首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 105 毫秒
1.
We have developed a novel radiogallium (Ga)–DOTA-based bivalent peptidic ligand targeting a chemokine receptor, CXCR4, for tumor imaging. A CXCR4 imaging probe with two CXCR4 antagonists (Ac-TZ14011) on Ga–DOTA core, Ga–DOTA-TZ2, was synthesized, and the affinity and binding to CXCR4 was evaluated in CXCR4 expressing cells in vitro. The affinity of Ga–DOTA-TZ2 for CXCR4 was 20-fold greater than the corresponding monovalent probe, Ga–DOTA-TZ1. 67Ga–DOTA-TZ2 showed the significantly higher accumulation in CXCR4-expressing tumor cells compared with 67Ga–DOTA-TZ1, suggesting the bivalent effect enhances its binding to CXCR4. The incorporation of two CXCR4 antagonists to Ga–DOTA could be effective in detecting CXCR4-expressing tumors.  相似文献   

2.
Development of CXCR4-specific ligands is an important issue in chemotherapy of HIV infection, cancer metastasis, and rheumatoid arthritis, and numerous potential ligands have been developed to date. However, it is difficult to assess their binding mode and specificity because of uncertainties in the structure of the CXCR4-ligand complexes. To address this problem, we have synthesized fluorophore labeled Ac-TZ14011, which is derived from T140, a powerful CXCR4 antagonist. Binding of Ac-TZ14011 to CXCR4 on the cell membrane was observed by fluorescence microscope, and analysis of the binding data produced IC 50 values of several ligands comparable to those obtained in RI-based assays. This fluorescence-based assay is applicable to explore new pharmacophores of CXCR4-specific ligands with high-throughput screening and also to screening of the other GPCR binding ligands.  相似文献   

3.
The antagonistic Ac-TZ14011 peptide, which binds to the chemokine receptor 4, has been labeled with a multifunctional single attachment point reagent that contains a DTPA chelate and a fluorescent dye with Cy5.5 spectral properties. Flow cytometry and confocal microscopy showed that the bimodal labeled peptide gave a specific receptor binding that is similar to monofunctionalized peptide derivatives. Therefore, the newly developed bimodal peptide derivative can be used in multimodal imaging applications.  相似文献   

4.

Background

The CXCR4 chemokine receptor regulates migration and homing of cancer cells to specific metastatic sites. Determination of the CXCR4 receptor status will provide predictive information for disease prognosis and possible therapeutic intervention. However, previous attempts to localize CXCR4 using poorly characterized mouse monoclonal or rabbit polyclonal antibodies have produced predominant nuclear and occasional cytoplasmic staining but did not result in the identification of bona fide cell surface receptors.

Methodology/Principal Findings

In the present study, we extensively characterized the novel rabbit monoclonal anti-CXCR4 antibody (clone UMB-2) using transfected cells and tissues from CXCR4-deficient mice. Specificity of UMB-2 was demonstrated by cell surface staining of CXCR4-transfected cells; translocation of CXCR4 immunostaining after agonist exposure; detection of a broad band migrating at M r 38,000–43,000 in Western blots of homogenates from CXCR4-expressing cells; selective detection of the receptor in tissues from CXCR4+/+ but not from CXCR4−/− mice; and abolition of tissue immunostaining by preadsorption of UMB-2 with its immunizing peptide. In formalin-fixed, paraffin-embedded human tumor tissues, UMB-2 yielded highly effective plasma membrane staining of a subpopulation of tumor cells, which were often heterogeneously distributed throughout the tumor. A comparative analysis of the mouse monoclonal antibody 12G5 and other frequently used commercially available antibodies revealed that none of these was able to detect CXCR4 under otherwise identical conditions.

Conclusions/Significance

Thus, the rabbit monoclonal antibody UMB-2 may prove of great value in the assessment of the CXCR4 receptor status in a variety of human tumors during routine histopathological examination.  相似文献   

5.
Breast tumors are typically heterogeneous and contain diverse subpopulations of tumor cells with differing phenotypic properties. Planar cultures of cancer cell lines are not viable models of investigation of cell-cell and cell-matrix interactions during tumor development. This article presents an in vitro coculture-based 3-dimensional heterogeneous breast tumor model that can be used in drug resistance and drug delivery investigations. Breast cancer cell lines of different phenotypes (MDAMB231, MCF7, and ZR751) were cocultured in a rotating wall vessel bioreactor to form a large number of heterogeneous tumoroids in a single cell culture experiment. Cells in the rotating vessels were labeled with Cell Tracker fluorescent probes to allow for time course fluorescence microscopy to monitor cell aggregation. Histological sections of tumoroids were stained with hematoxylin and eosin, progesterone receptor, E-cadherin (E-cad), and proliferation marker ki67. In vitro tumoroids developed in this study recapture important features of the temporal-spatial organization of solid tumors, including the presence of necrotic areas at the center and higher levels of cell division at the tumor periphery. E-cad-positive MCF7 cells form larger tumoroids than E-cad-negative MDAMB231 cells. In heterogeneous tumors, the irregular surface roughness was mainly due to the presence of MDAMB231 cells, whereas MCF7 cells formed smooth surfaces. Moreover, when heterogeneous tumoroids were placed onto collagen gels, highly invasive MDAMB231 cell-rich surface regions produced extensions into the matrix, whereas poorly invasive MCF7 cells did not. The fact that one can form a large number of 1-mm tumoroids in 1 coculture attests to the potential use of this system at high-throughput investigations of cancer drug development and drug delivery into the tumor.  相似文献   

6.
The expression of the chemokine receptor CXCR4 in tumors is associated with tumor aggressiveness and poor prognosis for the patient and contributes to metastatic seeding. Therefore it is of high interest to find a specific PET tracer for the imaging of CXCR4 expression in tumors. The aim of this study was the synthesis, (68)Ga labeling and first evaluation of DOTA-4-FBn-TN14003 as a potential PET tracer for this purpose. DOTA-4-FBn-TN14003 was synthesized using solid phase peptide synthesis and radiolabeling of this versatile precursor was performed with (68)Ga, which was obtained from a (68)Ge/(68)Ga generator. (68)Ga-DOTA-4-FBn-TN14003 was reproducibly obtained in isolated radiochemical yields of 72.5±4.9% with an excellent radiochemical purity of >99.5%. Specific activities of up to 29.8±3.1 GBq/μmol were achieved. In competition binding assays with SDF-1α, human T cell lymphoma Jurkat cells expressed high levels of CXCR4 whereas human breast cancer MDA-MB-231 cells expressed significantly lower levels of this chemokine receptor. The inhibition constants (IC(50)) of Ga-DOTA-4-FBn-TN14003 and 4-FBn-TN14003 to CXCR4 were determined in a competition assay against (125)I-SDF-1α using Jurkat as well as MDA-MB-231 cells. The IC(50) values of Ga-DOTA-4-FBn-TN14003 (1.99±0.31 nM) and 4-FBn-TN14003 (4.07±1.00 nM) proved to be comparable, indicating negligible influence of the metal complex. These results suggest (68)Ga-DOTA-4-FBn-TN14003 as a promising agent for the imaging of CXCR4 expression in tumors and metastases.  相似文献   

7.
Aberrant expression of CXCR4 in human breast cancer correlates with metastasis to tissues secreting CXCL12. To understand the mechanism by which CXCR4 mediates breast cancer metastasis, MCF-7 breast carcinoma cells were transduced to express wild-type CXCR4 (CXCR4WT) or constitutively active CXCR4 (CXCR4ΔCTD) and analyzed in two-dimensional (2D) cultures, three-dimensional reconstituted basement membrane (3D rBM) cultures, and mice using intravital imaging. Two-dimensional cultures of MCF-7 CXCR4ΔCTD cells, but not CXCR4WT, exhibited an epithelial-to-mesenchymal transition (EMT) characterized by up-regulation of zinc finger E box–binding homeobox 1, loss of E-cadherin, up-regulation of cadherin 11, p120 isoform switching, activation of extracellular signal-regulated kinase 1/2, and matrix metalloproteinase-2. In contrast to the 2D environment, MCF-7 CXCR4WT cells cultured in 3D rBM exhibited an EMT phenotype, accompanied by expression of CXCR2, CXCR7, CXCL1, CXCL8, CCL2, interleukin-6, and granulocyte–macrophage colony stimulating factor. Dual inhibition of CXCR2 with CXCR4, or inhibition of either receptor with inhibitors of mitogen-activated protein kinase 1 or phosphatidylinositol 3-kinase, reversed the aggressive phenotype of MCF-7 CXCR4-expressing or MDA-MB-231 cells in 3D rBM. Intravital imaging of CXCR4-expressing MCF-7 cells revealed that tumor cells migrate toward blood vessels and metastasize to lymph nodes. Thus CXCR4 can drive EMT along with an up-regulation of chemokine receptors and cytokines important in cell migration, lymphatic invasion, and tumor metastasis.  相似文献   

8.
In vivo cell-death imaging is still a challenging issue. Until now, only (99m)Tc-labeled HYNIC-rh-annexin A5 has been extensively studied in clinical trials. In the ongoing search for an alternative imaging agent, we synthesized a series of fluorescent zinc-cyclen complexes as annexin A5 mimics and studied structural variations on the uptake behavior of cells undergoing apoptosis/necrosis. The number of cyclen chelators was varied and the spacer separating cyclen from the central scaffold was modified. Five zinc-cyclen complexes were labeled with fluorescein for flow cytometric studies and one was labeled with (18)F for in vivo applications. Jurkat cells were treated with staurosporine to induce apoptosis/necrosis, incubated with the fluorescein-labeled zinc complexes and analyzed them by flow cytometry. Fluorescent annexin A5 and propidium iodide were applied as reference dyes. Flow cytometry revealed greater accumulation of zinc-cyclen complexes in staurosporine treated cells. The uptake was contingent on the presence of zinc and the fluorescence intensity was dependent on the number of zinc-cyclen groups. Confocal laser scanning microscopy showed the {bis[Zn(cyclen)]}(4+) complex distributed throughout the cytosol different to annexin A5. Owing to the structural similarity of the bis-cyclen ligands with CXCR4 binding bis-cyclam derivatives the zinc-cyclen complex uptake was challenged with the meta derivative of AMD3100. Lack of uptake depletion in staurosporine treated cells ruled out measurable CXCR4 interaction. PET imaging using the (18)F labeled zinc-cyclen complex revealed significantly higher uptake in an irradiated Dunning R3327-AT1 prostate tumor as compared to the contralateral control tumor. PET imaging of a HelaMatu tumor model additionally showed an increased uptake after taxol treatment. It could be demonstrated that the fluorescent zinc-cyclen complexes offer potential as new agents for flow cytometry and microscopic imaging of cell death. In addition, the (18)F labeled analogue holds promise for in vivo applications providing informations about cell death after radiation therapy and cytostatic drug treatment.  相似文献   

9.
Polypyrrole-based polyamides are used as sequence-specific DNA probes. However, their cellular uptake and distribution are affected by several factors and have not been extensively studied in vivo. Here, we generated a series of fluorescence-conjugated polypyrrole compounds and examined their cellular distribution using live zebrafish and cultured human cells. Among the evaluated compounds, Py3-FITC was able to visualize collagen-rich tissues, such as the jaw cartilage, opercle and bulbus arteriosus, in early-stage living zebrafish embryos. Then, we stained cultured human cells with Py3-FITC and found that the staining became more intense as the amount of collagen was increased. In addition, Py3-FITC-stained HR cells, which represent a type of ionocyte on the body surface of living zebrafish embryos. Py3-FITC has low toxicity, and collagen-rich tissues and ionocytes can be visualized when soaked in Py3-FITC solution. Therefore, Py3-FITC may be a useful live imaging tool for detecting changes in collagen-rich tissue and ionocytes, including their mammalian analogues, during both normal development and disease progression.  相似文献   

10.
《Phytomedicine》2014,21(11):1310-1317
PurposeC-X-C chemokine receptor type 4 (CXCR4) signaling has been demonstrated to be involved in cancer invasion and migration; therefore, CXCR4 antagonist can serve as an anti-cancer drug by preventing tumor metastasis. This study aimed to identify the CXCR4 antagonists that could reduce and/or inhibit tumor metastasis from natural products.Methods and resultsAccording to the molecular docking screening, we reported here silibinin as a novel CXCR4 antagonist. Biochemical characterization showed that silibinin blocked chemokine ligand 12 (CXCL12)-induced CXCR4 internalization by competitive binding to CXCR4, therefore inhibiting downstream intracellular signaling. In human breast cancer cells MDA-MB-231, which expresses high levels of CXCR4, inhibition of CXCL12-induced chemomigration can be found under silibinin treatment. Overexpression of CXCL12 sensitized MDA-MB-231 cells to the inhibition of silibinin, which was abolished by CXCR4 knockdown. The inhibition of silibinin was also observed in MCF-7/CXCR4 cells rather than MCF-7 cells that express low level of CXCR4.ConclusionsOur work demonstrated that silibinin is a novel CXCR4 antagonist that may have potential therapeutic use for prevention of tumor metastasis.  相似文献   

11.
BACKGROUND: A protocol to measure a wide range of Bcl-2 protein expression using quantitative fluorescence cytometry (QFCM) in different cell types was developed for use with flow cytometry. Bcl-2 measurements obtained by flow cytometry were correlated with Western blot Bcl-2 measurements to confirm specificity of the Bcl-2-FITC staining. This protocol was applied to measure absolute levels of Bcl-2 protein in different tumor cell lines including Bcl-2-transfected breast carcinoma cell lines and in peripheral blood lymphocytes (PBL). METHODS: HL-60, K562, DOHH2, Jurkat, MDA435/LCC6, MCF7 cell lines, and PBL derived from normal donors were fixed, permeabilized, stained with anti-Bcl-2-FITC antibody and evaluated by QFCM. In parallel, the same cells were evaluated for Bcl-2 protein expression by Western blot analysis. Mitochondrial localization of anti-Bcl-2-FITC antibody inside cells was confirmed using fluorescence imaging microscopy. RESULTS: Bcl-2 expression in different cell types could be accurately quantified based on antibody-binding capacity (ABC) ranging from 12.6 x 10(3) antibody-binding sites in HL-60 cells to 1.64 x 10(6) antibody-binding sites in a Bcl-2-transfected MDA435/LCC6 clone. The data from flow cytometry analysis correlated well with Western analysis (R(2) = 0.78). Bcl-2-FITC staining colocalized with dyes specific for mitochondria. CONCLUSIONS: The Bcl-2 staining protocol described here was shown to be specific, sensitive, and it was able to provide higher resolution as well as more reproducible quantitation of Bcl-2 protein content in cells when compared with Western blot methods. Quantitation of Bcl-2 content in cells by QFCM may be useful for monitoring Bcl-2 expression in cells undergoing various treatments in vitro and in vivo.  相似文献   

12.
目的:研究滤泡辅助性T细胞(T follicular helper cells,Tfh)在免疫性血小板减少性紫癜(immune thrombocytopenic purpura,ITP)患者的表达并探讨其临床意义。方法:用流式细胞术检测20例健康人、25例ITP患者外周血CXCR5+CD4+T细胞占CD4+T细胞的比例。结果:与健康对照组相比,ITP患者外周血CXCR5+CD4+T细胞占CD4+T细胞的比例显著增高(P<0.05)。结论:Tfh在ITP患者外周血比例增高,为Tfh能否为ITP的免疫调节和干预提出新的方向提供了证据。  相似文献   

13.

Aim

Triple-negative breast cancer (TNBC) is considered one of the most aggressive subtypes of breast cancer. Near infrared photoimmunotherapy (NIR-PIT) is a cancer treatment that employs an antibody-photosensitizer conjugate (APC) followed by exposure of NIR light for activating selective cytotoxicity on targeted cancer cells and may have application to TNBC. In order to minimize the dose of APC while maximizing the therapeutic effects, dosing of the APC and NIR light need to be optimized. In this study, we investigate in vitro and in vivo efficacy of cetuximab (cet)-IR700 NIR-PIT on two breast cancer models MDAMB231 (TNBC, EGFR moderate) and MDAMB468 (TNBC, EGFR high) cell lines, and demonstrate a method to optimize the dosing APC and NIR light.

Method

After validating in vitro cell-specific cytotoxicity, NIR-PIT therapeutic effects were investigated in mouse models using cell lines derived from TNBC tumors. Tumor-bearing mice were separated into 4 groups for the following treatments: (1) no treatment (control); (2) 300 μg of cet-IR700 i.v., (APC i.v. only); (3) NIR light exposure only, NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2 (NIR light only); (4) 300 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 after injection and 100 J/cm2 of light on day 2 after injection (one shot NIR-PIT). To compare different treatment regimens with a fixed dose of APC, we added the following treatments (5) 100 μg of cet-IR700 i.v., NIR light administered at 50 J/cm2 on day 1 and 50 μg of cet-IR700 i.v. immediately after NIR-PIT, then NIR light was administered at 100 J/cm2 on day 2, which were performed two times every week (“two split” NIR-PIT) and (6) 100 μg of cet-IR700 i.v., NIR light was administered at 50 J/cm2 on day 1 and 100 J/cm2 on day 2, which were performed three times per week (“three split” NIR-PIT).

Result

Both specific binding and NIR-PIT effects were greater with MDAMB468 than MDAMB231 cells in vitro. Tumor accumulation of cet-IR700 in MDAMB468 tumors was significantly higher (p < 0.05) than in MDAMB231 tumors in vivo. Tumor growth and survival of MDAMB231 tumor bearing mice was significantly lower in the NIR-PIT treatment group (p < 0.05). In MDAMB468 bearing mice, tumor growth and survival was significantly improved in the NIR-PIT treatment groups in all treatment regimens (one shot NIR-PIT; p < 0.05, “two split” NIR-PIT; p < 0.01, “three split” NIR-PIT; p < 0.001) compared with control groups.

Conclusion

NIR-PIT for TNBC was effective regardless of expression of EGFR, however, greater cell killing was shown with higher EGFR expression tumor in vitro. In all treatment regimens, NIR-PIT suppressed tumor growth, resulting in significantly prolonged survival that further improved by splitting the APC dose and using repeated light exposures.  相似文献   

14.
15.
Carcinoma-associated fibroblasts (CAF) are considered to contribute to tumor growth, invasion and metastasis. However, the cell type of origin remains unknown. Since human adipose tissue-derived stem cells (hASCs) are locally adjacent to breast cancer cells and might directly interact with tumor cells, we investigated whether CAFs may originate from hASCs. We demonstrated that a significant percentage of hASCs differentiated into a CAF-like myofibroblastic phenotype (e.g., expression of alpha smooth muscle actin and tenascin-C) when exposed to conditioned medium from the human breast cancer lines MDAMB231 and MCF7. The conditioned medium from MDAMB231 and MCF7 contains significant amounts of transforming growth factor-beta 1 (TGFβ1) and the differentiation of hASCs towards CAFs is dependent on TGFβ1 signaling via Smad3 in hASCs. The induction of CAFs can be abolished using a neutralizing antibody to TGFβ1 as well as by pretreatment of the hASCs with SB431542, a TGFβ1 receptor kinase inhibitor. Additionally, we found that these hASC-derived CAF-like cells exhibit functional properties of CAFs, including the ability to promote tumor cell invasion in an in vitro invasion assay, as well as increased expression of stromal-cell-derived factor 1 (SDF-1) and CCL5. Taken together, these data suggest that hASCs are a source of CAFs which play an important role in the tumor invasion.  相似文献   

16.

Background and Aim

Researchers have demonstrated dead cells in radiofrequency ablation (RFA) lesions that have morphological similarities to viable tumor cells and are thus referred to as ghost cells. However, studies on how long ghost cells persist have not been systematically performed.

Methods

A tumor model was established by implanting VX2 tumor tissue into the livers of 48 New Zealand rabbits. Two weeks later, these tumors were eliminated with RFA. The lesions were resected at 0 weeks, 1 week, 2 weeks, 4 weeks, 8 weeks, or 12 weeks after treatment, and samples were stained either with hematoxylin and eosin (HE) or nicotinamide adenine dinucleotide (NADH). The presence of the cells and the morphological changes that they underwent were examined by light microscopy.

Results

Four weeks after RFA, there were no obvious morphological changes observed in HE-stained ghost cells, and NADH staining revealed no viable cells. Eight weeks after RFA, the cell structure became indistinct. Twelve weeks after RFA, ghost cells were no longer present.

Conclusions

The morphological characteristics of ghost cells are maintained for at least 4 weeks, during which time HE staining cannot be used to differentiate ghost cells from residual tumor cells. NADH staining for cell viability is necessary to differentiate residual tumor cells from ghost cells. This evidence adds to our understanding of the mechanisms of RFA when used on solid tumors.  相似文献   

17.
18.
There is increasing evidence that cancer stem cells contribute to the initiation and propagation of many tumor. Therefore, to find out and identify the metastatic tumor stem-like cells in Lewis lung cancer cell line (LLC), the expression of CXCR4 was measured in LLC by flow cytometry and observed by laser scanning confocal microscope (LSCM). After the CXCR4(+) LLC cell was isolated from LLC by magnetic cell sorting, its properties were evaluated by their tumorigenic and metastatic potentials. CXCR4(+) cells were counted for 0.18% of the total number of LLC, and immunofluorescent staining cells were identified by LSCM. CXCR4(+) LLC suspension cultured in a serum-free medium, cell spheres expressed a high level of Sca-1. The chemotherapy sensitivity to cisplatin of CXCR4(+) LLC was lower than that of CXCR4(-) LLC. The expression of ABCG2 and IGF1R mRNA in CXCR4(+) LLC was higher than that in CXCR4(-) LLC (P < 0.01). Most of CXCR4(+) LLC cells were close to vascular endothelial cells, aberrant vasculature around it was forming. The expression of VEGF and MMP9 mRNA in CXCR4(+) LLC was higher than that in CXCR4(-) LLC (P < 0.05), the microvessel density (MVD) of CXCR4(+) subsets growing were higher than that of CXCR4(-) subsets growing tumor tissue (P < 0.01). The tumor size, volume, and metastatic foci in the lungs of CXCR4(+) LLC was significantly higher than that in CXCR4(-) LLC (P < 0.001). Similarly, elevated expression of MMP9 and VEGF was also positively associated with CXCR4(+) LLC. Our results demonstrated that CXCR4(+) cells from Lewis lung carcinoma cell line exhibit cancer metastatic stem cell characteristics.  相似文献   

19.
Somatostatin (SST) is a peptide neurotransmitter/hormone found in several mammalian tissue types. Apart from its natural importance, labeled SST/analogues are utilized in clinical applications such as targeting/diagnosis of neuroendocrine tumors. We report on the development and characterization of a novel, recombinant, fluorescent somatostatin analogue that has potential to elucidate somatostatin-activated cell signaling. SST was genetically fused with a monomeric-red fluorescent protein (mRFP) as the fluorescent label. The attachment of SST to mRFP had no detectable effect on its fluorescent properties. This analogue's potency to activate the endogenous and transfected somatostatin receptors was characterized using assays of membrane potential and Ca(2+) mobilization and immunocytochemistry. SST-mRFP was found to be an effective somatostatin receptor agonist, able to trigger the membrane hyperpolarization, mobilization of the intracellular Ca(2+) and receptor-ligand internalization in cells expressing somatostatin receptors. This complex represents a novel optical reporter due to its red emission spectral band suitable for in vivo imaging and tracking of the somatostatin receptor signaling pathways, affording higher resolution and sensitivity than those of the state-of-the-art radiolabeling bioassays.  相似文献   

20.

Background

We have previously used a unique mouse monoclonal antibody cmHsp70.1 to demonstrate the selective presence of a membrane-bound form of Hsp70 (memHsp70) on a variety of leukemia cells and on single cell suspensions derived from solid tumors of different entities, but not on non-transformed cells or cells from corresponding ’healthy‘ tissue. This antibody can be used to image tumors in vivo and target them for antibody-dependent cellular cytotoxicity. Tumor-specific expression of memHsp70 therefore has the potential to be exploited for theranostic purposes. Given the advantages of peptides as imaging and targeting agents, this study assessed whether a 14-mer tumor penetrating peptide (TPP; TKDNNLLGRFELSG), the sequence of which is derived from the oligomerization domain of Hsp70 which is expressed on the cell surface of tumor cells, can also be used for targeting membrane Hsp70 positive (memHsp70+) tumor cells, in vitro.

Methodology/Principal Findings

The specificity of carboxy-fluorescein (CF-) labeled TPP (TPP) to Hsp70 was proven in an Hsp70 knockout mammary tumor cell system. TPP specifically binds to different memHsp70+ mouse and human tumor cell lines and is rapidly taken up via endosomes. Two to four-fold higher levels of CF-labeled TPP were detected in MCF7 (82% memHsp70+) and MDA-MB-231 (75% memHsp70+) cells compared to T47D cells (29% memHsp70+) that exhibit a lower Hsp70 membrane positivity. After 90 min incubation, TPP co-localized with mitochondrial membranes in memHsp70+ tumors. Although there was no evidence that any given vesicle population was specifically localized, fluorophore-labeled cmHsp70.1 antibody and TPP preferentially accumulated in the proximity of the adherent surface of cultured cells. These findings suggest a potential association between membrane Hsp70 expression and cytoskeletal elements that are involved in adherence, the establishment of intercellular synapses and/or membrane reorganization.

Conclusions/Significance

This study demonstrates the specific binding and rapid internalization of TPP by tumor cells with a memHsp70+ phenotype. TPP might therefore have potential for targeting and imaging the large proportion of tumors (∼50%) that express memHsp70.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号