首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
The light-stimulated absorption of 86Rb+ by Phaseolus vulgaris L. leaf slices was found to be sensitive to dichlorophenyldimethylurea in air as well as in nitrogen, whereas light-stimulated 22Na+ absorption in nitrogen was not sensitive to this inhibitor. The absorption of 22Na+ is not affected by light in air. The absorption of 42K+ is enhanced by a dichlorophenyldimethylurea-insensitive light effect under anaerobic conditions and further increased by light in the absence of the inhibitor. Light-enhanced 42K+ absorption in air was also inhibited by dichlorophenyldimethylurea. Previous work showed that light-stimulated 86Rb+ and 42K+ absorption by Phaseolus vulgaris leaf slices is restricted to the guard cells. The present results are discussed with reference to the effect of light on stomatal opening.  相似文献   

2.
Mesophyll cells of leaf slices of bean (Phaseolus vulgaris L.) absorb six to ten times more K+ than Rb+ from 0.1 mM single chlorides of these cations. Absorption of 42K+ from 0.1 mM42KCl is much more inhibited by low concentrations of Rb2SO4 than by K2SO4. The isotherm for K+ absorption is biphasic in the range 0.1–1.1 mM, and K+ is more effective than Rb+ in causing transition from phase 1 to phase 2.  相似文献   

3.
The influence of alkali ions on the circadian leaf movements of Oxalis regnellii Mig. was investigated. Ions were given to the oscillating system via the transpiration stream of cut stalks in nutrient medium. Chloride solutions of Rb+, Cs+, Na+ and K+ were tested and the results compared to previously published LiCl-results. The period of the circadian leaf movements was unaffected by a continual addition of Na+ or K+ to the nutrient medium (at least up to 40 mM). Rb+, in the concentration of 2.5 or 5 mM, caused a shortening of the period when applied continuously. Rb+ concentrations up to 60 mM were tested. Cs+ ions caused only lengthenings of the circadian period. Cs+ concentrations up to 40 mM were tested. Cs+ resembled Li+ in producing period lengthenings, but was not as effective as Li+ when compared on a concentration basis. Toxicity of the effective ions was in the following order: Li+Cs+Rb+, Rb+ pulses (50 mM, 4 h) phase-shifted the rhythm and caused advances. A phase response curve was determined and the maximum steady state advances were of the order of 1 h. The dual effect of the Rb+ ions is discussed and is assumed to be due to two counteracting processes, exemplified by Rb+-sensitive ATPase-controlled pumping processes and protein synthesis. For comparison, the effects of Rb+ and Li+ in human depressive disorders is also discussed in relation to their influence on circadian systems. It is emphasized that Rb+ and K+ behave differently and are not interchangeable in their action on circadian systems.  相似文献   

4.
Lettré cells maintain a plasma membrane potential near — 60mV, yet are scarcely depolarized by 80 mM Rb+ and are relatively impermeable to 86Rb+. They are depolarized by ouabain without a concomitant change in intracellular cation content. Addition of K+ to cells suspended in a K+ free medium, or of Na+ to cells in a Na+ free medium, hyperpolarizes the cells. They contain electroneutral transport mechanisms for Na+, K+ and H+ which can function as Na+:K+ and Na+:H+ exchanges. It is concluded that plasma membrane potential of Lettré cells, in steady-state for Na+ and K+, is produced by an electrogenic Na+ pump sustained by electroneutral exchanges, and restricted by anion leakage.  相似文献   

5.
We have previously reported on the biochemical properties of a Na+,K+,2Cl?-cotransport in HeLa cells and here we deal with aspects of its physiological regulation. Na+,K+,2Cl?-cotransport in HeLa cells was studied by 86Rb+ influx and 86Rb+/22Na+ efflux measurements. The effects of rat atrial natriuretic peptide (ANP), isoproterenol, and amino acids on 86Rb+ flux, mediated by the bumet-anide-sensitive Na+, K+, 2Cl?-cotransport system and the ouabain-sensitive Na+/K+-pump, were investigated. ANP reduced bumetanide-sensitive 86Rb+ influx under isotonic as well as under hypertonic conditions. Similar decrease of bumetanide-sensitive 86Rb+ influx was observed in the presence of 8-bromo-cGMP, while neither isoproterenol as a β-receptor agonist nor 8-bromo-cAMP-could alter bumetanide-sensitive 86Rb+ influx. Furthermore, efflux of 86Rb+ and 22Na+ was greatly reduced in the presence of bumetanide and ANP. Together with our recent findings, showing functionally active, high affinity receptors for ANP on HeLa cells (Kort and Koch, Biochim. Biophys. Res. Commun. 168:148–154, 1990), this study indicates that ANP participates in the regulation of the Na+, K+, 2Cl?-cotransport system in HeLa cells. Further measurements revealed that amino acids as present in the growth medium (Joklik's minimal essential medium) and the amino acid derivative α-methyl-aminoisobutyric acid (metAlB, 1 and 5 mM, respectively) also reduced Na+, K+, 2Cl?-cotransport-mediated 86Rb+ uptake and diminished the stimulatory effect of hypertonicity on the cotransporter. In addition, the Na+/K+-pump was markedly stimulated in the presence of amino acids, while neither ANP and 8-Br-cGMP nor isoproterenol and 8-Br-cAMP had a significant effect on the activity of the Na+/K+-pump.  相似文献   

6.
Synechococcus R-2 is a unicellular blue-green alga. The cells will grow on Rb+ as a substitute for K+ but at a slower rate (t2~ 15 h versus 12 h). Potassium is not, strictly speaking, an essential element for Synechococcus. Rubidium duxes (using 86Rb+) are much slower than those of potassium, about 1 nmol m?2 s?1 in the light (0.35 mol m?3 Rb+). 86Rb+ fluxes in the dark are about 0.1 nmol m?2 s?1. These fluxes are very slow compared to those of Na+ and other ions. Isotopic influx of Rb+ can supply sufficient Rb+ to keep up with the demands for growth, but the net dux needed to keep up with growth in the light is a large proportion of the total observed dux. Kinetic studies of Rb+ uptake versus [Rb+] show two uptake phases consistent with a high-affinity and a low-affinity system. Both systems appear to be light-activated. Transport of Rb+ appears to be passive at pHo 10 in the light and dark. There is no case for active transport of Rb+ at pHo 7.5 in the light, but a marginal case for active uptake in the dark (about 3 kJ mol?1). There is only a small effect of Na+ upon Rb+ transport. 86Rb+ should not be used in place of 42K+ in K+ nutrition studies as the details of Rb+ transport are different to those of K+ transport.  相似文献   

7.
罗达  吴正保  史彦江  宋锋惠 《生态学报》2022,42(5):1876-1888
研究盐胁迫下3个品种平欧杂种榛幼苗叶片解剖结构和离子代谢特征,以揭示盐胁迫响应与适应机制及不同品种的耐盐性差异。以‘达维’、‘辽榛7号’、‘玉坠’2年生压条苗为材料,在盆栽条件下经轻度、中度、重度(分别为50、100、200 mmol/L NaCl)盐胁迫处理,设对照为0,研究幼苗叶片显微解剖结构参数和Na~+、K~+、Cl~-、Ca2+含量的变化及其在根、茎、叶中的吸收、运输和分配特征。不同品种平欧杂种榛叶片厚度、上表皮厚度、下表皮厚度、栅栏组织和海绵组织厚度随着盐胁迫程度的增强呈现出先增加后降低的特点,轻度和中度胁迫下各参数显著高于对照。中度盐胁迫显著提高了各品种叶片结构紧密度。盐胁迫导致平欧杂种榛根、茎、叶Na~+和Cl~-含量明显高于对照。盐胁迫下,Na~+和Cl~-在叶中的绝对含量明显高于茎和根,但二者的增幅以根中最大,叶中最小,表明平欧杂种榛根系首先会吸收并截留一定数量的Na~+和Cl~-,然后将其运输至茎和叶中。与对照相比,轻度和中度盐胁迫下根、茎对K~+和Ca2+的吸收保持稳定或减少,叶对K~+和Ca2+...  相似文献   

8.
The roles of K+ uptake and loss in the salinity response of the wild type and the salt-tolerant mutant stl2 of Ceratopteris richardii were studied by measuring Rb+ influx and loss and the effects of Na+, Mg2+, Ca2+ and K+-transport inhibitors. In addition, electrophysiological responses were measured for both K+ and Rb+ and for the effects of Na+ and NH4+ on subsequent K+-induced depolarizations. stl2 had a 26–40% higher uptake rate for Rb+ than the wild type at 0.5–10 mol m?3 RbCl. Similarly, membrane depolarizations induced by both RbCl and KCl were consistently greater in stl2. In the presence of 0–180 mol m?3 NaCl, stl2 maintained a consistently greater Rb+ influx than the wild type. stl2 retained a greater capacity for subsequent KCl-induced depolarization following exposure to NaCl. Five mol m?3 Mg2+ decreased Rb+ uptake in stl2; however, additional Mg2+ up to 40 mol m?3 did not affect Rb+ uptake further. Ca2+ supplementation resulted in a very minor decrease of Rb+ uptake that was similar in the two genotypes. Tetraethylammonium chloride and CsCl gave similar inhibition of Rb+ uptake in both genotypes, but NH4Cl gave substantially greater inhibition in the wild type than in stl2. NH4Cl resulted in a greater membrane depolarization in the wild type and the capacity for subsequent depolarization by KCl was markedly reduced. stl2 exhibited a higher Independent loss of Rb+ than the wild type, but, in the absence of external K+, loss of Rb+ was equivalent in the two genotypes. Since constitutive K+ contents are nearly identical, we conclude that high K+ influx and loss exact a metabolic cost that is reflected in the inhibition of gametophytic growth. Growth inhibition can be alleviated by reduced supplemental K+ or by treatments that slightly reduce K+ influx, such as moderate concentrations of Na+ or Mg2+. We propose that high throughput of K+ allows maintenance of cytosolic K+ under salt stress and that a high uptake rate for K+ results in a reduced capacity for the entrance and accumulation of alternative cations such as Na+ in the cytosol.  相似文献   

9.
为探明大果沙枣树体矿质离子渗透调节机制,比较分析了盐渍化生境中1~12a生树的根、枝和叶部主要矿质阳离子的吸收、分配特征。结果表明:(1)大果沙枣树体内Ca~(2+)的积累量最高(13.79 g/kg),K~+次之(5.92 g/kg),Na~+最低(1.00 g/kg);随着树龄的增大,大果沙枣根部的Na~+以及枝和叶部的K~+、Ca~(2+)、Mg~(2+)的积累量均逐渐增大,而根部的K~+含量则逐渐减少;高龄段(10~12a)树体根部的Na~+累积量显著(P0.05)高于中低龄(1~9a)段。(2)大果沙枣树体内K~+/Na~+最大(15.36),Mg~(2+)/Na~+次之(12.25),Ca~(2+)/Na~+最小(10.51),根和枝部的K~+/Na~+均随着树龄的增大而降低,叶部则表现相反。(3)土壤中的K~+和Mg~(2+)向根方向、根部K~+、Mg~(2+)和Ca~(2+)向枝方向以及根部的K~+和Mg~(2+)向叶方向的选择运移系数均随着树龄的增大呈直线上升趋势。(4)土壤中Na~+与根部Na~+含量呈极显著正相关关系(0.687,P0.01),与叶部的K~+含量呈显著正相关(0.605,P0.05);土壤中K~+含量与根部的Na~+、叶部的K~+分别呈显著和极显著正相关(0.544,0.676),与根部的Mg~(2+)呈显著负相关关系(-0.499)。研究发现,大果沙枣树生长过程中主要通过根部对Na~+的聚积作用,以及K~+、Mg~(2+)和Ca~(2+)在枝、叶部的吸收积累来维持植物体离子平衡,以适应盐渍土壤环境。  相似文献   

10.
Two ionophores, monensin and salinomycin, increased total cell Na+ and ouabain-sensitive 86Rb+ uptake in cultures of smooth muscle cells from rat aorta. Monensin was used to produced graded increases in cell Na+ in order to assess the Na+ dependence of the Na+/K+ pump in the intact cell. The relationship between internal Na+ and ouabain-sensitive 86Rb+ uptake was hyperbolic (K1Na = 3 mM). Monensin did not stimulate 86Rb+ uptake in the absence of external Na+. Loading the cells with Na+ by exposing cultures to a K+-free medium for 3 hr maximally increased cell Na+ and ouabain-sensitive 86Rb+ uptake to the same extent as monensin. Total cell Na+ and pump activity in monensin-treated cells returned to the initial values after removing the ionophore. Monensin was then able to increase total cell Na+ and ouabain-sensitive 86Rb+ uptake to the same extent as the initial treatment with the ionophore.  相似文献   

11.
A mutant in Saccharomyces cerevisiae required one hundred times more K+ than wild type for the same half maximal growth rate. Mutant cells and wild type cells grown at millimolar K+ did not show significant differences in Rb+ transport. In the mutant, a rapid K+ loss induced by azide or incubation (4 h) in K+-free medium decreased the Rb+ transport K m by one half; in the wild type, those treatments decreased the Rb+ K m twenty and one hundred times, respectively. Mutant and wild type did not show significant differences in Na+ transport and in the Na+ inhibition of Rb+ transport, either in normal-K+ cells or in K+-starved cells. The results suggest that either two systems or one system with two interacting sites mediate K+ transport in S. cerevisiae.Abbreviations YPD yeast-peptone-dextrose medium  相似文献   

12.
以2年生的流苏播种苗为材料,采用不同浓度(50、100、200、300 mmol·L^-1)NaCl溶液进行胁迫处理,研究盐胁迫对流苏的生长、Na^+和K^+分布格局、渗透调节物质的影响,以明确其耐盐阈值。结果表明:(1)随着NaCl胁迫浓度的增加,流苏幼苗生长量逐渐降低,盐害指数升高、存活率下降;幼苗耐盐阈值为98.693 mmol·L^-1(0.577%W/V)。(2)随着NaCl胁迫浓度的增加,流苏幼苗各器官中的Na^+含量持续增加,并在浓度为50 mmol·L^-1时表现为根>叶>茎,在其余各处理组表现为叶>根>茎;幼苗根、叶中的K^+含量表现为先增后减的变化趋势,茎中K^+含量总体表现为下降趋势,且器官中K^+含量表现为根>叶>茎;幼苗根部到茎部和茎部到叶部的离子选择性运输能力、各器官中的K^+/Na^+比值均呈下降趋势。(3)随着NaCl浓度的增加,流苏幼苗叶片可溶性糖、可溶性蛋白含量总体呈上升趋势,其脯氨酸含量呈先上升后下降的趋势。研究发现,流苏幼苗根系可通过对Na^+的吸收和累积来阻止其向地上部运输进而避免盐害发生;叶片和茎中通过提高对K^+的选择性吸收和累积,从而增大K^+/Na^+比值以减缓盐分对其生理代谢的伤害。  相似文献   

13.
Steady state kinetics were used to examine the influence of Cd2+ both on K+ stimulation of a membrane-bound ATPase from sugar beet roots (Beta vulgaris L. cv. Monohill) and on K+(86Rb+) uptake in intact or excised beet roots. The in vitro effect of Cd2+ was studied both on a 12000–25000 g root fraction of the (Na++K++Mg2+)ATPase and on the ATPase when further purified by an aqueous polymer two-phase system. The observed data can be summarized as follows: 1) Cd2+ at high concentrations (>100 μM) inhibits the MgATPase activity in a competitive way, probably by forming a complex with ATP. 2) Cd2+ at concentrations <100 μM inhibits the specific K+ activation at both high and low affinity sites for K+. The inhibition pattern appears to be the same in the two ATPase preparations of different purity. In the presence of the substrate MgATP, and at K+ <5 mM, the inhibition by Cd2+ with respect to K+ is uncompetitive. In the presence of MgATP and K+ >10 μM, the inhibition by Cd2+ is competitive. 3) At the low concentrations of K+, Cd2+ also inhibits the 2,4-dinitrophenol(DNP)-sensitive (metabolic) K+(86Rb+) uptake uncompetitively both in excised roots and in roots of intact plants. 4) The DNP-insensitive (non metabolic) K+(86Rb+) uptake is little influenced by Cd2+. As Cd2+ inhibits the metabolic uptake of K+(86Rb+) and the K+ activation of the ATPase in the same way at low concentrations of K+, the same binding site is probably involved. Therefore, under field conditions, when the concentration of K+ is low, the presence of Cd2+ could be disadvantageous.  相似文献   

14.
The influx of Rb+ into the roots of two barley varieties (Hordeum vulgare L. cv. Salve and cv. Ingrid) from a K+-free 86Rb-labelled nutrient solution with 2.0 mM Rb+, was checked at intervals from day 6 to day 18. The control plants were continuously grown in complete nutrient solution containing 5.0 mM K+, while two other groups of plants were grown in K+-free nutrient solution starting on day 6 and between day 6 and day 9, respectively. The pattern of Rb+ influx was similar for both varieties, although their efficiencies in absorbing Rb+ were different. The relationship between Rb+ influx and K+ concentration of the root could be interpreted in terms of negative feedback through allosteric control of uptake across the plasmalemma of the root cells. Hill plots were bimodal, but in the opposite direction. The Hill coefficients, reflecting the minimum number of interacting allosteric binding sites for K+ (Rb+), were low (≤–3.0). It is discussed whether the threshold value, that is the breaking point in the Hill plot, is indicative of a changed efficiency of transporting units for K+ (Rb+) transport to the xylem. Moreover, feedback regulation might be involved in transport of K+ between root and shoot. The variation in K+ concentrations in the roots and shoots of control plants were cyclic but in phase opposition despite an exponential growth. The average K+ concentration varied only slightly with age.  相似文献   

15.
The roles of Na+ and K+ (Rb+) uptake were further studied in a NaCl-tolerant strain of Ceratopteris richardii containing the stl2 mutation by direct comparison with the wild-type strain. In addition to Na+ tolerance, stl2 also confers tolerance to Mg2+ and sensitivity to K+. In addition to higher K+ (Rb+) uptake at concentrations commonly associated with low-affinity K+ transport, stl2 maintained higher uptake down to 0·1 mol m–3 Rb+. Up to a 25-fold excess of Na+ had little effect in either genotype on K+ (Rb+) uptake at low concentrations, i.e. 0·2 and 0·5 mol m–3 RbCl. Pretreatment with K+ (20 mol m–3) inhibited uptake of K+ (Rb+) in the wild type, whereas concurrent inclusion of K+ inhibited uptake of Rb+ more in stl2. In the absence of K+, Na+ uptake (0·01–60 mol m–3) was nearly identical in the wild type and stl2. K+ inhibited Na+ uptake more effectively in stl2 than the wild type, especially at 60 mol m–3 Na+. Greater inhibition of K+ uptake in stl2 occurred with MgCl2 or TEA (tetraethylammonium chloride) preincubation or with simultaneous inclusion of Al3+ (Al2SO4). The higher effective velocity of K+ uptake at a wide range of concentrations and the enhanced selectivity for K+ and against Na+ contribute to the preservation of higher cytosolic K+ and lower Na+ under salinity stress.  相似文献   

16.
86Rb+ uptake by yeast was not only stimulated by Rb+ or K+ but also by Na+. The uptake of 22Na+ was enhanced by both Rb+ and K+, but not by Na+, which was inhibitory at all concentrations applied. Inhibition of 22Na+ uptake by inactive Na+ occurred in two phases: one phase refers to inhibition at low Na+ concentrations and the other to inhibition at high Na+ concentrations. Our results can be qualitatively described by a two-site transport mechanism, having two cation binding sites, which must be occupied with monovalent cations before transport can occur.  相似文献   

17.
Abstract Atriplex amnicola, was grown in nutrient solution cultures with concentrations of NaCl up to 750 mol m?3. The growth optimum was at 25–50 mol m?3 NaCl and growth was 10–15% of that value at 750 mol m?3 NaCl. Sodium chloride at 200 mol m?3 and higher reduced the rate of leaf extension and increased the time taken for a leaf to reach its maximal length. Concentrations of Na+, K+ and Mg2+ in leaves of different ages were investigated for plants grown at 25, 200 and 400 mol m?3 NaCl. Although leaves of plants grown at 200 and 400 mol m?3 NaCl had high Na+ concentrations at young developmental stages, much of this Na+ was located in the salt bladders. Leaves excluding bladders had low Na+ concentrations when young, but very high in Na+ when old. In contrast to Na+, K+ concentrations were similar in bladders and leaves excluding bladders. Concentrations of K+ were higher in the rapidly expanding than in the old leaves. At 400 mol m?3 NaCl, the K+:Na+ ratios of the leaves excluding bladders were 0.4–0.6 and 0.1 for rapidly expanding and oldest leaves, respectively. The Na+ content in moles per leaf, excluding bladders, increased linearly with the age of the leaves; concurrent increases in succulence were closely correlated with the Na + concentration in the leaves excluding the bladders. Soluble sugars and starch in leaves, stems and buds were determined at dusk and dawn. There was a pronounced diurnal fluctation in concentrations of carbohydrates. During the night, most plant parts showed large decreases in starch and sugar. Concentrations of carbohydrates in most plant organs were similar for plants grown at 25 and 400 mol m?3 NaCl. One notable exception was buds at dusk, where sugar and starch concentrations were 30–35% less in plants grown at 400 mol m?3 NaCl than in plants grown at 25 mol m?3 NaCl. The data indicate that the growth of A. amnicola at 400 mol m?3 NaCl is not limited by the availability of photosynthate in the plant as a whole. However, there could have been a growth limitation due to inadequate organic solutes for osmotic regulation.  相似文献   

18.
Errata     
1. (1) The significance of the specific (ouabain-sensitive) 86Rb+ or 42K+ uptake by cardiac muscle preparations which are not ‘sodium-loaded’ was studied.
2. (2) In left atrial preparations of guinea-pig heart, resting 86Rb+ uptake was relatively low. It was markedly increased by electrical stimulation. This stimulated uptake was further enhanced by isoproterenol and inhibited by verapamil.
3. (3) In rat atria, the resting 86Rb+ uptake was somewhat higher than in guinea-pig atria, and the increase in uptake caused by electrical stimulation was smaller. In guinea-pig right ventricular papillary muscle, the resting uptake was highest among those tissues studied, and the response to electrical stimulation was smallest. In the latter tissue, verapamil produced only a minimal inhibition of the specific 86Rb+ uptake.
4. (4) The effect of the frequency of electrical stimulation on 86Rb+ uptake paralleled its influence on the force of contraction, suggesting the involvement of intracellular sodium in both events.
5. (5) In both left atrial and right papillary muscle preparations of guinea-pig heart, specific 42K+ uptake observed with 5.8 mM K+ was relatively high, and was increased only slightly by electrical stimulation. This electrical stimulation, however, increased ouabain-induced inhibition of 42K+ uptake, suggesting that the stimulation increases the amount of Na+ available to the sodium pump.
6. (6) When the K+ concentration was 1 mM, the resting 42K+ uptake was low, and could be enhanced by electrical stimulation.
Keywords: Rb+ uptake; K+ uptake; Electrical stimulation; Na+ influex; (Cardiac muscle)  相似文献   

19.
The absorptive patterns of Mn2+ in excised rice roots, leaf tissues and intact plants, were studied. The rates of absorption of Mn2+ followed different patterns in the roots and the leaf tissues. The uptake from 0.1 and 5 mM MnSO4 was found to be sensitive to metabolic inhibitors. The time course of uptake from 0.1 mM and 5 mM MnSO4 followed a biphasic pattern which represented only the metabolic component of absorption. A secondary biphasic pattern of uptake at 5 mM MnSO4 (one at 20 min and another at 80 min) appears quite anomalous and is probably related to structural virations or cellular compartments. When absorption and transport of Mn2+ were measured in intact rice and wheat plants, it was found that Mn2+ was easily translocated to shoot from roots and the transport of Mn2+ was comparable to that of K+.  相似文献   

20.
Summary The specific activity of the Na+/K+/Cl cotransporter was assayed by measuring the initial rates of furosemide-inhibitable86Rb+ influx and efflux. The presence of all three ions in the external medium was essential for cotransport activity. In cultured smooth muscle cells furosemide and bumetanide inhibited influx by 50% at 5 and 0.2 m, respectively. The dependence of furosemide-inhibitable86Rb+ influx on external Na+ and K+ was hyperbolic with apparentK m values of 46 and 4mm, respectively. The dependence on Cl was sigmoidal. Assuming a stoichiometry of 112 for Na+/K+/Cl, aK m of 78mm was obtained for Cl. In quiescent smooth muscle cells cotransport activity was approximately equal to Na+ pump activity with each pathway accounting for 30% of total86Rb+ influx. Growing muscle cells had approximately 3 times higher cotransport activity than quiescent ones. Na+ pump activity was not significantly different in the gorwing and quiescent cultures. Angiotensin II (ANG) stimulated cotransport activity as did two calcium-transporting ionophores, A23187 and ionomycin. The removal of external Ca2+ prevented A23187, but not ANG, from stimulating the cotransporter. Calmodulin antagonists selectively inhibited86Rb+ influx via the cotransporter. Beta-adrenoreceptor stimulation with isoproterenol, like other treatments which increase cAMP, inhibited cotransport activity. Cultured porcine endothelial cells had 3 times higher cotransport activity than growing muscle cells. Calmodulin antagonists inhibited cotransport activity, but agents which increase cAMP or calcium had no effect on cotransport activity in the endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号