首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Doses of 125, 250 or 500 micrograms LH-RH were injected i.m. into suckled beef cows on approximately Day 11 of an oestrous cycle synchronized by prostaglandin treatment. There was a positive linear relationship between dose of LH-RH and the area under the measured LH peak. Administration of 500 micrograms LH-RH as a single injection to suckled cows 13-32 days post partum resulted in LH release but failed to induce normal ovarian activity. A small transient rise in plasma progesterone for 6--9 days occurred at the expected time after injection in 50% of animals. Administration of 500 micrograms LH-RH to suckled beef cows approximately 20--30 days post partum and a second injection approximately 10 days later at the time when the resulting transient rise in plasma progesterone had returned to basal values induced normal cyclic activity (as shown by progesterone concentrations and observed oestrus) at 35 days compared with 70 days for untreated controls. Pituitary responsiveness to LH-RH, as assessed by LH levels, was found to increase up to 20 days post partum.  相似文献   

2.
The time-course of the inhibitory effect of hyperprolactinaemia on LH secretion was delineated. Hyperprolactinaemia was induced in ovariectomized rats with injections of domperidone or ovine prolactin and circulating LH levels were measured from 1 h to 9 days after the treatment. Inhibition of LH secretion occurred within 2-4 h after treatment, and was maintained (provided that serum prolactin remained elevated) for a period of 6 days only. Thereafter LH levels increased to become insignificantly different from control levels on Day 9. A reduction in pituitary responsiveness was not associated with the acute or sub-chronic inhibition of LH secretion, although a significant fall in responsiveness was observed simultaneously with the return of serum LH levels to control values. No changes in hypothalamic LH-RH content was found. It is concluded that an impairment of pituitary function is not responsible for the inhibitory action of prolactin on LH secretion.  相似文献   

3.
GnRH (250 μg) was administered intravenously in a total of 121 experiments carried out on 21 cows during the period from 180 days ante (ap) to 50 days post partum (pp). Additionally in one group of animals prolactin secretion was inhibited after parturition by means of 3 intramuscular injections of 150 mg Bromocryptine (CB-154) on days 1, 4 and 7 pp. LH response (peak height, area under the dose response curve) was about the same from 150 to 60 days ap, then decreased significantly towards parturition and was lowest during the first 6 days post partum. At a later time the Lh response was more pronounced than during pregnancy. The FSH response decreased significantly during the last 9 days ap, remained low during the frist 6 days pp and increased thereafter. There was no significant influence of prolactin inhibition on LH and FSH values (except for the total FSH released on day 50 pp). Whereas in all GnRH treated animals pronounced pituitary gonadotropin responsiveness was measurable (except during the period around parturition), the variation of the LH response pp was much higher than ap. The LH results gave some indication of the wide range of response pattern for this hormone after parturition which might be one reason for the individuality in the initiation of a new estrous cycle post partum in cattle.  相似文献   

4.
Developmental changes in the pituitary responsiveness and the secretory pattern of FSH and LH in response to a single injection of LH-RH (100 ng/rat, s.c.) as estimated by increases in plasma concentrations of FSH and LH 10, 30 and 60 min after the injection were studied in female rats at 5, 10, 15, 20, 25 and 30 days of age. The pituitary responsiveness to LH-RH for both FSH and LH release increased from 5 to 15 days of age, reached a maximum on 15 days of age and declined thereafter, whereas a marked increase in the amount of these hormones in the pituitary occurred between 15 and 20 days of age. An apparent change in the secretory pattern of both FSH and LH was observed from 20 days of age onward. In groups up to 15 days of age, plasma concentrations of FSH and LH remained elevated 60 min after the injection of LH-RH, though the plasma concentration of these hormones returned to preinjection concentrations in groups at 20 days of age or later. These results indicate that the age-related changes in the secretory pattern of LH and FSH in response to LH-RH as well as changes in the pituitary responsiveness were apparent during the prepubertal period.  相似文献   

5.
More (P less than 0.05) post-partum acyclic ewes (8/9) showed evidence of pulsatile LH release than did seasonally anoestrous ewes (2/8). Mean plasma prolactin concentrations were higher (P less than 0.05) in the post-partum ewes than in the seasonally anoestrous ewes. Hypothalamic and pituitary cytosol oestrogen receptor number, median eminence GnRH content and pituitary LH, FSH and prolactin contents were similar in the two groups of ewes. The number of nuclear-bound oestrogen receptors was greater (P less than 0.01) in pituitaries from seasonally anoestrous ewes than in pituitaries from post-partum ewes. These data suggest that the basis of acyclicity in seasonally anoestrous ewes and in post-partum ewes is probably due to their inability to generate LH pulse frequencies similar to that in the follicular phase of the oestrous cycle. The higher LH pulse frequency in post-partum ewes, compared to that in seasonally anoestrous ewes, suggests that pregnancy may partly negate the reduction in LH secretion that is associated with photoperiod-induced acyclicity. The lower number of nuclear-bound oestrogen receptors in post-partum ewes suggests that there may be lower plasma oestrogen levels and less ovarian follicular growth than in non-suckling anoestrous ewes.  相似文献   

6.
Castrate rams and ovariectomized ewes were maintained in the presence of entire rams and ewes and subjected to successive periods of alternating 6 h light:18 h darkness ('short' days) and 18 h light:6 h darkness ('long' days) preceded by a period of 12 h light:12 h darkness ('constant' light days). Plasma concentrations of LH and prolactin were measured in the castrate animals in order to determine how LH and prolactin secretion responded to the artificial light regime and corresponding periods of elevated or depressed testicular and ovarian activity in the entire rams and ewes. There was no variation in mean plasma LH concentrations or LH pulse frequency with either the changes in photoperiod or the phases of gonadal activity in the entire animals. However, there was a highly significant (P less than 0.001) relationship between prolactin secretion and the artificial photoperiod in both castrate groups with high and low levels coinciding with long and short days respectively. In addition, there was a marginally significant (P less than 0.1) relationship between prolactin secretion in the castrate ram and the stage of testicular activity in the entire rams with elevated levels associated with regressed activity. Prolactin secretion in the ovariectomized ewes was significantly (P less than 0.05) related to the phase of ovarian development with high levels associated with acyclic activity. It is concluded that LH secretion and pituitary responsiveness to exogenous GnRH were not modified by the artificial light regime. However, the changing light pattern was physiologically 'perceived' by the castrate animals as indicted by a concomitant variation in plasma prolactin concentrations.  相似文献   

7.
No difference was found between 5 intact ewes and 5 ewes from which the CL had been excised at Day 70 of pregnancy in the plasma concentration of progesterone at Day 140, and concentrations of progesterone remained below 0.2 ng/ml during the first 20 days post partum. Plasma concentrations of LH, frequency and amplitude of LH pulses were low at Day 140 and increased considerably, particularly in the CL-excised ewes, as early as Day 5 post partum. No significant differences were found between the two groups of ewes in the mean plasma concentrations of FSH for any of the 5 stages examined. Taken together, these results suggest that some factor, other than progesterone, associated with the CL of pregnancy is involved in the inhibition of pulsatile LH secretion during the early post-partum period.  相似文献   

8.
The effect of sustained high plasma levels of prolactin, induced by repeated 2-h i.v. injections of thyrotrophin-releasing hormone (TRH; 20 micrograms), on ovarian oestradiol secretion and plasma levels of LH and FSH was investigated during the preovulatory period in the ewe. Plasma levels of progesterone declined at the same rate after prostaglandin-induced luteal regression in control and TRH-treated ewes. However, TRH treatment resulted in a significant increase in plasma levels of LH and FSH compared to controls from 12 h after luteal regression until 5 to 6 h before the start of the preovulatory surge of LH. In spite of this, and a similar increase in pulse frequency of LH in control and TRH-treated ewes, ovarian oestradiol secretion was significantly suppressed in TRH-treated ewes compared to that in control ewes. The preovulatory surge of LH and FSH, the second FSH peak and subsequent luteal function in terms of plasma levels of progesterone were not significantly different between control and TRH-treated ewes. These results show that TRH treatment, presumably by maintaining elevated plasma levels of prolactin, results in suppression of oestradiol secretion by a direct effect on the ovary in the ewe.  相似文献   

9.
We have investigated the pituitary and luteal responses to LH-RH and their related changes. 11 normal women were studied during the luteal phase (day +4/+11). Blood samples were collected every 15 min for a basal period of 180 and 120 min after the intravenous administration of 25 micrograms of LH-RH. Progesterone (P) and LH were assayed by radioimmunoassay. Data were analyzed as maximum peak and its percent increase (delta max), integrated secretory area (ISA) and percent increase of ISA (delta A) in respect to basal values for both P and LH. LH-RH elicited a secretory response of both hormones in all cases. ISA of LH was significantly greater after LH-RH administration in respect to basal values (p less than 0.001) and delta max accounted to 475 +/- (SE) 36% of the basal concentration. Luteal responsiveness varied from about 115-130% to more marked increments. ISA of P differed from basal to stimulated conditions (p less than 0.05) and delta max was 166 +/- (SE) 14%. The analysis of temporal relationship between P and LH secretion showed that LH promptly rose after LH-RH, while the enhancement of P plasma levels occurred within 31 +/- 19 min after LH rise. Then P levels reached a plateau, values of which were statistically different from those observed before LH-RH administration. In two cases where luteal function was blunted or absent, in spite of marked increments of LH, P secretion did not occur. These data are consistent with the presence of close relationships between hypothalamic, pituitary and luteal functions and strengthen the contention about the usefulness of LH-RH during luteal phase for the lifespan and maintenance of corpus luteum.  相似文献   

10.
Luteinizing hormone-releasing hormone (LH-RH) was administered to prepubertal male rats (intact, castrate or castrate-adrenalectomized, 60 g body weight) for 28 days (1 microgram LH-RH/day, s.c.), at a 10-fold physiological dose, as compared to the minimal FSH-releasing dose of 100 ng/rat s.c. In intact rats, serum LH and weight of androgen-dependent organs (vented prostate, seminal vesicles) were reduced after 14 days of treatment. In castrate rats, the postcastration rise in serum LH was abolished by treatment. Pituitary LH content, FSH secretion and prolactin secretion were not suppressed. Hypothalamic LH-RH was increased at 14 and 21 days. In castrate adrenalectomized male rats, LH secretion was also suppressed by 1 microgram LH-RH s.c. x 28 days. The hypothalamic LH-RH content did not increase. The pituitary LH-RH receptor level was not down-regulated after 14 days treatment either in intact or castrate male rats. Pituitary inhibition (LH release) in rats by a supraphysiological dose of LH-RH given for 28 days indicates that the optimal regime for chronic treatment has to be determined by monitoring LH release at regular intervals. Direct pituitary inhibition by LH-RH may explain some of the unexpected antifertility effects observed with high doses of LH-RH.  相似文献   

11.
The administration of LH-RH in a pulsatile regimen (100 ng i.v./h for 48 h) to acyclic ewes 26-30 days post partum increased plasma LH concentrations, and both the frequency and amplitude of plasma LH pulses. In 12/14 ewes these increases were followed by plasma LH surges similar to the preovulatory surges observed in 10 control cyclic ewes. Subsequent luteal function in the post-partum ewes was deficient. Plasma progesterone was detected in 7/12 post-partum ewes showing plasma LH surges. The concentrations were lower (1.3 +/- 0.2 ng/ml) and detected for shorter periods (3-10 days) than in cyclic ewes (2.4 +/- 0.2 ng/ml, 12/15 days). In the post-partum ewes the increases in plasma LH concentrations before the LH surge were higher but of shorter duration than in the cyclic ewes. The inadequate luteal function in the post-partum ewes could therefore have been due to inappropriate LH stimulation of the ovary before the LH surge.  相似文献   

12.
The post-partum secretion of LH, FSH and prolactin was monitored in 15 suckling and 6 non-suckling Préalpes du Sud ewes lambing during the breeding season by measuring plasma hormone concentrations daily at 6-h intervals and also weekly at 20-min intervals for 6 h from parturition to resumption of regular cyclic ovarian activity. There was a constant phenomenon in the resumption of normal patterns of FSH and LH secretion: there was a rise in FSH values culminating on average on Day 4 post partum and returning subsequently to values observed during the oestrous cycle, and concurrently an increase in the frequency and amplitude of LH pulses more progressive in suckling than in non-suckling ewes which led to an elevation of LH mean concentrations and occurrence of an LH surge. Since neither the FSH secretory pattern nor FSH mean values differed between suckling and non-suckling ewes, the results suggested that LH pulsatile pattern was a major limiting factor for the resumption of normal oestrous cycles. Before regular oestrous cycles resumed other changes in preovulatory LH surges also occurred: (i) they increased in duration and probably in amplitude; (ii) they were preceded by an acceleration in LH pulse frequency and a large decrease in FSH values as in normal cyclic ewes; and (iii) at least in non-suckling ewes they occurred concurrently with a prolactin surge.  相似文献   

13.
The hypothalamic LH-RH content and the concentrations of pituitary and plasma LH were measured at various ages in female rats treated daily with 10 micrograms testosterone propionate or 10 micrograms oestradiol-17beta from birth to Day 15. Persistent vaginal oestrus was induced in all the treated rats. Both hormones significantly reduced the hypothalamic LH-RH content and pituitary and plasma LH concentrations. Hypothalamic LH-RH increased after cessation of treatment but pituitary LH did not return to normal levels. Plasma LH levels were significantly lower than those in control rats. It is concluded that testosterone propionate and oestradiol-17beta (1) have a direct negative feed-back influence on the hypothalamus in the neonatal female rat; (2) alter the normal pattern of plasma and pituitary LH in developing female rats; (3) prevent the cyclic secretion of plasma LH after maturity; and (4) probably cause a chronic impairment in the release of LH-RH.  相似文献   

14.
Exogenous luteinizing hormone-releasing hormone (LH-RH) administered in a wide range of doses (0.2-25 micrograms) to intact male marmoset monkeys induced a marked increased in plasma luteinizing hormone (LH) concentrations. Maximum LH concentrations achieved after injection of LH-RH occurred progressively later as the dosage increased. Bilateral orchidectomy sigificantly enhanced pituitary responsiveness to a standard dose (2.0 microgram) of LH-RH, whereas the introduction of oestradiol-17 beta implants effectively inhibited the responses. LH-RH-induced LH release after gonadectomy (with and without oestradiol-17 beta treatment) was similar in males and females. The use of marmosets for appropriate investigation into the physiological role of LH-RH in controlling LH secretion in primates is proposed.  相似文献   

15.
Patients with chronic liver diseases were evaluated for: 1) the ability of somatostatin to affect the thyrotropin-releasing hormone (TRH) induced growth hormone (GH) rise; 2) the competence of luteinizing-hormone releasing hormone (LH-RH) to release GH; 3) the non-specific releasing effect of TRH and LH-RH on other anterior pituitary (AP) hormones. In 6 patients, infusion of somatostatin (100 micrograms iv bolus + 375 micrograms i.v. infusion) completely abolished the TRH (400 micrograms i.v.)-induced GH rise; in none of 12 patients, of whom 7 were GH-responders to TRH, did LH-RH (100 micrograms i.v.) cause release of GH; 4) finally, LH-RH (12 patients) did not increase plasma prolactin (PRL) and TRH (7 patients) did not evoke a non-specific release of gonadotropins. It is concluded that: 1) abnormal GH-responsiveness to TRH is the unique alteration in AP responsiveness to hypothalamic hormones present in liver cirrhosis; 2) the mechanism(s) subserving the altered GH response to TRH is different from that underlying the TRH-induced GH rise present in another pathologic state i.e. acromegaly, a condition in which the effect of TRH escapes somatostatin suppression and LH-RH evokes GH and PRL release.  相似文献   

16.
Changes in pituitary prolactin responsiveness to TRH during pregnancy   总被引:1,自引:0,他引:1  
Prolactin plasma concentration during pregnancy was determined in rats treated with thyrotropin-releasing hormone (TRH). Day 0 of pregnancy was defined as the day sperm were first found in the vagina. All blood samples were obtained in unanesthetized rats which had previously received a cannula in the right common carotid. On Day 8 of pregnancy, plasma prolactin concentrations reached a peak between 2400 and 0800 hr (lights on from 0600 to 1800 hr). Injection of TRH (1 microgram/kg body wt) via the carotid artery increased plasma prolactin levels within 5 min. The largest increase occurred when TRH was given during the prolactin surge, whereas much smaller effects were found when TRH was given at the beginning or after the end of the surge period. Thus, the sensitivity of the prolactin cell to TRH appears to be the greatest when the secretory activity of the cell is high. It was then determined whether there was any change in the sensitivity of the prolactin cell to TRH after the prolactin surges had disappeared at midpregnancy. Injection of TRH between 1100 and 1200 hr increased prolactin less on Day 12 than on Day 8 of pregnancy. Since placental lactogen (PL) levels in the plasma are high on Day 12 compared to Day 8, and are inhibitory to prolactin secretion, it was reasoned that PL may be the factor which caused the reduced sensitivity to TRH. However, hysterectomy on Day 11 failed to increase the pituitary responsiveness to TRH the next day. In summary, these data indicate that the pituitary responsiveness to factors that stimulate prolactin, such as TRH, varies with relation to the time of pregnancy or presence of the nocturnal surge. What cellular mechanism is responsible for these sensitivity changes is not known.  相似文献   

17.
To study the role of androgens in the control of gonadotropin and prolactin secretion in ther ewe, we have characterized androgen receptors in pituitary cytosol, and investigated the effect of androgens on pituitary hormone release in vivo and in vitro. High affinity, low capacity receptors, with an affinity for methyltrienolone (R1881) greater than 5 alpha-dihydrotestosterone (5 alpha-DHT) greater than testosterone (T) much greater than androstenedione (A4), estradiol-17 beta (E2) and progesterone (P), were identified in pituitary cytosol. Addition of 1 nM 5 alpha-DHT, but not A4, inhibited luteinizing hormone (LH) release from pituitary cells in vitro, induced by 10(10) to 10(-7) M luteinizing hormone releasing hormone (LHRH). The release of follicle-stimulating hormone (FSH) with 10(-9) M LHRH was inhibited when cells were incubated with 1 nM 5 alpha-DHT. 5 alpha-DHT had no effect when higher or lower doses of LHRH were used. In ovariectomized ewes, neither an i.v. injection of 1 mg, nor intracarotid injections of up to 1 mg, 5 alpha-DHT affected plasma LH, FSH or prolactin levels, despite dose-related increases in plasma 5 alpha-DHT levels. Daily or twice daily i.m. injections of 5 mg 5 alpha-DHT in oil did not affect LH or FSH levels, but daily injections of 20 mg significantly reduced plasma LH levels within 4 days and plasma FSH levels within 6 days. Thus, despite the presence of androgen receptors in the ewe pituitary, we conclude that androgens per se are of minimal importance in the regulation of pituitary LH, FSH and prolactin secretion in the ewe. The low binding affinity of A4 and the lack of its effect on hormone secretion in vitro suggests that A4 may act as an estrogen precursor rather than an androgenic hormone. The function of the pituitary androgen receptor remains to be established.  相似文献   

18.
Experiments were conducted to determine the effects of acute hyperprolactinemia (hyperPRL) on the control of luteinizing hormone and follicle-stimulating hormone secretion in male rats. Exposure to elevated levels of prolactin from the time of castration (1 mg ovine prolactin 2 X daily) greatly attenuated the post-castration rise in LH observed 3 days after castration. By 7 days after castration, LH concentrations in the prolactin-treated animals approached the levels observed in control animals. HyperPRL had no effect on the postcastration rise in FSH. Pituitary responsiveness to gonadotropin hormone-releasing hormone (GnRH), as assessed by LH responses to an i.v. bolus of 25 ng GnRH, was only minimally effected by hperPRL at 3 and 7 days postcastration. LH responses were similar at all time points after GnRH in control and prolactin-treated animals, except for the peak LH responses, which were significantly smaller in the prolactin-treated animals. The effects of hyperPRL were examined further by exposing hemipituitaries in vitro from male rats to 6-min pulses of GnRH (5 ng/ml) every 30 min for 4 h. HyperPRL had no effect on basal LH release in vitro, on GnRH-stimulated LH release, or on pituitary LH concentrations in hemipituitaries from animals that were intact, 3 days postcastration, or 7 days postcastration. However, net GnRH-stimulated release of FSH was significantly higher by pituitaries from hyperprolactinemic, castrated males. To assess indirectly the effects of hyperPRL on GnRH release, males were subjected to electrical stimulation of the arcuate nucleus/median eminence (ARC/ME) 3 days postcastration. The presence of elevated levels of prolactin not only suppressed basal LH secretion but reduced the LH responses to electrical stimulation by 50% when compared to the LH responses in control castrated males. These results suggest that acute hyperPRL suppresses LH secretion but not FSH secretion. Although pituitary responsiveness is somewhat attenuated in hyperprolactinemic males, as assessed in vivo, it is normal when pituitaries are exposed to adequate amounts of GnRH in vitro. Thus, the effects of hyperPRL on pituitary responsiveness appear to be minimal, especially if the pituitary is exposed to an adequate GnRH stimulus. The suppression of basal LH secretion in vivo most likely reflects inadequate endogenous GnRH secretion. The greatly reduced LH responses after electrical stimulation in hyperprolactinemic males exposed to prolactin suggest further that hyperPRL suppresses GnRH secretion.  相似文献   

19.
To study the effect of human beta-endorphin (beta h-End) on pituitary response to gonadotropin-releasing hormone (LH-RH) and thyrotropin-releasing hormone (TRH) in vitro, we used dispersed rat pituitary cells. When beta h-End (10(-7) M) was simultaneously added along with LH-RH, its stimulatory effect was blocked and naloxone (NAL, 10(-5) M) did not reverse the beta h-End inhibitory effect. NAL alone elicited an increase in LH release, but in the presence of both stimulants (LH-RH and NAL), LH secretion was lower than that observed with LH-RH alone. TRH stimulatory activity of TSH and PRL secretion was blunted by the presence of beta h-End (10(-7) M) and was not reversed by NAL (10(-5) and 10(-3) M). These data suggest that beta h-End directly blocks the LH, TSH- and PRL-secreting activity of both LH-RH and TRH at the pituitary level. This beta h-End effect is not reversed by the specific opiate receptor blocker NAL.  相似文献   

20.
In sheep the basal concentration of LH in jugular vein plasma was significantly higher during the first 50 days of gestation in late pregnancy or at parturition. The pituitary response to a single i.v. injection of 200 microng synthetic LH-RH was determined at different stages of gestation and compared with that of anoestrous and cyclic sheep. Pituitary response to LH-RH decreased progressively with advancing gestation: by 56 days after mating the response had declined to 35% and by parturition to 14% of the value in anoestrous sheep. The pituitary response to LH-RH increased after parturition and the pattern of recovery differed in non-lactating and lactating sheep. By 63 days postpartum the response to LH-RH in non-lactating and lactating animals had returned to values similar to those in sheep during anoestrus and sheep during the luteal phase of the oestrous cycle. A decrease in pituitary responsiveness during pregnancy was associated with a decrease in pituitary content of LH. The quantity of LH released in response to a standard injection of LH-RH was linearly related to pituitary LH content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号