus) reicht von Ende Juli bis Ende September/Anfang Oktober. Beim Weidensperling endet der Federwechsel im Durchschnitt etwa fünf Tage früher als beim Haussperling. Es gibt keine Geschlechtsunterschiede in der Chronologie der Mauser beim Weidensperling. Ad. beider Arten mausern schneller und synchronisierter als juv., die ihr Gefieder um so rascher erneuern, je später sie mit der Mauser begonnen haben. Die Handschwingenmauser dauert etwa 66 Tage beim Weidensperling und 69 Tage beim Haussperling. Beide Arten brauchen ca. 3 weitere Tage für die Verhornung der 5. und 6. Armschwingen. Die ad. beider Arten und die juv. Weidensperlinge beginnen die Mauser im Durchschnitt am selben Tag (24. Juli), die juv. Haussperlinge später (29. Juli). Der Mauserverlauf und die Beziehungen zwischen den verschiedenen Federreihen sind bei beiden Arten identisch. Die Synchronisation der Mauser ist beim Weidensperling höher. Brut und Mauserperiode überschneiden sich beim Haussperling; beim Weidensperling, bei dem noch kurze Wanderungen gleich nach der Fortpflanzungsperiode und vor der Mauser erfolgen, nicht. Das frühere und höher synchronisierte Mauserende beim Weidensperling scheint eine Anpassung an die stärkere Zugtendenz zu sein.
On the moult of Spanish Sparrows(Passer hispaniolensis) and House Sparrows(Passer domesticus) in Iberia
Summary The moulting period of Spanish sparrows(Passer hispaniolensis) and House Sparrows(Passer domesticus) in Western Spain extends from late July to late September/early October. House Sparrows finish moulting on average some five days later than Spanish Sparrows. There are no sexual differences in the moulting chronology of adult Spanish Sparrows. Ad. of both species moult faster and better synchronized. The speed of moulting is also higher in later moulting juveniles. The estimated durations of wing feather replacement were 66 days for the Spanish Sparrow and 69 days for the House Sparrow. Some three more days are needed to complete the growth of the 5th and 6th secondary remiges in both species. Adults of both species and juvenile Spanish Sparrows start moulting on average on the same date: 24th July; juvenile House Sparrows start moulting on 29th July. The sequence of moult and the relations between different feather tracts are identical in both species. The synchronization of the moult is higher in the Spanish Sparrow. Breeding and moulting seasons slightly overlap in the House Sparrow, but not in the Spanish Sparrow. In this species the time lapse between both periods allows the birds to wander to suitable areas, where they moult. The earlier ending and higher synchronization of the moult in the Spanish Sparrow is related to its higher migratory tendency.
  相似文献   

15.
Seabird moult is poorly understood because most species undergo moult at sea during the non-breeding season. We scored moult of wings, tail and body feathers on 102 Mediterranean Cory's Shearwaters Calonectris diomedea diomedea accidentally caught by longliners throughout the year. Primary renewal was found to be simple and descendant from the most proximal (P1) to the most distal (P10) feather. Secondaries showed a more complex moulting pattern, with three different asynchronous foci: the first starting on the innermost secondaries (S21), the second on the middle secondaries (S5) and the latest on the outermost secondaries (S1). Rectrix moult started at a later stage and was simple and descendant from the most proximal feather (R1) expanding distally. Although a few body feathers can be moulted from prelaying to hatching, moult of ventral and dorsal feathers clearly intensified during chick rearing. Different moulting sequences and uncoupled phenology between primary and secondary renewal suggest that flight efficiency is a strong constraint factor in the evolution of moulting strategies. Moreover, moult of Cory's Shearwaters was synchronous between wings and largely asynchronous between tail halves, with no more than one rectrix moulted at once. This result is probably related to the differential sensitivity of wings and the tail on flight performance, ultimately derived from different aerodynamic functions. Finally, Cory's Shearwater females renewed feathers earlier and faster than males, which may be related to the lower chick attendance of females.  相似文献   

16.
换羽是鸟类为保证持续生存的重要过程。换羽策略与鸟类进化及对环境的适应紧密相关,研究鸟类换羽特征,对于了解鸟类的分类、系统发育、进化历史及其对环境的适应性等方面都有重要意义。2007年3月至9月,在广东肇庆市江溪村对黄腹山鹪莺(Prinia flaviventris)和纯色山鹪莺(P.inornata)的春季换羽进行了研究。通过设置雾网捕捉2种山鹪莺,对捕捉到的成体进行体重及身体量度的测量;对飞羽及尾羽进行标记:初级飞羽以翅尖的第一枚羽毛标记为"P1",次级飞羽以翅中部最外一枚标记为"S1",向内依次递增标记;尾羽以中央两根最长尾羽为"T1",分别向两侧递增标记为"T2~T5"。采用单因素方差分析(One way ANOVA)对不同月份山鹪莺的体重值进行差异性检验,对体重与月份进行Pearson相关分析,对尾羽的长度和宽度进行Pearson偏相关分析(控制变量:体长)。研究结果表明:1)两种山鹪莺换羽期为3至5月,持续时间约为60 d;2)两种山鹪莺春季换羽仅更换尾羽,换羽模式均为离心型,即中央一对尾羽最先开始替换,然后向两侧由内到外逐次更替;3)两种山鹪莺的尾羽长度和宽度同步变化,但绝大部分山鹪莺非繁殖期尾羽长度与繁殖期尾羽长度之比大于非繁殖期尾羽宽度与繁殖期尾羽宽度之比,即繁殖期尾羽相对较宽;4)两种山鹪莺换羽期间体重大致呈现下降趋势,但变化不显著(P0.05)。推测两种山鹪莺通过增加食物的摄入来抵抗换羽期和繁殖期重叠而导致的能量消耗,这可能与该地区丰富的食物资源有关,并在一定程度上体现了两种山鹪莺换羽策略对环境的适应性。  相似文献   

17.
Flight feather moult in small passerines is realized in several ways. Some species moult once after breeding or once on their wintering grounds; others even moult twice. The adaptive significance of this diversity is still largely unknown. We compared the resistance to mechanical fatigue of flight feathers from the chiffchaff Phylloscopus collybita, a migratory species moulting once on its breeding grounds, with feathers from the willow warbler Phylloscopus trochilus, a migratory species moulting in both its breeding and wintering grounds. We found that flight feathers of willow warblers, which have a shaft with a comparatively large diameter, become fatigued much faster than feathers of chiffchaffs under an artificial cyclic bending regime. We propose that willow warblers may strengthen their flight feathers by increasing the diameter of the shaft, which may lead to a more rapid accumulation of damage in willow warblers than in chiffchaffs.  相似文献   

18.
Understanding the causes of variation in feather colour in free-living migratory birds has been challenging owing to our inability to track individuals during the moulting period when colours are acquired. Using stable-hydrogen isotopes to estimate moulting locality, we show that the carotenoid-based yellow-orange colour of American redstart (Setophaga ruticilla) tail feathers sampled on the wintering grounds in Central America and the Caribbean is related to the location where feathers were grown the previous season across North America. Males that moulted at southerly latitudes were more likely to grow yellowish feathers compared with males that moulted more orange-red feathers further north. Independent samples obtained on both the breeding and the wintering grounds showed that red chroma-an index of carotenoid content-was not related to the mean daily feather growth rate, suggesting that condition during moult did not influence feather colour. Thus, our results support the hypothesis that feather colour is influenced by ecological conditions at the locations where the birds moulted. We suggest that these colour signals may be influenced by geographical variation in diet related to the availability of carotenoids.  相似文献   

19.
Phenotypic flexibility during moult has never been explored in austral nomadic ducks. We investigated whether the body condition, organ (pectoral muscle, gizzard, liver and heart) mass and flight‐feather growth Egyptian geese Alopochen aegyptiaca in southern Africa show phenotypic flexibility over their 53‐day period of flightless moult. Changes in body mass and condition were examined in Egyptian geese caught at Barberspan and Strandfontein in South Africa. Mean daily change in primary feather length was calculated for moulting geese and birds were dissected for pectoral muscle and internal organ assessment. Mean body mass and condition varied significantly during moult. Body mass and condition started to decrease soon after flight feathers were dropped and continued to do so until the new feathers were at least two‐thirds grown, after which birds started to regain body mass and condition. Non‐moulting geese had large pectoral muscles, accounting for at least 26% of total body mass. Once moult started, pectoral muscle mass decreased and continued to do so until the flight feathers were at least one‐third grown, after which pectoral muscle mass started to increase. The regeneration of pectoral muscles during moult started before birds started to gain overall body mass. Gizzard mass started to increase soon after the onset of moult, reaching a maximum when the flight feathers were two‐thirds grown, after which gizzard mass again decreased. Liver mass increased significantly as moult progressed, but heart mass remained constant throughout moult. Flight feather growth was initially rapid, but slowed towards the completion of moult. Our results show that Egyptian geese exhibit a significant level of phenotypic flexibility when they moult. We interpret the phenotypic changes that we observed as an adaptive strategy to minimize the duration of the flightless period. Moulting Egyptian geese in South Africa undergo more substantial phenotypic changes than those reported for ducks in the northern hemisphere.  相似文献   

20.
In a periodically changing environment it is important for animals to properly time the major events of their life in order to maximise their lifetime fitness. For a non-migratory bird the timing of breeding and moult are thought to be the most crucial. We develop a state-dependent optimal annual routine model that incorporates explicit density dependence in the food supply. In the model the birds' decisions depend on the time of year, their energy reserves, breeding status, experience, and the quality of two types of feathers (outer and inner primaries). Our model predicts that, under a seasonal environment, feathers with large effects on flight ability, higher abrasion rate and lower energetic cost of moult should be moulted closer to the winter (i.e. later) than those with the opposite attributes. Therefore, we argue that the sequence of moult may be an adaptive response to the problem of optimal timing of moult of differing feathers within the same feather tract. The model also predicts that environmental seasonality greatly affects optimal annual routines. Under high seasonality birds breed first then immediately moult, whereas under low seasonality an alternation occurs between breeding and moulting some of the feathers in one year and having a complete moult but no breeding in the other year. Increasing food abundance has a similar effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号