首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
脑卒中是由脑血管阻塞或出血引发的急性脑血管病,约84%的临床脑卒中患者由脑缺血引起。研究表明,自噬广泛参与并显著影响脑卒中病理生理进程。自噬是一个将陈旧蛋白质、损伤细胞器及多余胞质组分等呈递给溶酶体进行降解的代谢过程,其包括自噬的激活、自噬体的形成和成熟、自噬体与溶酶体融合、自噬产物在自噬溶酶体内消化和降解等过程。自噬流通常被定义为自噬/溶酶体信号机制。最近发现,自噬流障碍是导致缺血性脑卒中后神经元损伤的重要原因,而在自噬过程中任一步骤发生障碍均可导致自噬流损伤。本文重点对自噬体-溶酶体融合的机制,以及该机制在缺血性脑卒中后发生障碍的致病机理进行详细阐述,以期基于自噬体-溶酶体融合机制对神经元自噬流进行调节,进而诱导缺血性脑卒中后的神经保护。本文可为脑卒中病理机制研究指明方向,为脑卒中治疗探寻新的线索。  相似文献   

2.
缺血性脑卒中是由脑血管梗塞引起的急性脑血管病,具有较高的发病率、致残率和致死率。研究发现,过度自噬或自噬不足均可导致细胞损伤。自噬包括自噬体的形成和成熟、自噬体与溶酶体融合、自噬底物在自噬溶酶体内的降解和清除,这些过程呈连续状态则称为自噬流。研究发现,脑缺血可导致自噬体与溶酶体间发生融合障碍,从而引发自噬流损伤。细胞内膜融合由3种核心组分介导,即N-乙基马来酰亚胺敏感因子(N-ethylmaleimide sensitive factor,NSF) ATP酶、可溶性NSF黏附蛋白(soluble NSF attachment protein,SNAP)及可溶性NSF黏附蛋白受体(soluble NSF attachment protein receptors,SNAREs)。当SNAREs介导自噬体与溶酶体融合后以非活性的复合体形式存留于自噬溶酶体膜,须被NSF再激活为单体后方可发挥新一轮的膜融合介导作用,而NSF是唯一可再激活SNAREs的ATP酶。新近研究表明,脑缺血可显著抑制NSF ATP酶活性,导致其对SNAREs再激活减少,这可能是自噬体与溶酶体间发生融合障碍并导致神经元自噬...  相似文献   

3.
阿尔茨海默病(Alzheimer’s disease, AD)是一种常见的神经退行性疾病。自噬溶酶体功能异常阻碍了细胞对神经毒性物质的降解,是导致AD发生的关键因素。运动作为一种非药物治疗手段,可以通过激活PI3K/Akt、AMPK等相关信号通路上调自噬活性,并通过促进TFEB的核易位增强自噬溶酶体功能,提高对异常聚集蛋白和受损伤细胞器的降解,保护神经元,改善AD患者的认知功能障碍。本文阐述了自噬溶酶体功能障碍在AD发生发展中的作用,以及运动调控自噬溶酶体通路改善AD作用机制,旨在为AD的预防和治疗提供新策略。  相似文献   

4.
自噬是真核细胞中进化上高度保守的、用于降解和回收利用细胞内生物大分子和受损细胞器的过程。自噬的完成依赖于正常的溶酶体功能,与机体的多种生理和病理过程密切相关。自噬研究已成为当前生命科学研究的热点,揭示自噬的发生机制、自噬与疾病发生的关系对预防与治疗多种人类重大疾病具有重要意义。该文旨在概括目前自噬的研究进展,重点介绍细胞自噬的发生机制及其与疾病的关系。  相似文献   

5.
自噬体和溶酶体是细胞维持稳态的重要系统,自噬体负责底物的识别和包裹,溶酶体负责底物的降解。溶酶体功能紊乱会导致细胞内物质不能被正常降解、致病性底物发生蓄积,进而诱发多种重大疾病,如溶酶体蓄积病(lysosomal storage disorders, LSDs)、神经退行性疾病和代谢性疾病等;相反,促进溶酶体生成,增强其降解功能则具有改善疾病的作用。因此,揭示并阐明溶酶体生成的调控机制是重要的科学问题。本文对溶酶体生成调控领域近年的研究进展进行综述。  相似文献   

6.
自噬是高度保守的细胞内降解途径.在此过程中,部分细胞质和细胞器被双层膜的囊泡包裹形成自噬体,随后与溶酶体融合并降解被吞噬的物质.降解产物被释放到细胞质中重新用于必需的物质和能量合成.本文主要关注自噬的晚期阶段,即从自噬体合成结束到溶酶体再生过程.通过对这一过程相关基因及蛋白产物的研究,初步揭示了此过程的分子机制.  相似文献   

7.
自噬对胞内感染病原体的双重作用   总被引:1,自引:0,他引:1  
自噬(autophagy)是细胞维持稳态的一种机制[1,2].在自噬发生过程中,来源不明的单层膜凹陷形成杯状双层膜的结构,包裹细胞质和细胞器部分,形成有双层膜的自噬体(autophagosome).自噬体随之与溶酶体融合形成自噬溶酶体,其中的细胞物质被溶酶体酶降解,降解后产生的氨基酸可以被细胞重新利用,参与物质的再循环.  相似文献   

8.
自噬是高度保守的细胞内降解途径。在此过程中,部分细胞质和细胞器被双层膜的囊泡包裹形成自噬体,随后与溶酶体融合并降解被吞噬的物质。降解产物被释放到细胞质中重新用于必需的物质和能量合成。本文主要关注自噬的晚期阶段,即从自噬体合成结束到溶酶体再生过程。通过对这一过程相关基因及蛋白产物的研究,初步揭示了此过程的分子机制。  相似文献   

9.
自体吞噬———Ⅱ型程序性死亡   总被引:1,自引:0,他引:1  
自噬 (autophagy) 是广泛存在于真核细胞内的一种溶酶体依赖性的降解途径,在饥饿的条件下,它可以调节细胞内长寿命蛋白和细胞器的降解,降解产物再被细胞重新利用 . 因此自噬在细胞发育、细胞免疫、组织重塑及对环境适应等方面有着十分重要的作用 . 近来发现,自噬还参与降解病原微生物、抵御感染的过程,称之为异噬 . 对自噬的分子机制和调节以及其在生理病理过程中的作用进行相应讨论 .  相似文献   

10.
自噬广泛存在于真核细胞中,与机体生理和病理过程的发生发展密切联系.自噬主要参与长寿蛋白质的降解,以清除受损或多余的蛋白质和细胞器,是细胞自我降解的过程之一.自噬通常被分为三类:大自噬、分子伴侣介导的自噬和小自噬.自噬溶酶体途径(ALP)功能障碍导致蛋白质聚集,从而产生异常蛋白质和无效细胞器的积累,这些特征是阿尔茨海默病(Alzheimer disease,AD)、帕金森病(Parkinson disease,PD)和亨廷顿病等神经退行性疾病(Huntington disease,HD)的标志.自噬的过程受一系列复杂的信号分子的调控,其中一个主要调节因子是转录因子EB(TFEB),是转录因子MiT家族的成员之一.研究表明,TFEB可通过积极调节自噬体形成和自噬体-溶酶体融合参与自噬,此外它还通过溶酶体胞吐作用提高细胞内的清除作用.因此作为自噬溶酶体生物发生的主要调节因子,TFEB已被广泛证明激活后可以从病理方面改善这些疾病.我们回顾分析ALP和TFEB的调节及其对神经退行性疾病的影响,同时展望ALP和TFEB在疾病病理中的复杂作用及其治疗意义.  相似文献   

11.
陈元渊  陈红岩  卢大儒 《遗传》2014,36(6):547-551
细胞自噬是细胞在面对内外部环境压力的情况下, 为了自身的稳定而采取的一种降解内部及外来入侵物质的机制。SNARE(Soluble N-ethylmaleimide-sensitive factor attachment protein receptors)假说指出SNARE蛋白在细胞物质运输以及特异性膜融合过程中具有重要作用, 揭示了细胞正常生理活动有序进行的分子机制。由于细胞自噬涉及从自噬体的形成到自噬体溶酶体的融合等诸多膜融合的过程, 因此, 文章对近年来SNARE蛋白在调控细胞自噬过程的研究进展进行了综述。  相似文献   

12.
自噬是一种高度保守的细胞内成分的降解过程,不仅维持细胞的代谢稳定,还与机体对抗各种病原菌感染有着密切关系。自噬能协助机体清除病原体,但有些细菌进化出多种策略干扰自噬信号通路或抑制自噬体与溶酶体融合形成自噬溶酶体来逃避自噬的降解,甚至利用自噬来促进其生长增殖。文中从自噬的分子机制出发,讨论多种致病菌与宿主细胞自噬关系的最新进展,以及自噬与病原菌感染的作用和意义,以期为病原菌感染导致的自噬研究提供参考。  相似文献   

13.
李杰  路海  李妮娜 《生命科学》2011,(10):980-986
自噬是以细胞质空泡化为特征的依赖于溶酶体的一种降解途径,是真核细胞特有的普遍生命现象。自噬利用溶酶体降解自身损伤的细胞质和细胞器,降解产物可用于能量生成、新的蛋白质和质膜的合成,以供细胞代谢和老化损伤细胞成分的更新,维持细胞存活、分化、发育和内环境稳态。自噬广泛参与多种生理和病理过程。对自噬与细胞代谢及疾病发生的关系作一概述。  相似文献   

14.
细胞自噬与病毒感染   总被引:1,自引:0,他引:1  
自噬是广泛存在于真核细胞内的一种溶酶体依赖性降解途径,在维持细胞存活、更新、物质再利用和内环境稳定中起着重要作用。目前已经发现大量新的自噬相关基因,同时发现自噬在病毒感染过程中发挥着重要的抗病毒作用:自噬可以将胞质中的病毒转运到溶酶体中,降解病毒;也可以将病毒核酸转运至胞内感受器上激活天然免疫;还可以将病毒抗原递呈给MHCⅡ类分子激活适应性免疫。自噬参与胞内微生物感染具有双重作用。一方面,自噬能够降解入侵的微生物,即以异源吞噬(xenophagy)的方式清除胞内的病原体;另一方面,有些微生物能够通过某些机制逃避自噬而利于自身存活。本文就细胞自噬及其与不同病毒感染关系的最新研究进展进行综述。  相似文献   

15.
溶酶体具有高度保守的异质性,是细胞自噬的关键细胞器。细胞质中的蛋白质和细胞器最终在溶酶体降解,故溶酶体在维持细胞结构和功能的平衡方面起着重要生理作用。通过自噬溶酶体途径,细胞可清除某些病原体并参与抗原呈递。细胞自噬与异噬经溶酶体密切联系。自噬过程中溶酶体功能障碍与某些疾病和衰老等相关。对细胞自噬的溶酶体途径及其功能意义作了概述。  相似文献   

16.
巨自噬是一种普遍存在的,由溶酶体介导,降解长寿命蛋白质和细胞器的分解代谢过程.巨自噬对心脏疾病调节有双向作用:通过清除损伤的细胞器和蛋白质聚合物,维持内环境稳定,促进细胞存活;严重损伤时,巨自噬过度激活导致心肌细胞死亡.本文综述巨自噬在心脏疾病调节中的研究进展,包括巨自噬的形成和凋亡的关系,探讨巨自噬作为调节因子,对缺血-再灌注、心肌肥大和心力衰竭的双向作用,为疾病治疗开辟新思路.  相似文献   

17.
细胞自噬是指细胞通过自噬-溶酶体(autolysosome)降解变性蛋白聚集物和受损细胞器的过程. 自噬对于细胞内环境的稳态、物质的平衡、胚胎发育以及疾病的发生发挥重要作用. 在电镜下观察,自噬体膜是一个双层脂质膜结构. 细胞中因缺乏除了自噬相关蛋白9 (autophagy-related protein 9,ATG9)以外的自噬体膜相关蛋白,故难以确定自噬体膜的来源. 自噬体膜的来源也因此成为目前自噬研究领域的热点问题. 关于自噬体膜的来源,学术界存在两种观点:一种认为自噬体膜是细胞在自噬体组装位点(pre-autophagosomal structure, PAS)重新合成的;另一种观点则认为自噬体膜来源于细胞已有的某些细胞器(如内质网、高尔基体、内吞体、质膜和线粒体). 该文综述了近年有关自噬体膜来源于细胞已有的某些细胞器的研究进展,旨在为相关领域的研究提供参考.  相似文献   

18.
线粒体是细胞生理代谢活动发生的重要场所. 线粒体生发降解平衡是维持能量代谢稳定的重要保障. Parkin作为E3泛素连接酶,通过PINK1/Parkin、LC3等多种信号参与调控线粒体自噬过程. 此外,Parkin还能够影响线粒体相关内质网膜、调控细胞器间钙流,在线粒体-内质网对话过程中调控溶酶体途径介导的线粒体自噬. 脂肪组织是研究线粒体调节机制的理想模型:寒冷刺激诱导富含线粒体的米色脂肪生成;移除刺激后,组织中线粒体消失恢复为白色脂肪,但线粒体稳定性的调控机理目前仍有很多未知. 本文综述Parkin介导线粒体自噬途径的最新研究进展,及其参与线粒体、内质网、溶酶体等不同细胞器间相互作用的调控机制.  相似文献   

19.
线粒体自噬     
细胞自噬(autophagy)是细胞依赖溶酶体对蛋白和细胞器进行降解的一条重要途径.目前,将通过细胞自噬降解线粒体的途径称为线粒体自噬(mitophagy).最近几年的证据表明,线粒体自噬是一个特异性的选择过程,并受到各种因子的精密调节,是细胞清除体内损伤线粒体和维持自身稳态的一种重要调节机制.自噬相关分子,如“核心”Atg 复合物,酵母线粒体外膜分子Atg32、Atg33、Uth1和Aup1,哺乳细胞线粒体外膜蛋白PINK1、NIX和胞质的Parkin等,在线粒体自噬中起关键的作用. 线粒体自噬异常与神经退行性疾病如帕金森氏病(Parkinson’s disease,PD)的发生密切相关. 本文就线粒体自噬的研究进展做简要的介绍.  相似文献   

20.
自噬是由溶酶体介导的一种降解途径,通过降解细胞器内受损及冗余成分为氨基酸,脂肪酸,核苷等小分子,供细胞再利用.因此,自噬在维持细胞内环境的稳定性起着十分重要的作用.自噬一般被认为是细胞在氧化应激及营养匮乏等条件下的一种自我保护机制.通常情况下,自噬维持在较低水平,但是当ATP能量耗竭、活性氧的释放,线粒体膜通道的开放都会导致自噬活性迅速升高.在心脏中,自噬维持在较低水平,如果异常,则会导致心脏功能异常和心衰.虽然自噬在缺血再灌注等生理过程中的活性显著增强,但是其机制并不是十分明确,仍需要深入研究.本文综述了自噬在缺血再灌注过程中的作用,阐明了潜在的机制,表明自噬可能为缺血再灌注过程中的损伤作用提供一种新的靶向治疗手段.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号