首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Nitrogen (N) limits plant productivity and its uptake and assimilation may be regulated by N source, N availability, and nitrate reductase activity (NRA). Knowledge of how these factors interact to affect N uptake and assimilation processes in woody angiosperms is limited. We fertilized 1-year-old, half-sib black walnut (Juglans nigra L.) seedlings with ammonium (NH4 +) [as (NH4)2SO4], nitrate (NO3 ) (as NaNO3), or a mixed N source (NH4NO3) at 0, 800, or 1,600 mg N plant−1 season−1. Two months following final fertilization, growth, in vivo NRA, plant N status, and xylem exudate N composition were assessed. Specific leaf NRA was higher in NO3 -fed and NH4NO3-fed plants compared to observed responses in NH4 +-fed seedlings. Regardless of N source, N addition increased the proportion of amino acids (AA) in xylem exudate, inferring greater NRA in roots, which suggests higher energy cost to plants. Root total NRA was 37% higher in NO3 -fed than in NH4 +-fed plants. Exogenous NO3 was assimilated in roots or stored, so no difference was observed in NO3 levels transported in xylem. Black walnut seedling growth and physiology were generally favored by the mixed N source over NO3 or NH4 + alone, suggesting NH4NO3 is required to maximize productivity in black walnut. Our findings indicate that black walnut seedling responses to N source and level contrast markedly with results noted for woody gymnosperms or herbaceous angiosperms.  相似文献   

2.
Sehtiya  H. L.  Goyal  Sham S. 《Plant and Soil》2000,227(1-2):185-190
The effect of light and exogenously supplied sucrose on NO3 uptake was studied in 9-day-old intact C3 (barley) and C4 (corn) seedlings. The seedlings used were uninduced for nitrate uptake system (i.e. had never seen nitrogen during germination and growth) and were exposed to continuous light for 3 days to avoid any diurnal variation and to load the seedlings fully with photosynthates. The uptake assay was conducted either in light or in darkness. Prior to assay, seedlings were treated with darkness or light for 24 h. Accordingly, four sets of seedlings, i.e. pretreated with light and assayed in light (LL); pretreated and assayed in darkness (DD); pretreated with light and assayed in darkness (LD); and pretreated with darkness and assayed in light (DL) were formed. Barley exhibited 55% higher NO3 uptake than corn during light (LL) and 91% higher during darkness (DD). Shifting barley seedlings from light to dark (LD) or dark to light (DL) for uptake assay, did not affect NO3 uptake, i.e. in LD the uptake was similar to LL and in DL it was similar to DD. However, in corn, the light conditions during the assay determined the uptake regardless of the conditions during the period preceding the assay. One percent sucrose in the medium increased NO3 uptake by 31% in barley and 70% in corn during light (LL). The corresponding increase during darkness (DD) was 38% in both barley and corn. Removal of the corn residual endosperm decreased NO3 uptake by 40% during darkness. Etiolated seedlings (those having never seen light) of both barley and corn were able to take up significant amount of NO3 during darkness. Externally supplied sucrose in the assay medium of etiolated seedlings increased the NO3 uptake to about 4 and 2 fold in barley and corn, respectively. The data presented here provide evidence that: 1. In intact seedlings, light per se is not obligatory for NO3 uptake and that the carbohydrate supply may mimic light. 2. Light affected the NO3 uptake differently in barley and corn. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

3.
Summary Two sandculture experiments were conducted with wheat (Triticum aestivum) to determine the effects of (1) osmotic potential (Ψπ) and (2) fluctuating boron (B) concentrations on B availability (toxicity), shoot growth and leaf concentrations of B of wheat. The first experiment consisted of growing wheat to the spike emergence stage in sandcultures irrigated with a complete nutrient solution containing 1.0, 7.5, and 15.0 mg Bl−1 and having Ψπ values of −0.02, −0.07, −0.12, and −0.17 MPa produced by CaCl2−NaCl additions. Statistically, shoot weight was independently influenced by the B and Ψπ treatments but not by their interaction. Only the B treatment had a significant effect on leaf boron concentrations; the B x Ψπ interaction was nonsignificant with respect to leaf B concentrations. The second experiment was designed to determine if growth and B uptake of wheat responds to the time integrated mean (TIM) concentration of B. This experiment consisted of four fixed-B concentrations and four fluctuating-B concentrations designed to produce two TIM concentrations (3.9 and 7.4 mg Bl−1) approached low to high and vice versa. With respect to shoot weight, there was no statistical difference among treatments having the same TIM concentration during the 10 week experiment. However, shoot B concentrations differed greatly; they were higher when the B concentration was progressively increased over the 10 week period. Leaf B concentrations (Y leaf at flowering), while not as high as the shoot B concentrations, were also higher under the treatment of increasing B concentration, indicating B uptake rates are higher for mature plants than for seedlings.  相似文献   

4.
The author studied the effect of different nickel concentrations (0, 0.4, 40 and 80 μM Ni) on the nitrate reductase (NR) activity of New Zealand spinach (Tetragonia expansa Murr.) and lettuce (Lactuca sativa L. cv. Justyna) plants supplied with different nitrogen forms (NO3 –N, NH4 +–N, NH4NO3). A low concentration of Ni (0.4 μM) did not cause statistically significant changes of the nitrate reductase activity in lettuce plants supplied with nitrate nitrogen (NO3 –N) or mixed (NH4NO3) nitrogen form, but in New Zealand spinach leaves the enzyme activity decreased and increased, respectively. The introduction of 0.4 μM Ni in the medium containing ammonium ions as a sole source of nitrogen resulted in significantly increased NR activity in lettuce roots, and did not cause statistically significant changes of the enzyme activity in New Zealand spinach plants. At a high nickel level (Ni 40 or 80 μM), a significant decrease in the NR activity was observed in New Zealand spinach plants treated with nitrate or mixed nitrogen form, but it was much more marked in leaves than in roots. An exception was lack of significant changes of the enzyme activity in spinach leaves when plants were treated with 40 μM Ni and supplied with mixed nitrogen form, which resulted in the stronger reduction of the enzyme activity in roots than in leaves. The statistically significant drop in the NR activity was recorded in the aboveground parts of nickel-stressed lettuce plants supplied with NO3 –N or NH4NO3. At the same time, there were no statistically significant changes recorded in lettuce roots, except for the drop of the enzyme activity in the roots of NO3 -fed plants grown in the nutrient solution containing 80 μM Ni. An addition of high nickel doses to the nutrient solution contained ammonium nitrogen (NH4 +–N) did not affect the NR activity in New Zealand spinach plants and caused a high increase of this enzyme in lettuce organs, especially in roots. It should be stressed that, independently of nickel dose in New Zealand spinach plants supplied with ammonium form, NR activity in roots was dramatically higher than that in leaves. Moreover, in New Zealand spinach plants treated with NH4 +–N the enzyme activity in roots was even higher than in those supplied with NO3 –N.  相似文献   

5.
We conducted 15NO3 stable isotope tracer releases in nine streams with varied intensities and types of human impacts in the upstream watershed to measure nitrate (NO3) cycling dynamics. Mean ambient NO3 concentrations of the streams ranged from 0.9 to 21,000 μg l−1 NO3–N. Major N-transforming processes, including uptake, nitrification, and denitrification, all increased approximately two to three orders of magnitude along the same gradient. Despite increases in transformation rates, the efficiency with which stream biota utilized available NO3-decreased along the gradient of increasing NO3. Observed functional relationships of biological N transformations (uptake and nitrification) with NO3 concentration did not support a 1st order model and did not show signs of Michaelis–Menten type saturation. The empirical relationship was best described by a Efficiency Loss model, in which log-transformed rates (uptake and nitrification) increase with log-transformed nitrate concentration with a slope less than one. Denitrification increased linearly across the gradient of NO3 concentrations, but only accounted for ∼1% of total NO3 uptake. On average, 20% of stream water NO3 was lost to denitrification per km, but the percentage removed in most streams was <5% km−1. Although the rate of cycling was greater in streams with larger NO3 concentrations, the relative proportion of NO3 retained per unit length of stream decreased as NO3 concentration increased. Due to the rapid rate of NO3 turnover, these streams have a great potential for short-term retention of N from the landscape, but the ability to remove N through denitrification is highly variable.  相似文献   

6.
The kinetics of ammonium and nitrate uptake by young rice plants   总被引:13,自引:0,他引:13  
Summary An important process which affects the fate of fertilizer nitrogen (N) applied to a rice crop is crop N uptake. This uptake rate is controlled by many factors including the N-ion species and its concentration. In this study the relation between N concentration at the root surface and N uptake was characterized using Michaelis-Menten kinetics. The equation considers two parameters, Vmax and Km, which are measures of the maximum rate of uptake and the affinity of the uptake sites for the nutrient, respectively. Uptake rates of intact rice plants growing in a continuously flowing nutrient solution system were fitted to the Michaelis-Menten model using a weighted regression analysis. For NH4−N the Km values for 4- and 9-week-old rice plants indicated a high affinity for the ammonium ions relative to concentrations reported for rice soils after fertilization. The Vmax values expressed on a unit-root-mass basis decreased with plant age, indicating a reduction in the average density of uptake sites on the root surface. The kinetics of NO3−N uptake was similar to that of NH4−N when NO3−N was the only N source. However, if NH4−N and NO3−N were present simultaneously in the solution the Vmax for the uptake of NO3−N was severely reduced, while the Km was affected very little. This inhibition appears to be noncompetitive. Fertilization of young rice plants leading to concentration of N at the root surface above approximately 900 μM will not increase crop uptake and may contribute to inefficient N recovery by the crop. The existence of NH4−N and NO3−N simultaneously at the root surface may also lead to inefficient N recovery because of reduced uptake of NO3−N.  相似文献   

7.
Summary Absorption of nitrate and ammonium was studied in water culture experiments with 4 to 6 weeks old plants of barley (Hordeum vulgare L.), buckwheat (Fagopyrum esculentum L. Moench) and rape (Brassica napus L.). The plants were grown in a complete nutrient solution with nitrate (5.7±0.2 mM) or nitrate (5.6±0.2 mM) + ammonium (0.04±0.02 mM). The pH of the nutrient solution was kept at 5.0 using a pH-stat. It was found that phosphorus deficiency reduced the rate of nitrate uptake by 58±3% when nitrate was the sole N source and by 83±1% when both nitrate and ammonium were present. The reduction occurred even before growth was significantly impeded by P deficiency. The inhibition of the uptake of ammonium was less,i.e. ammonium constituted 10±1% of the total N uptake in the P sufficient plants and 30±5% in the P deficient plants. The reduction of nitrate absorption greatly decreased the difference between the uptake of anions and cations. It is suggested that P deficiency reduced the assimilation of NO 3 into the proteins, which might cause a negative feedback on NO 3 influx and/or stimulate NO 3 efflux.  相似文献   

8.
The modelling of ion uptake by plants requires the measurement of kinetic and growth parameters under specific conditions. The objective of this study was to evaluate the effect of nine NH inf4 sup+ :NO inf3 sup− ratios on onions (Allium cepa L.). Twenty-eight to 84 day-old onion plants were treated with NH inf4 sup+ :NOf3/sup− ratios ranging from 0 to 100% of each ionic species in one mM solutions in a growth chamber. Maximum N influx (Imax) was assessed using the N depletion method. Except at an early stage, ionic species did not influence significantly Imax, the Michaelis constant (Km) and the minimum concentration for net uptake (Cmin). Imax for ammonium decreased from 101 to 59 pmole cm-2 s-1 while Imax for nitrate increased from 26 to 54 pmole cm-2 s-1 as the plant matured. On average, Km and Cmin values were 14.29 μM, and 5.06 μM for ammonium, and 11.90 μM and 4.54 μM for nitrate, respectively. In general, the effect of NH4 +:NO3 - ratios on root weight, shoot weight and total weight depended on plant age. At an early stage, maximum plant growth and N uptake were obtained with ammonium as the sole source of N. At later stages, maximum plant growth and N uptake were obtained as the proportion of nitrate increased in the nutrient solution. The was no apparent nutrient deficiency whatever NH4 +:NO3 - ratio was applied, although ammonium reduced the uptake of cations and increased the uptake of phosphorus. The research was supported by the Natural Sciences and Engineering Research Council of Canada.  相似文献   

9.
Summary Nitrate added at critical concentrations to plant growth medium inhibits the infection of legume roots by Rhizobium. The direct interaction, of nitrate and trifoliin A, a Rhizobium-recognition lection from white clover (Trifolium repens L.), was examined as a possible basis for this regulation. Selective molecular ultrafiltration studies to detect ligand-protein interactions showed that radioactive13NO3 did not bind directly to trifoliin A when incubated at two molar ratios. Immunoprecipitation of trifoliin A by its homologous antibody was unaffected by 15 mM NO3 . In addition, there was no apparent reduction in attachment ofR. trifolii 0403 to root hairs of clover seedings during 1 h of incubation in the presence of 15 mM NO3 . These results show that nitrate inhibition of these early steps of the infection process is not due to a direct interaction of nitrate with trifoliin A or its glycosylated receptors.  相似文献   

10.
Fluctuating salinities at different sites on the German salt-polluted rivers Werra and Weser were compared with extracellular ion levels of specimens of Gammarus tigrinus (Sexton; Amphipoda, Crustacea), collected at the same sites. G. tigrinus regulated haemolymph concentrations of inorganic anions (Cl, SO2− 4, PO3− 4) and cations (Na+, K+, Mg2+, Ca2+) during fluctuations of salt pollution in the upper Weser. This capacity to regulate varying levels of salt pollution in the upper Weser, correlated well with the distribution of the brackish amphipods in this river ecosystem. G. tigrinus tolerated periods of Na+ and Cl stress (>380 mmol l−1) without compensating these maxima by regulating extracellular Na+ and Cl. However, during such bursts of Na+ and Cl stress in Werra and Weser, the ability to regulate extracellular [K+] at river water K+ stress of ≥6.0 mmol l−1 may explain why this brackish species has been more successful in these rivers than its competitors like Gammarus pulex. The present investigation demonstrates that the water salinity affects the [NO 3] in the haemolymph of G. tigrinus. With increasing hypo-osmotic stress the animals accumulate increasing amounts of NO 3. A simultaneous increase in stream water [NO 3] causes an additional accumulation of NO 3 in the haemolymph. The high extent of accumulation indicates that active ion transport systems may be involved. The accumulation of NO 3 in the haemolymph has low physiological consequences to G. tigrinus, but when hypo-osmotically stressed under anoxic conditions, nitrite formed by the reduction of nitrate may have an adverse affect on the metabolism of G. tigrinus. Accepted: 4 October 1999  相似文献   

11.
Physiology, regulation and biochemical aspects of the nitrogen assimilation are well known in Prokarya or Eukarya but they are poorly described in Archaea domain. The haloarchaeon Haloferax mediterranei can use different nitrogen inorganic sources (NO3, NO2 or NH4+) for growth. Different approaches were considered to study the effect of NH4+ on nitrogen assimilation in Hfx. mediterranei cells grown in KNO3 medium. The NH4+ addition to KNO3 medium caused a decrease of assimilatory nitrate (Nas) and nitrite reductases (NiR) activities. Similar effects were observed when nitrate-growing cells were transferred to NH4+ media. Both activities increased when NH4+ was removed from culture, showing that the negative effect of NH4+ on this pathway is reversible. These results suggest that ammonium causes the inhibition of the assimilatory nitrate pathway, while nitrate exerts a positive effect. This pattern has been confirmed by RT-PCR. In the presence of both NO3 and NH4+, NH4+ was preferentially consumed, but NO3 uptake was not completely inhibited by NH4+ at prolonged time scale. The addition of MSX to NH4+ or NO3 cultures results in an increase of Nas and NiR activities, suggesting that NH4+ assimilation, rather than NH4+ per se, has a negative effect on assimilatory nitrate reduction in Hfx. mediterranei. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Summary The effects of aluminium (Al3+) on the growth of four cultivars of white clover dependent upon NO3 −N were examined. Plants were grown in flowing solution culture with carefully maintained low concentrations (0, 12.5, 25 and 50 mmolm−3) of Al, and with P and pH (4.5) also held constant and appropriately low. A three-week treatment period resulted in major effects on the growth and elemental composition of shoots and roots at all concentrations of added Al. There were inherent differences between the cultivars in growth but the relative effects of Al were similar in each case. Examination by S.E.M. and x-ray microanalysis of one cultivar grown at 50 mmolm−3 Al, indicated that Al in the roots was associated with P, especially in old, outer epidermal cells. Aluminium reduced NO3 uptake and there were significant effects of Al on nitrate reductase activity (NRA). In contrast to the other characteristics, there were differential effects between the cultivars in NRA, both in the presence and absence of Al.  相似文献   

13.
Abstract. The effect of SeO3 and SeO4 on NO3 assimilation in 8-d-old barley (Hordeum vulgare L.) seedlings was studied over a 24-h period. Selenite at 0.1 mol. m? in the uptake solutions severely inhibited the induction of NO3 uptake and active nitrate reductases. Selenate, at 1.0 mol m?3 in the nutrient solution, had little effect on induction of activities of these systems until after 12 h; however, when the seedlings were pretreated with 1.0 mol m?3 SeO4 for 24 h, subsequent NO3 uptake from SeO4-free solutions was inhibited about 60%. Sulphate partially alleviated the inhibitory effect of SeO3 when supplied together in the ambient solutions, but had no effect in seedlings pretreated with SeO3. By contrast, SO4 partially alleviated the inhibitory effect of SeO4 even in seedlings pretreated with SeO4. Since uptake of NO3 by intact seedlings was also inhibited by SeO3, the percentage of the absorbed NO3 that was reduced was not affected. By contrast, SeO4, which affected NO3 uptake much less, inhibited the percentage reduced of that absorbed. However, when supplied to detached leaves, both SeO3 and SeO4 inhibited the in vivo reduction of NO3 as well as the induction of nitrate reductase and nitrite reductase activities. Selenite was more inhibitory than SeO4; approximately a five to 10 times higher concentration of SeO4 than SeO3 was required to achieve similar inhibition. In detached leaves, the inhibitory effect of both SeO3 and SeO4 on in vivo NO3 reduction as well as on the induction of nitrate reductase activity was partially alleviated by SO4. The inhibitory effects of Se salts on the induction of nitrite reductase were, however, completely alleviated by SO4. The results show that in barley seedlings SeO3 is more toxic than SeO4. The reduction of SeO4 to SeO3 may be a rate limiting step in causing Se toxicity.  相似文献   

14.
Late-successional forests in the upper Great Lakes region are susceptible to nitrogen (N) saturation and subsequent nitrate (NO3) leaching loss. Endemic wind disturbances (i.e., treefall gaps) alter tree uptake and soil N dynamics; and, gaps are particular susceptible to NO3 leaching loss. Inorganic N was measured throughout two snow-free periods in throughfall, forest floor leachates, and mineral soil leachates in gaps (300–2,000 m2, 6–9 years old), gap-edges, and closed forest plots in late-successional northern hardwood, hemlock, and northern hardwood–hemlock stands. Differences in forest water inorganic N among gaps, edges, and closed forest plots were consistent across these cover types: NO3 inputs in throughfall were significantly greater in undisturbed forest plots compared with gaps and edges; forest floor leachate NO3 was significantly greater in gaps compared to edges and closed forest plots; and soil leachate NO3 was significantly greater in gaps compared to the closed forest. Significant differences in forest water ammonium and pH were not detected. Compared to suspected N-saturated forests with high soil NO3 leaching, undisturbed forest plots in these late-successional forests are not losing NO3 (net annual gain of 2.8 kg ha−1) and are likely not N-saturated. Net annual NO3 losses were observed in gaps (1.3 kg ha−1) and gap-edges (0.2 kg ha−1), but we suspect these N leaching losses are a result of decreased plant uptake and increased soil N mineralization associated with disturbance, and not N-saturation.  相似文献   

15.
Some aquatic systems have disproportionately high nutrient processing rates, and may be important to nutrient retention within river networks. However, the contribution of such biogeochemical hot spots also depends on water residence time and hydrologic connections within the system. We examined the balance of these factors in a comparative study of nitrate (NO3 ) uptake across stream and flow-through wetland reaches of northern Wisconsin, USA. The experimental design compared NO3 uptake at different levels: the ecosystem level, for reaches (n = 9) consisting of morphologically contrasting subreaches (SLOW, low mean water velocity; REF, reference, or higher mean water velocity); the sub-ecosystem level, for subreaches consisting of morphologically contrasting zones (TS, transient storage zone; MC, main channel zone). SLOW subreaches had 45% lower ecosystem-level uptake rate (K, t−1) on average, indicating reduced uptake efficiency in flow-through wetlands relative to streams. The four largest K values (total n = 24) also occurred in REF subreaches. TS:MC uptake rate varied (range 0.1–6.0), but MC zones consistently accounted for most NO3 uptake by the ecosystem. In turn, TS influence was limited by a tradeoff between TS zone uptake rate and the strength of TSMC hydrologic connection (α or F med). Additional modeling of published hydrologic parameter sets showed that strong MC dominance of uptake (>75% of total uptake), at the scale of solute release methods (meters to kilometers, hours to days), is common among streams and rivers. Our results emphasize that aquatic nutrient retention is the outcome of a balance involving nutrient uptake efficiency, water residence time, and the strength of hydrologic connections between nutrient sources and sinks. This balance restricts the influence of hydrologically disconnected biota on nutrient transport, and could apply to diverse ecosystem types and sizes.  相似文献   

16.
An ‘alternating solution’ culture method was used to study the effects of chloride ions and humic acid (HA) on the uptake of cadmium by barley plants. The plants were transferred periodically between a nutrient solution and a test solution containing one of four levels of HA (0, 190, 569 or 1710 μg cm−3) and one of five levels of Cd (0, 0.5, 1.0, 2.5 or 5.0 μg cm−3) in either a 0.006M NaNO3 or 0.006M NaCl medium. Harvest and analysis of shoots and roots was after nineteen days. The distribution of Cd in the test solutions between Cd2+, CdCl+ and HA-Cd was determined in a separate experiment by dialysis equilibrium. In the nitrate test solutions Cd uptake was clearly controlled by Cd2+ concentration and was therefore reduced by HA complex formation. In the absence of HA, chloride suppressed Cd uptake indicating that Cd2+ was the preferred species. However complex formation with Cl enhanced uptake when HA was present because of an increase in the concentration of inorganic Cd species relative to the nitrate system. The ratio root-Cd/shoot-Cd remained at about 10 across a wide range of shoot-Cd concentrations, from about 3 μg g−1 (sub-toxic) up to 85 μg g−1 (80% yield reduction). The ability of the barley plants to accumulate ‘non-toxic’ Cd in their roots was thus very limited. Humic acid also had no effect on Cd translocation within the plant and the root/shoot weight ratio did not vary with any treatment. At shoot-Cd concentrations in excess of 50 μg g−1, K, Ca, Cu and Zn uptake was reduced, probably the result of root damage rather than a specific ion antagonism. The highest concentration of HA also lowered Fe and Zn uptake and there was a toxic effect with increasing HA concentration at Cd=0. However the lowest HA level, comparable with concentrations found in mineral soil solutions, only reduced yield (in the absence of Cd) by <5% while lowering Cd uptake across the range of Cd concentrations by 66%–25%.  相似文献   

17.
Summary The leaf and root nitrate reductase activities were measured in 7 day-old barley seedlings by anoxic nitrite accumulation in darkness, during 48h after the transfer from a N-starved medium to a 1.5 mM K15NO3 medium. Thisin situ nitrate reduction was compared with the15N incorporation in the reduced N fraction of the whole seedlings.The nitrate reduction integrated fromin situ measurements was lower than the reduced15N accumulation. The rootin situ nitrate reductase activity seemed to account for only the third of the real root nitrate reduction, which may have been responsible for the overall underestimation. This discrepancy was partly explained by the ability of the root to reduce nitrite in an anoxic environment.These results suggest that, after correction of thein situ estimation of the nitrate reduction. the roots contribute to about 50% of the total assimilation.  相似文献   

18.
Human alteration of the nitrogen cycle has stimulated research on nitrogen cycling in many aquatic and terrestrial ecosystems, where analyses of nitrate (NO3 ) by standard laboratory methods are common. A recent study by Colman et al. (Biogeochemistry 84:161–169, 2007) identified a potential analytical interference of soluble iron (Fe) with NO3 quantification by standard flow-injection analysis of soil extracts, and suggested that this interference may have led Dail et al. (Biogeochemistry 54:131–146, 2001) to make an erroneous assessment of abiotic nitrate immobilization in prior 15N pool dilution studies of Harvard Forest soils. In this paper, we reproduce the Fe interference problem systematically and show that it is likely related to dissolved, complexed-Fe interfering with the colorimetric analysis of NO2 . We also show how standard additions of NO3 and NO2 to soil extracts at native dissolved Fe concentrations reveal when the Fe interference problem occurs, and permit the assessment of its significance for past, present, and future analyses. We demonstrate low soluble Fe concentrations and good recovery of standard additions of NO3 and NO2 in extracts of sterilized Harvard Forest soils. Hence, we maintain that rapid NO3 immobilization occurred in sterilized samples of the Harvard Forest O horizon in the study by Dail et al. (2001). Furthermore, additional evidence is accumulating in the literature for rapid disappearance of NO3 added to soils, suggesting that our observations were not the result of an isolated analytical artifact. The conditions for NO3 reduction are likely to be highly dependent on microsite properties, both in situ and in the laboratory. The so-called “ferrous wheel hypothesis” (Davidson et al., Glob Chang Biol 9:228–236, 2003) remains an unproven, viable explanation for published observations.  相似文献   

19.
Anin situ method, derived from anin vivo method, was used to determine nitrate reductase activity (NRA) in:i) excised barley and corn shoots and excised soybean leaves during a N-depletion experiment and; ii) roots and shoots of N-depleted barley and corn seedlings during induction of nitrate, reductase (NR). Nitrate reduction, calculated from thesein situ RNA measurements, was compared with estimates of each organ's nitrate reduction in light aerobic conditions from NO 3 consumption and a15N model (Gojonet al., 1986b). Thein situ RNA of roots strongly underestimated their15NO 3 reduction. In contrast, in barley and corn shoots and in the first trifoliolate leaves from 26-day-old, soybean, thein situ NRA assay gave a fair approximation of the true NO 3 reduction rate (relative differences ranging from −14 to +32%). In young soybean leaves (from 20-day-old plants), however, thein situ NRA strongly underestimated the actual NO 3 reduction. The physiological significance of thein situ NRA assay in shoots and roots, and its value for field studies are discussed from these results.  相似文献   

20.
The ability of an ecosystem to retain anthropogenic nitrogen (N) deposition is dependent upon plant and soil sinks for N, the strengths of which may be altered by chronic atmospheric N deposition. Sugar maple (Acer saccharum Marsh.), the dominant overstory tree in northern hardwood forests of the Lake States region, has a limited capacity to take up and assimilate NO3. However, it is uncertain whether long-term exposure to NO3 deposition might induce NO3 uptake by this ecologically important overstory tree. Here, we investigate whether 10 years of experimental NO3deposition (30 kg N ha−1 y−1) could induce NO3 uptake and assimilation in overstory sugar maple (approximately 90 years old), which would enable this species to function as a direct sink for atmospheric NO3 deposition. Kinetic parameters for NH4+ and NO3 uptake in fine roots, as well as leaf and root NO3 reductase activity, were measured under conditions of ambient and experimental NO3 deposition in four sugar maple-dominated stands spanning the geographic distribution of northern hardwood forests in the Upper Lake States. Chronic NO3 deposition did not alter the V max or K m for NO3 and NH4+ uptake nor did it influence NO3 reductase activity in leaves and fine roots. Moreover, the mean V max for NH4+ uptake (5.15 μmol 15N g−1 h−1) was eight times greater than the V max for NO3 uptake (0.63 μmol 15N g−1 h−1), indicating a much greater physiological capacity for NH4+ uptake in this species. Additionally, NO3 reductase activity was lower than most values for woody plants previously reported in the literature, further indicating a low physiological potential for NO3 assimilation in sugar maple. Our results demonstrate that chronic NO3 deposition has not induced the physiological capacity for NO3 uptake and assimilation by sugar maple, making this dominant species an unlikely direct sink for anthropogenic NO3 deposition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号