首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Different aggregates of LHC II play a very important role in regulating the light absorption and excitation energy transfer of plant. Trimeric LHC II was purified from spinach thylakoid membrane. In order to obtain the dimeric and monomeric LHC II, the trimer was treated with the mixture of 2% OGP and 10 μg/mL PLA2, then loaded onto the sucrose density gradient in the presence of 0.06% triton X-100. The LHC II trimer, dimer and monomer isolated by sucrose density gradient all contained three polypeptides with molecular weight of 29, 28 and 26 kd respectively. The pigment composition showed much difference in the content of Chl b and xanthophyll among three forms of LHC II. To study the light capture and excitation energy transfer in different forms of LHC II, the absorption and fluorescence spectra were analyzed. The results clearly showed that the efficiency of energy absorption and transfer was different in the three kinds of LHC II, the highest for trimeric LHC II, intermediate for dimeric LHC II, and the lowest for monomeric LHC II. It was suggested that there might be a physiological homeostasis of different aggregates of LHC II in plants, which is significant for the plant self-regulating upon exposure to variable light environment.  相似文献   

2.
Triton X-100, a detergent commonly used to solubilize higher plant thylakoid membranes, was found to be deleterious to Dunaliella LHC II. It disrupted the transfer of excitation energy from chlorophyll b to chlorophyll a. Based on analysis of pigments and immunoassays of LHC II apoproteins from sucrose density gradient fractions, Triton X-100 caused aggregation of the complex, but apparently did not remove chlorophyll b from the apoprotein. Following solubilization with Triton X-100 only CPI could be resolved by electrophoresis. In contrast, solubilization of Dunaliella thylakoids with octyl--D-glucopyranoside preserved energy transfer from chlorophyll b to chlorophyll a. This detergent also effectively prevented aggregation on sucrose gradients and preserved CPI oligomers, as well as LHCP1 and LHCP3 on non-denaturing gels. Solubilization with Deriphat gave similar results. We propose that room temperature fluorescence excitation and emission spectroscopy be used in conjunction with other biophysical and biochemical probes to establish the effects of detergents on the integrity of light harvesting chlorophyll protein complexes. Methods used here may be applicable to other chlorophytes which prove refractory to protocols developed for higher plants.Abbreviations LHC II light harvesting chlorophyll protein complex associated with photosystem II - LHCP1 and LHCP3 monomeric and oligomeric forms of LHC II, respectively, observed on non-denaturing gels - LiDS lithium dodecylsulphate - PMSF phenylmethylsulfonyl fluoride  相似文献   

3.
假根羽藻外周天线捕光色素蛋白复合物(L ight-harvesting Comp lex II,LHC II)在不同聚集态的情况下,它所包含色素分子间的能量传递是不同的。采用荧光发射光谱和激发光谱技术对不同聚集态(单体、三聚体和寡聚体)的LHC II进行研究,发现三聚体中色素分子间的能量传递效率比较高,单体要小一些。520 nm激发下,类胡萝卜素分子向叶绿素a分子的能量传递效率:三聚体约为64%、单体约为56%;650 nm激发下,叶绿素b分子向叶绿素a分子的能量传递效率:三聚体约为89%、单体约为78%。寡聚体的能量传递要复杂些,从光谱分析出它包含两种不同吸收光谱特性的叶绿素b分子,吸收峰分别为480 nm和468 nm,其中蓝区吸收峰为480 nm的叶绿素b分子向发射685 nm荧光的叶绿素a分子的能量传递效率要小于75%。  相似文献   

4.
The carotenoid zeaxanthin has been implicated in a nonradiative dissipation of excess excitation energy. To determine its site of action, we have examined the location of zeaxanthin within the thylakoid membrane components. Five pigment-protein complexes were isolated with little loss of pigments: photosystem I (PSI); core complex (CC) I, the core of PSI; CC II, the core of photosystem II (PSII); light-harvesting complex (LHC) IIb, a trimer of the major light-harvesting protein of PSII; and LHC IIa, c, and d, a complex of the monomeric minor light-harvesting proteins of PSII. Zeaxanthin was found predominantly in the LHC complexes. Lesser amounts were present in the CCs possibly because these contained some extraneous LHC polypeptides. The LHC IIb trimer and the monomeric LHC II a, c, and d pigment-proteins from dark-adapted plants each contained, in addition to lutein and neoxanthin, one violaxanthin molecule but little antheraxanthin and no zeaxanthin. Following illumination, each complex had a reduced violaxanthin content, but now more antheraxanthin and zeaxanthin were present. PSI had little or no neoxanthin. The pigment content of LHC I was deduced by subtracting the pigment content of CC I from that of PSI. Our best estimate for the carotenoid content of a LHC IIb trimer from dark-adapted plants is one violaxanthin, two neoxanthins, six luteins, and 0.03 mol of antheraxanthin per mol trimer. The xanthophyll cycle occurs mainly or exclusively within the light-harvesting antennae of both photosystems.  相似文献   

5.
应用阴离子交换和凝胶过滤层析技术,从假根羽藻(Bryopsis corticulans Setch.)类囊体膜中直接分离、纯化获得了主要叶绿素a/b-蛋白复合体(LHCⅡ).经蔗糖密度梯度超速离心获得了该色素蛋白复合体的单体和三聚体.反相液相色谱的色素分析结果显示,假根羽藻LHCⅡ的色素组成含有叶绿素a、叶绿素b、新黄质、紫黄质和管藻素等.其单体的电子跃迁能谱与三聚体的相似.园二色光谱分析显示,在LHCⅡ脱辅基蛋白质上分别存在着很强的叶绿素a偶极子之间和叶绿素b偶极子之间的分子内相互作用,然而这些偶极子之间的分子间的相互作用在三聚体中得到明显增强.在能量传递方面,LHCⅡ单体有着与三聚体相似的从叶绿素b到叶绿素a以及从管藻素到叶绿素a的高效传能能力.实验结果表明,假根羽藻中LHCⅡ单体具有像三聚体那样可以高效发挥吸能和传能生理功能的色素组成形式.因此,这些单体可能是假根羽藻类囊体膜上具有功能作用的LHCⅡ的结构形式.  相似文献   

6.
We investigated the composition and organization of chlorophylls in monomers, trimers and oligomers (small aggregates) of the main light-harvesting complex (LHC II) isolated from marine alga, Bryopsis corticulans, using a combination of measurements with reversed-phase high performance liquid chromatography (RP-HPLC) and steady-state spectroscopy of absorption, circular dichroism (CD) and low temperature fluorescence. The composition and organization of the chlorophylls in monomeric and trimeric LHC II were essentially identical to those of LHC II from higher plants. For LHC II oligomers, a large decrease of chlorophyll (Chl) b absorption and of CD signals corresponding to Chl b was consistent with the quantitative analysis of Chl b by RP-HPLC, indicating that oligomerization of the LHC II proteins significantly influenced spectroscopic properties and led to the dissociation of Chl b molecules from LHC II. Our data strongly suggested that protein oligomerization constitutes a structural basis for the decrease of Chl b molecules in LHC II of B. corticulans. The LHC II of B. corticulans might play a photoprotective role with the reduction of the ability of light absorption via alteration of its own structural conformation.  相似文献   

7.
The light-harvesting complex (LHC) of Giraudyopsis stellifer Dangeard was isolated on a sucrose density gradient after digitonin treatment, and the pigment composition was analyzed by reverse-phase high-pressure liquid chromatography. The LHC is a chlorophyll (Chl) a/c/ fucoxanthin/violaxanthin complex, depleted of β-carotene, comparable to the LHC of Fucophyceae. The excitation transfer from Chl c and fucoxanthin to Chl a is efficient in whole cells. Immunological reactions indicate a close relationship between Chrysophyceae and Fucophyceae. The immunocytochemical labeling confirms the lack of segregation of the LHC in the appressed membranes of the three associated thylakoids and its localization in the intrapyrenoid thylakoid. The violaxanthin-antheraxanthin-zeaxanthin cycle is operative in the cells and efficiently protects photosystem II reaction centers against photoinhibition.  相似文献   

8.
Spectral substructure and ultrafast excitation dynamics have been investigated in the chlorophyll (Chl) a and b Qy region of isolated plant light-harvesting complex II (LHC II). We demonstrate the feasibility of Nonlinear Polarization Spectroscopy in the frequency domain, a novel photosynthesis research laser spectroscopic technique, to determine not only ultrafast population relaxation (T1) and dephasing (T2) times, but also to reveal the complex spectral substructure in the Qy band as well as the mode(s) of absorption band broadening at room temperature (RT). The study gives further direct evidence for the existence of up to now hypothetical "Chl forms". Of particular interest is the differentiated participation of the Chl forms in energy transfer in trimeric and aggregated LHC II. Limits for T2 are given in the range of a few ten fs. Inhomogeneous broadening does not exceed the homogeneous widths of the subbands at RT. The implications of the results for the energy transfer mechanisms in the antenna are discussed.  相似文献   

9.
In higher plants the light energy is captured by the photosynthetic pigments that are bound to photosystem I and II and their light-harvesting complex (LHC) subunits. In this study, we examined the photodynamic changes within chlorophyll-protein complexes in the thylakoid membrane of Arabidopsis thaliana leaves adapted to low light and subsequently exposed to light stress. Chlorophyll-protein complexes were isolated using sucrose density gradient centrifugation and blue-native polyacrylamid gel electrophoresis (BN-PAGE). Proteome analysis was performed using SDS-PAGE, HPLC and high resolution mass spectrometry. We identified several rarely expressed and stress-induced chlorophyll-binding proteins, showed changes in localization of early light-induced protein family and LHC protein family members between different photosynthetic complexes and assembled/disassembled subcomplexes under light stress conditions and discuss their role in a variety of light stress-related processes.  相似文献   

10.
Das SK  Frank HA 《Biochemistry》2002,41(43):13087-13095
Absorption, fluorescence, and fluorescence excitation spectra have been measured from CP26, CP29, and monomeric and trimeric LHCIIb light-harvesting complexes isolated from Photosystem II subchloroplast particles from spinach. The complexes were purified using a combination of isoelectric focusing and sucrose gradient ultracentrifugation. The chlorophyll (Chl) and xanthophyll pigment compositions were measured using high-performance liquid chromatography (HPLC). Using the pigment compositions from the HPLC analysis as a starting point, the absorption spectral profiles of the complexes have been reconstructed from the individual absorption spectra obtained for each of the pigments. Also, the fluorescence excitation spectra of the complexes have been deconvoluted. The data reveal the energy transfer efficiencies between Chl b and Chl a and between specific xanthophylls and Chl a in the complexes. The spectral analyses reveal the underlying features of the highly congested spectral profiles associated with the complexes and are expected to be beneficial to researchers employing spectroscopic methods to investigate the mechanisms of energy transfer between the pigments bound in these complexes.  相似文献   

11.
Tobacco plants were subjected to long-term CO2 deficit. The stress caused photoinhibition of Photosystem (PS) II photochemistry and the aggregation of the light-harvesting complex of PS II (LHC II). The aggregation was shown by the appearance of the characteristic band at 698–700 nm (F699) in 77 K fluorescence emission spectra. LHC II aggregates are considered to quench fluorescence and, therefore, the fluorescence yield was determined to verify their quenching capability. PS II photochemistry, measured as FV/FM, was largely depressed during first 4 days of the stress. Unexpectedly, the total fluorescence yield increased in this period. Fitting of emission spectra by Gaussian components approximating emission bands of LHC II, PS II core, PS I and F699 revealed that mainly the bands at 680 and 699 nm, representing emission of LHC II aggregates, were responsible for the increase of the fluorescence yield. This shows an interruption of the excitation energy transfer between LHC II and both photosystems and, thus, a physical disconnection of LHC II from photosystems. PS II and PS I emissions were not quenched in this period. Therefore, it was concluded that these LHC II aggregates were accumulated out of PS II antenna, and, thus they cannot be involved in dumping of excess excitation. The total fluorescence yield turned to decrease only after the large depression of PS II photochemistry, when LHC II aggregation was considerably speeded up and the fluorescence yields of PS I and II turned to decline.  相似文献   

12.
Plants dissipate excess excitation energy as heat by non‐photochemical quenching (NPQ). NPQ has been thought to resemble in vitro aggregation quenching of the major antenna complex, light harvesting complex of photosystem II (LHC‐II). Both processes are widely believed to involve a conformational change that creates a quenching centre of two neighbouring pigments within the complex. Using recombinant LHC‐II lacking the pigments implicated in quenching, we show that they have no particular role. Single crystals of LHC‐II emit strong, orientation‐dependent fluorescence with an emission maximum at 680 nm. The average lifetime of the main 680 nm crystal emission at 100 K is 1.31 ns, but only 0.39 ns for LHC‐II aggregates under identical conditions. The strong emission and comparatively long fluorescence lifetimes of single LHC‐II crystals indicate that the complex is unquenched, and that therefore the crystal structure shows the active, energy‐transmitting state of LHC‐II. We conclude that quenching of excitation energy in the light‐harvesting antenna is due to the molecular interaction with external pigments in vitro or other pigment–protein complexes such as PsbS in vivo, and does not require a conformational change within the complex.  相似文献   

13.
Aboulwafa M  Saier MH 《PloS one》2011,6(9):e24088
The glucose Enzyme II transporter complex of the Escherichia coli phosphotransferase system (PTS) exists in at least two physically distinct forms: a membrane-integrated dimeric form, and a cytoplasmic monomeric form, but little is known about the physical states of these enzyme forms. Six approaches were used to evaluate protein-protein and protein-lipid interactions in this system. Fluorescence energy transfer (FRET) using MBP-II(Glc)-YFP and MBP-II(Glc)-CFP revealed that the homodimeric Enzyme II complex in cell membranes is stable (FRET(-)) but can be dissociated and reassociated to the heterodimer only in the presence of Triton X100 (FRET(+)). The monomeric species could form a heterodimeric species (FRET(+)) by incubation and purification without detergent exposure. Formaldehyde cross linking studies, conducted both in vivo and in vitro, revealed that the dimeric MBP-II(Glc) activity decreased dramatically with increasing formaldehyde concentrations due to both aggregation and activity loss, but that the monomeric MBP-II(Glc) retained activity more effectively in response to the same formaldehyde treatments, and little or no aggregation was observed. Electron microscopy of MBP-II(Glc) indicated that the dimeric form is larger than the monomeric form. Dynamic light scattering confirmed this conclusion and provided quantitation. NMR analyses provided strong evidence that the dimeric form is present primarily in a lipid bilayer while the monomeric form is present as micelles. Finally, lipid analyses of the different fractions revealed that the three lipid species (PE, PG and CL) are present in all fractions, but the monomeric micellar structure contains a higher percentage of anionic lipids (PG & CL) while the dimeric bilayer form has a higher percentage of zwitterion lipids (PE). Additionally, evidence for a minor dimeric micellar species, possibly an intermediate between the monomeric micellar and the dimeric bilayer forms, is presented. These results provide convincing evidence for interconvertible physical forms of Enzyme-II(Glc).  相似文献   

14.
The light-induced assembly of light-harvesting complex (LHC) II has been followed during the biogenesis of the plastid. Seedlings grown in intermittent light (IML) accumulate only small amounts of chlorophyll b. The minor LHC II apoproteins are present; however, the apoprotein levels of the major LHC II complex, LHC IIb, are severely depressed after exposure to IML. The levels of all LHC II apoproteins increase rapidly upon exposure to continuous illumination. The 25-kD, type 3 LHC IIb subunit appears to be more abundant during the early hours of greening in relation to its level in mature thylakoids. The LHC IIb apoproteins are initially associated with pigments to form monomeric pigment-protein complexes. The abundance of monomeric LHC IIb complexes gradually decreases during exposure to continuous light and a concomitant increase occurs in the amount of the trimeric and higher-order oligomeric forms. Pulse-chase experiments verify that labeled LHC IIb monomeric complexes are intermediates in the formation of trimeric and higher-order oligomeric LHC IIb-pigmented complexes. Therefore, the assembly of LHC II occurs via the initial pigmentation of the apoproteins to form monomeric complexes and proceeds in a sequential manner.  相似文献   

15.
Three forms of light-harvesting chlorophyll a/b-protein complexes of photosystem II (LHC II) were isolated from the thylakoid membranes of Dunaliella salina grown under different irradiance conditions. Cells grown under a low intensity light condition (80 micromol quanta m(-2) s(-1)) contained one form of LHC II, LHC-L. Two other forms of LHC II, LHC-H1 and LHC-H2, were separated from the cells grown under a high intensity light condition (1,500 micromol quanta m(-2) s(-1)). LHC-L and LHC-H1 showed an apparent particle size of 310 kDa and contained four polypeptides of 31, 30, 29 and 28 kDa. LHC-H2, with a particle size of 110 kDa, consisted of 30 and 28 kDa polypeptides. LHC-L contained 7.5 molecules of Chl a, 3.2 of Chl b and 2.1 of lutein per polypeptide, analogous to the content in higher plants. LHC-H1, with 5.6 molecules of Chl a, 2.5 of Chl b and 1.8 of lutein per polypeptide was similar to that in the green alga Bryopsis maxima. LHC-L and LHC-H1 maintained high efficiency energy transfer from Chl b and lutein to Chl a molecules. LHC-H2 showed a high Chl a/b ratio of 7.5 and contained 3.4 molecules of Chl a, 0.5 of Chl b and 1.4 of lutein per polypeptide. Chl b and lutein could not completely transfer the excitation energy to Chl a in LHC-H2.  相似文献   

16.
Spectroscopy was used to investigate the fluorescence quenching mechanism in light-harvesting complex 2 (LHC2). The 77 K fluorescence excitation spectroscopy was performed for detection of aggregation state of LHC2 treated with different concentrations of octylphenol poly(ethyleneglycol ether)10 (TX-100). Resonance Raman (RR) spectra excited with 488, 496, and 514 nm provided molecular configuration of neoxanthin, lutein 1, and lutein 2, respectively. At increased concentration of TX-100, the RR signals of xanthophylls were enhanced in the four frequency regions, which was accompanied with increase of fluorescence of chlorophyll (Chl) a. Thus the absorption of the three xanthophyll molecules was inclined to excitation wavelength, which proved that functional configurations of xanthophyll molecules in LHC2 were vital for fast transfer of excitation energy to Chl a molecules. Changes in the v4 region (C-H out-of-plane bending modes, at ∼960 cm−1 in RR spectra) demonstrated that the twist feature of neoxanthin, lutein 1, and lutein 2 molecules existed in LHC2 trimers, however, it was lost in the LHC2 macro-aggregates. In the second derivative absorption spectra of LHC2, neoxanthin absorption was not detected in LHC2 macro-aggregates, while evident absorption was found in LHC2 trimers and this absorption decreased obviously when TX-100 concentration was higher than 1 mM. Hence the neoxanthin molecule had a structural role in formation of LHC2 trimers. The RR and absorption spectra also implied that carotenoid molecules constructed the functional LHC2 trimers via their intrinsic configuration features, which enabled energy transfer to Chl a efficiently and led to lower fluorescence quenching efficiency. In contrast, these intrinsic twist configurations were lost in LHC2 macro-aggregates and led to lower energy transfer efficiency and higher fluorescence quenching efficiency.  相似文献   

17.
The major light-harvesting complex (LHC-II) of higher plants plays a crucial role in capturing light energy for photosynthesis and in regulating the flow of energy within the photosynthetic apparatus. Native LHC-II isolated from plant tissue consists of three isoforms, Lhcb1, Lhcb2, and Lhcb3, which form homo- and heterotrimers. All three isoforms are highly conserved among different species, suggesting distinct functional roles. We produced the three LHC-II isoforms by heterologous expression of the polypeptide in Escherichia coli and in vitro refolding with purified pigments. Although Lhcb1 and Lhcb2 are very similar in polypeptide sequence and pigment content, Lhcb3 is clearly different because it lacks an N-terminal phosphorylation site and has a higher chlorophyll a/b ratio, suggesting the absence of one chlorophyll b. Low temperature absorption and fluorescence emission spectra of the pure isoforms revealed small but significant differences in pigment organization. The oligomeric state of the pure isoforms and of their permutations was investigated by native gel electrophoresis, sucrose density gradient centrifugation, and SDS-PAGE. Lhcb1 and Lhcb2 formed trimeric complexes by themselves and with one another, but Lhcb3 was able to do so only in combination with one or both of the other isoforms. We conclude that the main role of Lhcb1 and Lhcb2 is in the adaptation of photosynthesis to different light regimes. The most likely role of Lhcb3 is as an intermediary in light energy transfer from the main Lhcb1/Lhcb2 antenna to the photosystem II core.  相似文献   

18.
Stepwise two-photon excited fluorescence (TPEF) spectra of the photosynthetic antenna complexes PCP, CP47, CP29, and light-harvesting complex II (LHC II) were measured. TPEF emitted from higher excited states of chlorophyll (Chl) a and b was elicited via consecutive absorption of two photons in the Chl a/b Qy range induced by tunable 100-fs laser pulses. Global analyses of the TPEF line shapes with a model function for monomeric Chl a in a proteinaceous environment allow distinction between contributions from monomeric Chls a and b, strongly excitonically coupled Chls a, and Chl a/b heterodimers/-oligomers. The analyses indicate that the longest wavelength-absorbing Chl species in the Qy region of LHC II is a Chl a homodimer with additional contributions from adjacent Chl b. Likewise, in CP47 a spectral form at approximately 680 nm (that is, however, not the red-most species) is also due to strongly coupled Chls a. In contrast to LHC II, the red-most Chl subband of CP29 is due to a monomeric Chl a. The two Chls b in CP29 exhibit marked differences: a Chl b absorbing at approximately 650 nm is not excitonically coupled to other Chls. Based on this finding, the refractive index of its microenvironment can be determined to be 1.48. The second Chl b in CP29 (absorbing at approximately 640 nm) is strongly coupled to Chl a. Implications of the findings with respect to excitation energy transfer pathways and rates are discussed. Moreover, the results will be related to most recent structural analyses.  相似文献   

19.
Photoautotrophic organisms, the major agent of inorganic carbon fixation into biomass, convert light energy into chemical energy. The first step of photosynthesis consists of the absorption of solar energy by pigments binding protein complexes named photosystems. Within photosystems, a family of proteins called Light Harvesting Complexes (LHC), responsible for light harvesting and energy transfer to reaction centers, has evolved along with eukaryotic organisms. Besides light absorption, these proteins catalyze photoprotective reactions which allowed functioning of oxygenic photosynthetic machinery in the increasingly oxidant environment. In this work we review current knowledge of LHC proteins serving Photosystem II. Balance between light harvesting and photoprotection is critical in Photosystem II, due to the lower quantum efficiency as compared to Photosystem I. In particular, we focus on the role of each antenna complex in light harvesting, energy transfer, scavenging of reactive oxygen species, chlorophyll triplet quenching and thermal dissipation of excess energy. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

20.
Electronic spectroscopy of a single biological molecule is demonstrated with approximately 4 A spatial resolution. The light-harvesting complex II (LHC II), in the ground and photo-excited states, was studied using scanning tunneling microscopy and spectroscopy of intact Photosystem II complexes. Analysis of the spectra indicates that the main mechanisms of tunneling between the STM tip and the surface involve delocalized electronic states of the LHC II and local vibronic states associated with C=C, C=O, C-H, N-H, and O-H groups near the LHC II surface. Conduction within the bulk LHC II is then due to ohmic and hopping conduction as well as tunneling between amino acid residues. Light activation of LHC II occurs via a photoconductive rather than a photovoltaic mechanism. There is a dramatic light-induced increase in the electronic density of states indicating a light-induced enhancement of energy and electron delocalization which is important for the efficient and rapid transfer of excitation energy from LHC II to the Photosystem II reaction center.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号