首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 338 毫秒
1.
Zhu X  Xie X  Liao Q  Wang Y  Lee D 《Bioresource technology》2011,102(18):8696-8699
In the present study, the photo-hydrogen production performances by Rhodopseudomonas palustris CQK 01 growing from the inoculated cells with ultra-sonication pretreatment (R. palustris CQK 01-USP) were experimentally investigated in batch culture and compared with that without pretreatment (R. palustris CQK 01-NP). It was found that the ultra-sonication pretreatment modified membrane morphology and broke up part of the cells, resulting in improvement of membrane permeability and bacterial activities and hence, helping the improvement of hydrogen production. The hydrogen production rate, hydrogen yield and energy conversion efficiency with R. palustris CQK 01-USP were increased to be nearly 2 times higher than that with R. palustris CQK 01-NP. The parametric study showed that under the conditions of initial glucose concentration 50 mmol/l, inoculum size 12%, illumination wavelength 590 nm, the photobioreactor with R. palustris CQK 01-USP obtained the optimal hydrogen production rate 0.54 mmol/l/h, hydrogen yield 1.2 mol-H2/mol-glucose and energy conversion efficiency 9.03%.  相似文献   

2.
This study focuses on the exploitation of cheese whey as a source for hydrogen and methane, in a two-stage continuous process. Mesophilic fermentative hydrogen production from undiluted cheese whey was investigated at a hydraulic retention time (HRT) of 24 h. Alkalinity addition (NaHCO3) or an automatic pH controller were used, to maintain the pH culture at a constant value of 5.2. The hydrogen production rate was 2.9 ± 0.2 L/Lreactor/d, while the yield of hydrogen produced was approximately 0.78 ± 0.05 mol H2/mol glucose consumed, with alkalinity addition, while the respective values when using pH control were 1.9 ± 0.1 L/Lreactor/d and 0.61 ± 0.04 mol H2/mol glucose consumed. The corresponding yields of hydrogen produced were 2.9 L of H2/L cheese whey and 1.9 L of H2/L cheese whey, respectively. The effluent from the hydrogenogenic reactor was further digested to biogas in a continuous mesophilic anaerobic bioreactor. The anaerobic digester was operated at an HRT of 20d and produced approximately 1 L CH4/d, corresponding to a yield of 6.7 L CH4/L of influent. The chemical oxygen demand (COD) elimination reached 95.3% demonstrating that cheese whey could be efficiently used for hydrogen and methane production, in a two-stage process.  相似文献   

3.
The effects of the hydraulic retention time (HRT = 8, 10, 12 or 16.7 h) and glucose concentration (30, 40 or 50 g/L) on the production of hydrogen and butyrate by an immobilized Clostridium tyrobutyricum culture, grown under continuous culturing conditions, were evaluated. With 30 g/L glucose, the higher HRTs tested led to greater butyrate concentrations in the culture, i.e., 9.3 g/L versus 12.9 g/L with HRTs of 8 h and 16.7 h, respectively. In contrast, higher biogas and hydrogen production rates were generally seen when the HRT was lower. Experiments with different glucose concentrations saw a significant amount of glucose washed out when 50 g/L was used, the highest being 22.7 g/L when the HRT was 16.7 h. This study found the best conditions for the continuous production of hydrogen and butyric acid by C. tyrobutyricum to be with an HRT of 12 h and a glucose concentration of 50 g/L, respectively.  相似文献   

4.
Won SG  Lau AK 《Bioresource technology》2011,102(13):6876-6883
In this study, a series of tests were conducted in a 6 L anaerobic sequencing batch reactor (ASBR) to investigate the effect of pH, hydraulic retention time (HRT) and organic loading rate on biohydrogen production at 28 °C. Sucrose was used as the main substrate to mimic carbohydrate-rich wastewater and inoculum was prepared from anaerobic digested sludge without pretreatment. The reactor was operated initially with nitrogen sparging to form anaerobic condition. Results showed that methanogens were effectively suppressed. The optimum pH value would vary depending on the HRT. Maximum hydrogen production rate and yield of 3.04 L H2/L reactor d and 2.16 mol H2/mol hexose respectively were achieved at pH 4.5, HRT 30 h, and OLR 11.0 kg/m3 d. Two relationships involving the propionic acid/acetic acid ratio and ethanol/acetic acid ratio were derived from the analysis of the metabolites of fermentation. Ethanol/acetic acid ratio of 1.25 was found to be a threshold value for higher hydrogen production.  相似文献   

5.
Cellulosic plant and waste materials are potential resources for fermentative hydrogen production. In this study, hydrogen producing, cellulolytic cultures were enriched from compost material at 52, 60 and 70 °C. Highest cellulose degradation and highest H2 yield were 57% and 1.4 mol-H2 mol-hexose−1 (2.4 mol-H2 mol-hexose-degraded−1), respectively, obtained at 52 °C with the heat-treated (80 °C for 20 min) enrichment culture. Heat-treatments as well as the sequential enrichments decreased the diversity of microbial communities. The enrichments contained mainly bacteria from families Thermoanaerobacteriaceae and Clostridiaceae, from which a bacterium closely related to Thermoanaerobium thermosaccharolyticum was mainly responsible for hydrogen production and bacteria closely related to Clostridium cellulosi and Clostridium stercorarium were responsible for cellulose degradation.  相似文献   

6.
Whang LM  Lin CA  Liu IC  Wu CW  Cheng HH 《Bioresource technology》2011,102(18):8378-8383
This study evaluates the microbial metabolism and energy demand in fermentative biohydrogen production using Clostridium tyrobutyricum FYa102 at different hydraulic retention times (HRT) over a period of 1-18 h. The hydrogen yield shows a positive correlation with the butyrate yield, the B/A ratio, and the YH2/2(YHAc+YHBu) ratio, but a negative correlation with the lactate yield. A decrease in HRT, which is accompanied by an increased biomass growth, tends to decrease the B/A ratio, due presumably to a higher energy demand for microbial growth. The production of lactate at a low HRT, however, may involve an unfavorable change in e equiv distribution to result in a reduced hydrogen production. Finally, the relatively high hydrogen yields observed in the bioreactor with the peptone addition may be ascribed to the utilization of peptone as an additional energy and/or amino-acid source, thus reducing the glucose demand for biomass growth during the hydrogen production process.  相似文献   

7.
Liu Q  Zhang X  Yu L  Zhao A  Tai J  Liu J  Qian G  Xu ZP 《Bioresource technology》2011,102(9):5411-5417
This research for the first time investigated hydrogen production from the fresh leachate originated from municipal solid wastes. We found that fermentation of the leachate generated H2 and was very much enhanced in the presence of extra phosphate in the batch reactor. The continuous expanded granular sludge bed (EGSB) reactor started to generate H2 at day 20 and continued to 176 days with 120 mg/l of extra phosphate present. The highest chemical oxygen demand (COD) removal efficiency (66.9%) was achieved at liquid up-flow velocity of 3.7 m/h and hydraulic retention time of 12 h. Under proposed optimal operation conditions, the mean H2 production rate reached up to 2155 ml/(l day). We also found that over 80% liquid metabolites were acetic acid and ethanol, suggesting the ethanol-type fermentation was dominant in the bioreactor. These findings indicate that the fresh leachate can be used as the source for continuous hydrogen production.  相似文献   

8.
Lee CM  Hung GJ  Yang CF 《Bioresource technology》2011,102(18):8350-8356
In this study, a lab-scale serial photobioreactor composed of three column reactors was constructed and continuously operated to investigate several parameters influencing photohydrogen production when using the synthetic wastewater and the anaerobic hydrogen fermentation effluents as the influents. The results indicated that better hydrogen production rate was obtained when the serial photobioreactor was operated under cellular recycling at a short HRT of 8 h. The serial photobioreactor maintained high hydrogen content ca. 80% in the produced gas and 0.4× dilution ratio was the suitable ratio for hydrogen production. When the photobioreactor fed with the real wastewater (Effluent 1) containing 100 mg/L NH4Cl, Column 1 reactor successfully reduced ammonia concentration to about 60 mg/L for cell synthesis, resulting in a steady hydrogen production in the following two column reactors. The average hydrogen production rate was 205 mL-H2/L/d.  相似文献   

9.
Crude glycerol is a major byproduct of the biodiesel industry; previous research has proved the feasibility of producing docosahexaenoic acid (DHA, 22:6 n − 3) through fermentation of the algae Schizochytrium limacinum on crude glycerol. The objective of this work is to investigate the cell growth kinetics, substrate utilization efficiency, and DHA production of the algae through a continuous culture. Steady-state biomass yield, biomass productivity, growth yield on glycerol, specific glycerol consumption rate, and fatty acid composition were investigated within the range of dilution rate (D) from 0.2 to 0.6 day−1, and the range of feed crude glycerol concentration (S0) from 15 to 120 g/L. The maximum specific growth rate was determined as 0.692 day−1. The cells had a true growth yield of 0.283 g/g but with a relatively high maintenance coefficient (0.2216 day−1). The highest biomass productivity of 3.88 g/L-day was obtained at D = 0.3 day−1 and S0 = 60 g/L, while the highest DHA productivity (0.52 g/L-day) was obtained at D = 0.3 day−1 and S0 = 90 g/L due to the higher DHA content at S0 = 90 g/L. The biomass and DHA productivity of the continuous culture was comparable to those of batch culture, while lower than the fed-batch culture, mainly because of the lower DHA content obtained by the continuous culture. Overall, the results show that continuous culture is a powerful tool to investigate the cell growth kinetics and physiological behaviors of the algae growing on biodiesel-derived crude glycerol.  相似文献   

10.
Fu Z  Zhang Y  Wang X 《Bioresource technology》2011,102(4):3748-3753
In this study, the performance of the anoxic filter bed and biological wriggle bed-ozone biological aerated filter (AFB-BWB-O3-BAF) process treating real textile dyeing wastewater was investigated. After more than 2 month process operation, the average effluent COD concentration of the AFB, BWB, O3-BAF were 704.8 mg/L, 294.6 mg/L and 128.8 mg/L, with HRT being 8.1-7.7 h, 9.2 h and 5.45 h, respectively. Results showed that the effluent COD concentration of the AFB decreased with new carriers added and the average removal COD efficiency was 20.2%. During operation conditions, HRT of the BWB and O3-BAF was increased, resulting in a decrease in the effluent COD concentration. However, on increasing the HRT, the COD reduction capability expressed by the unit carrier COD removal loading of the BWB reactor increased, while that of the O3-BAF reactor decreased. This study is a beneficial attempt to utilize the AFB-BWB-O3-BAF combine process for textile wastewater treatment.  相似文献   

11.
In this study, an aldehyde dehydrogenase (ALDH) was over-expressed in Klebsiella pneumoniae for simultaneous production of 3-hydroxypropionic acid (3-HP) and 1,3-propanediol (1,3-PDO). Various genes encoding ALDH were cloned and expressed in K. pneumoniae, and expression of Escherichia colialdH resulted in the highest 3-HP titer in anaerobic cultures in shake flasks. Anaerobic fed-batch culture of this recombinant strain was further performed in a 5-L reactor. The 3-HP concentration and yield reached 24.4 g/L and 0.18 mol/mol glycerol, respectively, and at the same time 1,3-PDO achieved 49.3 g/L with a yield of 0.43 mol/mol in 24 h. The overall yield of 3-HP plus 1,3-PDO was 0.61 mol/mol. Over-expression of the E. coli AldH also reduced the yields of by-products except for lactate. This study demonstrated the possibility of simultaneous production of 3-HP and 1,3-PDO by K. pneumoniae under anaerobic conditions without supply of vitamin B12.  相似文献   

12.
A novel polyethylene glycol (PEG) gel was fabricated and used as a carrier to immobilize Clostridium sp. LS2 for continuous hydrogen production in an upflow anaerobic sludge blanket (UASB) reactor. Palm oil mill effluent (POME) was used as the substrate carbon source. The optimal amount of PEG-immobilized cells for anaerobic hydrogen production was 12% (w/v) in the UASB reactor. The UASB reactor containing immobilized cells was operated at varying hydraulic retention times (HRT) that ranged from 24 to 6 h at 3.3 g chemical oxygen demand (COD)/L/h organic loading rate (OLR), or at OLRs that ranged from 1.6 to 6.6 at 12 h HRT. The best volumetric hydrogen production rate of 336 mL H2/L/h (or 15.0 mmol/L/h) with a hydrogen yield of 0.35 L H2/g CODremoved was obtained at a HRT of 12 h and an OLR of 5.0 g COD/L/h. The average hydrogen content of biogas and COD reduction were 52% and 62%, respectively. The major soluble metabolites during hydrogen fermentation were butyric acid followed by acetic acid. It is concluded that the PEG-immobilized cell system developed in this work has great potential for continuous hydrogen production from real wastewater (POME) using the UASB reactor.  相似文献   

13.
This study evaluates a two-stage bioprocess for recovering bioenergy in the forms of hydrogen and methane while treating organic residues of ethanol fermentation from tapioca starch. A maximum hydrogen production rate of 0.77 mmol H2/g VSS/h can be achieved at volumetric loading rate (VLR) of 56 kg COD/m3/day. Batch results indicate that controlling conditions at S0/X0 = 12 with X0 = 4000 mg VSS/L and pH 5.5-6 are important for efficient hydrogen production from fermentation residues. Hydrogen-producing bacteria enriched in the hydrogen bioreactor are likely utilizing lactate and acetate for biohydrogen production from ethanol-fermentation residues. Organic residues remained in the effluent of hydrogen bioreactor can be effectively converted to methane with a rate of 0.37 mmol CH4/g VSS/h at VLR of 8 kg COD/m3/day. Approximately 90% of COD in ethanol-fermentation residues can be removed and among that 2% and 85.1% of COD can be recovered in the forms of hydrogen and methane, respectively.  相似文献   

14.
Yang CF  Lee CM 《Bioresource technology》2011,102(9):5418-5424
This study used a DNA recombination method to knock out the poly-β-hydroxybutyrate (PHB) synthesis gene phbC in the photosynthetic bacterium Rhodopseudomonas palustris WP3-5. The experimental results indicated that the mutant strain Rps. palustris M23 could be successfully screened. Fluorescent observation with Nile blue staining showed no significant PHB granule accumulation in the mutant cells. Batch mode experiments using acetic acid as a carbon source revealed a 29.1% and 25.9% hydrogen gas content from M23 and WP3-5, respectively. However, this trend did not appear when using propionic acid as carbon source. Under continuous operation, the hydrogen gas content from M23 could be maintained above 72%. The average hydrogen production rates of the WP3-5 and M23 strains were 264 mL-H2/L/day and 457 mL-H2/L/day, respectively. The total biogas volume collected from M23 was 1.7 times higher than that from the wild type.  相似文献   

15.
A thermophilic anaerobic bacterium Clostridium sp. TCW1 was isolated from dairy cow dung and was used to produce hydrogen from cellulosic feedstock. Extracellular cellulolytic enzymes produced from TCW1 strain were identified as endoglucanases (45, 53 and 70 kDa), exoglucanase (70 kDa), xylanases (53 and 60 kDa), and β-glucosidase (45 kDa). The endoglucanase and xylanase were more abundant. The optimal conditions for H2 production and enzyme production of the TCW1 strain were the same (60 °C, initial pH 7, agitation rate of 200 rpm). Ten cellulosic feedstock, including pure or natural cellulosic materials, were used as feedstock for hydrogen production by Clostridium strain TCW1 under optimal culture conditions. Using filter paper at 5.0 g/L resulted in the most effective hydrogen production performance, achieving a H2 production rate and yield of 57.7 ml/h/L and 2.03 mol H2/mol hexose, respectively. Production of cellulolytic enzyme activities was positively correlated with the efficiency of dark-H2 fermentation.  相似文献   

16.
Han H  Cui M  Wei L  Yang H  Shen J 《Bioresource technology》2011,102(17):7903-7909
The effects of hematite nanoparticles concentration (0-1600 mg/L) and initial pH (4.0-10.0) on hydrogen production were investigated in batch assays using sucrose-fed anaerobic mixed bacteria at 35 °C. The optimum hematite nanoparticles concentration with an initial pH 8.48 was 200 mg/L, with the maximum hydrogen yield of 3.21 mol H2/mol sucrose which was 32.64% higher than the blank test. At 200 mg/L hematite nanoparticles concentration, further initial pH optimization experiments indicated that at pH 6.0 the maximum hydrogen yield reached to 3.57 mol H2/mol sucrose and hydrogen content was 66.1%. The slow release of hematite nanoparticles had been recorded by transmission electron microscopy (TEM). In addition, TEM analysis indicated that the hematite nanoparticles can affect the shape of bacteria, namely, its length increased from ca. 2.0-3.6 μm to ca. 2.6-5.6 μm, and width became narrower.  相似文献   

17.
Batch, fed-batch, and continuous A-B-E fermentations were conducted and compared with pH controlled at 4.5, the optimal range for solvent production. While the batch mode provides the highest solvent yield, the continuous mode was preferred in terms of butanol yield and productivity. The highest butanol yield and productivity found in the continuous fermentation at dilution rate of 0.1 h−1 were 0.21 g-butanol/g-glucose and 0.81 g/L/h, respectively. In the continuous and fed-batch fermentation, the time needed for passing acidogenesis to solventogenesis was an intrinsic hindrance to higher butanol productivity. Therefore, a low dilution rate is suggested for the continuous A-B-E fermentation, while the fed-batch mode is not suggested for solvent production. While 3:6:1 ratio of acetone, butanol, and ethanol is commonly observed from A-B-E batch fermentation by Clostridium acetobutylicum when the pH is uncontrolled, up to 94% of the produced solvent was butanol in the chemostat with pH controlled at 4.5.  相似文献   

18.
The objective of this study was to determine the effects of light intensity and duration (photoperiod) on the sporulation (discharge of primary conidia) and conidia germination (from non-infective primary conidia to infective capilliconidia) of Neozygites floridana isolates from Tetranychus urticae originating from Norway and Brazil. Two light intensities (40 and 208 μmol m−2 s−1), three photoperiods (24 h of continuous light (24 h D), 12 h of darkness followed by 12 h of light (12 h D: 12 h L) and 24 h of continuous darkness (24 h D)) and two temperatures (18 °C and 23 °C) were tested. The fungus produced similar amounts of primary conidia and capilliconidia at 12 h D:12 h and 24 h D, indicating that the fungus discharges almost all of its conidia during the first 12 h of darkness. Light had less of an effect on the production of primary conidia than on capilliconidia formation. At 24 h L, capilliconidia formation was significantly lower for all tested light intensities, temperatures and isolates compared to 12 h D:12 h L and 24 h D. At both light intensities, 24 h L resulted in a significantly lower capilliconidia formation for the Norwegian isolate compared to the Brazilian isolate. Our data suggest that, even though 24 h L reduced sporulation, some capilliconidia formation may occur at the low light intensities found on the underside of strawberry leaves during parts of the day as well as the top of a non-shaded strawberry leaf during the dim evening and morning hours in the tropics and during the dim, long summer days in temperate regions.  相似文献   

19.
A newly isolated indigenous bacterium Pseudomonas sp. CL3 was able to produce novel cellulases consisting of endo-β-1,4-d-glucanase (80 and 100 kDa), exo-β-1,4-d-glucanase (55 kDa) and β-1,4-d-glucosidase (65 kDa) characterized by enzyme assay and zymography analysis. In addition, the CL3 strain also produced xylanase with a molecular weight of 20 kDa. The optimal temperature for enzyme activity was 50, 45, 45 and 55 °C for endo-β-1,4-d-glucanase, exo-β-1,4-d-glucanase, β-1,4-d-glucosidase and xylanase, respectively. All the enzymes displayed optimal activity at pH 6.0. The cellulases/xylanase could hydrolyze cellulosic materials very effectively and were thus used to hydrolyze natural agricultural waste (i.e., bagasse) for clean energy (H2) production by Clostridiumpasteurianum CH4 using separate hydrolysis and fermentation process. The maximum hydrogen production rate and cumulative hydrogen production were 35 ml/L/h and 1420 ml/L, respectively, with a hydrogen yield of around 0.96 mol H2/mol glucose.  相似文献   

20.
Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108   总被引:1,自引:0,他引:1  
Zhao X  Xing D  Fu N  Liu B  Ren N 《Bioresource technology》2011,102(18):8432-8436
A fermentative hydrogen-producing strain, RZF-1108, was isolated from a biohydrogen reactor, and identified as Clostridium beijerinckii on the basis of the 16S rRNA gene analysis and physiobiochemical characteristics. The effects of culture conditions on hydrogen production by C. beijerinckii RZF-1108 were investigated in batch cultures. The hydrogen production and growth of strain RZF-1108 were highly dependent on temperature, initial pH and substrate concentration. Yeast extract was a favorable nitrogen source for hydrogen production and growth of RZF-1108. Hydrogen production corresponded to cell biomass yield in different culture conditions. The maximum hydrogen evolution, yield and production rate of 2209 ml H2/l medium, 1.97 mol H2/mol glucose and 104.20 ml H2/g CDW h−1 were obtained at 9 g/l of glucose, initial pH of 7.0, inoculum volume of 8% and temperature of 35 °C, respectively. These results demonstrate that C. beijerinckii can efficiently produce H2, and is another model microorganism for biohydrogen investigations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号