首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 587 毫秒
1.
The status of tumor suppressor genes (TSGs) relevant to human malignant mesothelioma (HMM) pathogenesis was examined in cultures of mesothelioma cells from tumoral ascites developed in mice exposed to asbestos (asb) fibers. The status of the respective hortologous human genes was also investigated in 12 HMM cell cultures. Eleven primary cultures from mice hemizygous for N?2 (asb-Nf2KO3/+) and 4 wild type counterparts (asb-Nf2+/+) were analyzed for mutations in Nf2, p16/Cdkn2a, p19/Arf and Trp53 genes and protein expression of p15/Cdkn2b and Cdk4. TSG alterations in both mouse and human mesothelioma cells consisted in frequent inactivation of p16/Cdkn2a, p19/Arf (or P14/ARF) and p15/Cdkn2b, co-inactivation of p16/Cdkn2a and p15/Cdkn2b and low rate of Trp53 mutations in both asb-Nf2KO3/+ and asb-Nf2+/+ mesothelioma cells. In both mouse and human mesothelioma cells, inactivation of the hortologous genes p16/Cdkn2a or P16/CDKN2A was due to deletions at the Ink4/Arf locus encompassing p19/Arf or P14/ARF, respectively. Loss of heterozygosity at the Nf2 locus was detected in 10 of 11 asb-Nf2KO3/+ cultures and Nf2 gene rearrangement in one asb-Nf2+/+ culture. These data show that the profile of TSG alterations in asbestos-induced mesothelioma is similar in mice and humans. Thus, the mouse mesothelioma model could be useful for human risk assessment, taking into account interindividual variations in genetic sensitivity to carcinogens.  相似文献   

2.
The Ink4a/Arf ( CDKN2a) locus encodes two proteins that regulate distinct important tumor suppressor pathways represented by p53 and Rb. Loss of either p16INK4a or p19ARF was recently reported to reduce the ability of mouse cells to repair UV-induced DNA damage and to induce a UV-mutator phenotype. This observation was independent of cell cycle effects incurred by either p16INK4a and/or p19ARF loss, as it was demonstrable in unirradiated cells using UV-treated DNA. We suggest that this might explain why germ line mutations of INK4a/ARF predispose mainly to malignant melanoma, a UV-induced skin cancer, and provides a molecular explanation for the link between melanoma-genesis and impaired DNA repair. It also further demonstrates that regulation of cell cycle check points and DNA repair in response to genomic insults, such as ultraviolet irradiation are intricately interwoven processes. Differences in the apoptotic response to ultraviolet light between melanocytes and keratinocytes might explain why INK4a/ARF mutations predispose to malignant melanoma, but not to keratinocyte-derived skin cancers.  相似文献   

3.
Medulloblastoma (MB) is the most common malignant pediatric brain tumor which is thought to originate from cerebellar granule cell precursors (CGNPs) that fail to properly exit the cell cycle and differentiate. Although mutations in the Sonic Hedgehog (Shh) signaling pathway occur in ~30% of cases, genetic alterations that account for MB formation in most patients have not yet been identified. We recently determined that the cyclin D-dependent kinase inhibitor, p18Ink4c, is expressed as CGNPs exit the cell cycle, suggesting that this protein might play a central role in arresting the proliferation of these cells and in timing their subsequent migration and differentiation. In mice, disruption of Ink4c collaborates independently with loss of p53 or with inactivation of the gene (Ptc1) encoding the Shh receptor, Patched, to induce MB formation. Whereas loss of both Ink4c alleles is required for MB formation in a p53-null background, Ink4c is haplo-insufficient for tumor suppression in a Ptc1+/- background. Moreover, MBs derived from Ptc1+/- mice that lack one or two Ink4c alleles retain wild-type p53. Methylation of the INK4C (CDKN2C) promoter and complete loss of p18INK4C protein expression were detected in a significant fraction of human MBs again pointing toward a role for INK4C in suppression of MB formation.  相似文献   

4.
5.
Pre-B-cell transformation by Abelson virus (Ab-MLV) is a multistep process in which primary transformants are stimulated to proliferate but subsequently undergo crisis, a period of erratic growth marked by high levels of apoptosis. Inactivation of the p53 tumor suppressor pathway is an important step in this process and can be accomplished by mutation of p53 or down-modulation of p19(Arf), a p53 regulatory protein. Consistent with these data, pre-B cells from either p53 or Ink4a/Arf null mice bypass crisis. However, the Ink4a/Arf locus encodes both p19(Arf) and a second tumor suppressor, p16(Ink4a), that blocks cell cycle progression by inhibiting Cdk4/6. To determine if p16(Ink4a) plays a role in Ab-MLV transformation, primary transformants derived from Arf(-/-) and p16(Ink4a(-/-)) mice were compared. A fraction of those derived from Arf(-/-) animals underwent crisis, and even though all p16(Ink4a(-/-)) primary transformants experienced crisis, these cells became established more readily than cells derived from +/+ mice. Analyses of Ink4a/Arf(-/-) cells infected with a virus that expresses both v-Abl and p16(Ink4a) revealed that p16(Ink4a) expression does not alter cell cycle profiles but does increase the level of apoptosis in primary transformants. These results indicate that both products of the Ink4a/Arf locus influence Ab-MLV transformation and reveal that in addition to its well-recognized effects on the cell cycle, p16(Ink4a) can suppress transformation by inducing apoptosis.  相似文献   

6.
Exposure to the carcinogen asbestos is considered to be a major factor contributing to the development of most malignant mesotheliomas (MMs). We highlight the role of asbestos in MM and summarize cytogenetic and molecular genetic findings in this malignancy. The accumulation of numerous clonal chromosomal deletions in most MMs suggests a multistep process of tumorigenesis, characterized by the loss and/or inactivation of multiple tumor suppressor genes (TSGs). Cytogenetic and loss of heterozygosity (LOH) analyses of MMs have demonstrated frequent deletions of specific sites within chromosome arms 1p, 3p, 6q, 9p, 13q, 15q, and 22q. Furthermore, TSGs within two of these regions, i.e., p16/CDKN2A-p14ARF at 9p21 and NF2 at 22q12, are frequently altered in MMs. Homozygous deletion appears to be the major mechanism affecting p16/CDKN2A-p14ARF, whereas inactivating mutations coupled with allelic loss occur at the NF2 locus. Finally, recent studies have demonstrated the presence and expression of simian virus 40 (SV40) in many MMs. SV40 large T antigen has been shown to inactivate the TSG products Rb and p53, suggesting the possibility that asbestos and SV40 could act as cocarcinogens in MM. The frequent occurrence of homozygous deletions of p16/CDKN2A-p14ARF and the ability of SV40 Tag to bind TSG products suggest that perturbations of both Rb- and p53-dependent growth-regulatory pathways are critically involved in the pathogenesis of MM. J. Cell. Physiol. 180:150–157, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

7.
Epithelial tumors of the pancreas exhibit a wide spectrum of histologies with varying propensities for metastasis and tissue invasion. The histogenic relationship among these tumor types is not well established; moreover, the specific role of genetic lesions in the progression of these malignancies is largely undefined. Transgenic mice with ectopic expression of transforming growth factor alpha (TGF-alpha) in the pancreatic acinar cells develop tubular metaplasia, a potential premalignant lesion of the pancreatic ductal epithelium. To evaluate the cooperative interactions between TGF-alpha and signature mutations in pancreatic tumor genesis and progression, TGFalpha transgenic mice were crossed onto Ink4a/Arf and/or p53 mutant backgrounds. These compound mutant mice developed a novel pancreatic neoplasm, serous cystadenoma (SCA), presenting as large epithelial tumors bearing conspicuous gross and histological resemblances to their human counterpart. TGFalpha animals heterozygous for both the Ink4a/Arf and the p53 mutation showed a dramatically increased incidence of SCA, indicating synergistic interaction of these alleles. Inactivation of p16(Ink4a) by loss of heterozygosity, intragenic mutation, or promoter hypermethylation was a common feature in these SCAs, and correspondingly, none of the tumors expressed wild-type p16(Ink4a). All tumors sustained loss of p53 or Arf, generally in a mutually exclusive fashion. The tumor incidence data and molecular profiles establish a pathogenic role for the dual inactivation of p16(Ink4a) and p19(Arf)-p53 in the development of SCA in mice, demonstrating that p16(Ink4a) is a murine tumor suppressor. This genetically defined model provides insights into the molecular pathogenesis of SCA and serves as a platform for dissection of cell-specific programs of epithelial tumor suppression.  相似文献   

8.
Modeling INK4/ARF tumor suppression in the mouse   总被引:1,自引:0,他引:1  
The INK4/ARF locus encodes the p15(INK4B), p16(INK4A) and p14(ARF) tumor suppressor proteins whose loss of function is associated with the pathogenesis of many human cancers. Dissecting the relative contribution of these genes to growth control in vivo is complicated by their physical contiguity and the frequency of homozygous deletions that inactivate all three components of this locus. While genetically engineered mouse models provide a rigorous system for elucidating cancer gene function, there is some evidence to suggest there are cross-species differences in regulating tumor biology. Given the prevalence of mouse models in cancer research and the potential contribution of such models to preclinical studies, it is important determine to what degree the function of these critical tumor suppressors is conserved between organisms. In this review, we assess the relative biological roles of INK4A, INK4B and ARF in mice and humans with the aim of determining the faithfulness of mouse models and also of obtaining insights into the pattern of specific tumor types that are associated with germline and somatic mutations at components of this locus. We will discuss 1) the contribution of INK4A, INK4B and ARF to growth control in vitro in a series of cell types, 2) the in vivo phenotypes associated with germline loss of function of this locus and 3) the study of Ink4a and Arf in different cancer-specific mouse models.  相似文献   

9.
Rhabdomyosarcoma (RMS) is the most common soft-tissue sarcoma in children, yet molecular events associated with the genesis and progression of this potentially fatal disease are largely unknown. For the molecules and pathways that have been implicated, genetic validation has been impeded by lack of a mouse model of RMS. Here we show that simultaneous loss of Ink4a/Arf function and disruption of c-Met signaling in Ink4a/Arf(-/-) mice transgenic for hepatocyte growth factor/scatter factor (HGF/SF) induces RMS with extremely high penetrance and short latency. In cultured myoblasts, c-Met activation and Ink4a/Arf loss suppress myogenesis in an additive fashion. Our data indicate that human c-MET and INK4a/ARF, situated at the nexus of pathways regulating myogenic growth and differentiation, represent critical targets in RMS pathogenesis. The marked synergism in mice between aberrant c-Met signaling and Ink4a/Arf inactivation, lesions individually implicated in human RMS, suggests a therapeutic combination to combat this devastating childhood cancer.  相似文献   

10.
Malignant mesothelioma (MM) is a therapy‐resistant cancer arising primarily from the lining of the pleural and peritoneal cavities. The most frequently altered genes in human MM are cyclin‐dependent kinase inhibitor 2A (CDKN2A), which encodes components of the p53 (p14ARF) and RB (p16INK4A) pathways, BRCA1‐associated protein 1 (BAP1), and neurofibromatosis 2 (NF2). Furthermore, the p53 gene (TP53) itself is mutated in ~15% of MMs. In many MMs, the PI3K–PTEN–AKT–mTOR signaling node is hyperactivated, which contributes to tumor cell survival and therapeutic resistance. Here, we demonstrate that the inactivation of both Tp53 and Pten in the mouse mesothelium is sufficient to rapidly drive aggressive MMs. PtenL/L;Tp53L/L mice injected intraperitoneally or intrapleurally with adenovirus‐expressing Cre recombinase developed high rates of peritoneal and pleural MMs (92% of mice with a median latency of 9.4 weeks and 56% of mice with a median latency of 19.3 weeks, respectively). MM cells from these mice showed consistent activation of Akt–mTor signaling, chromosome breakage or aneuploidy, and upregulation of Myc; occasional downregulation of Bap1 was also observed. Collectively, these findings suggest that when Pten and Tp53 are lost in combination in mesothelial cells, DNA damage is not adequately repaired and genomic instability is widespread, whereas the activation of Akt due to Pten loss protects genomically damaged cells from apoptosis, thereby increasing the likelihood of tumor formation. Additionally, the mining of an online dataset (The Cancer Genome Atlas) revealed codeletions of PTEN and TP53 and/or CDKN2A/p14ARF in ~25% of human MMs, indicating that cooperative losses of these genes contribute to the development of a significant proportion of these aggressive neoplasms and suggesting key target pathways for therapeutic intervention.  相似文献   

11.
In many tumor systems, analysis of cells for loss of heterozygosity (LOH) has helped to clarify the role of tumor suppressor genes in oncogenesis. Two important tumor suppressor genes, p53 and the Ink4a/Arf locus, play central roles in the multistep process of Abelson murine leukemia virus (Ab-MLV) transformation. p53 and the p53 regulatory protein, p19Arf, are required for the apoptotic crisis that characterizes the progression of primary transformed pre-B cells to fully malignant cell lines. To search for other tumor suppressor genes which may be involved in the Ab-MLV transformation process, we used endogenous proviral markers and simple-sequence length polymorphism analysis to screen Abelson virus-transformed pre-B cells for evidence of LOH. Our survey reinforces the role of the p53-p19 regulatory pathway in transformation; 6 of 58 cell lines tested had lost sequences on mouse chromosome 4, including the Ink4a/Arf locus. Consistent with this pattern, a high frequency of primary pre-B-cell transformants derived from Ink4a/Arf +/- mice became established cell lines. In addition, half of them retained the single copy of the locus when the transformation process was complete. These data demonstrate that a single copy of the Ink4a/Arf locus is not sufficient to fully mediate the effects of these genes on transformation.  相似文献   

12.
Senescence of cultured cells involves activation of the p19Arf-p53 and the p16Ink4a-Rb tumor suppressor pathways. This, together with the observation that p19Arf and p16Ink4a expression increases with age in many tissues of humans and rodents, led to the speculation that these pathways drive in vivo senescence and natural aging. However, it has been difficult to test this hypothesis using a mammalian model system because inactivation of either of these pathways results in early death from tumors. One approach to bypass this problem would be to inactivate these pathways in a murine segmental progeria model such as mice that express low amounts of the mitotic checkpoint protein BubR1 (BubR1 hypomorphic mice). These mice have a five-fold reduced lifespan and develop a variety of early-aging associated phenotypes including cachetic dwarfism, skeletal muscle degeneration, cataracts, arterial stiffening, (subcutaneous) fat loss, reduced stress tolerance and impaired wound healing. Importantly, BubR1 hypomorphism elevates both p16Ink4a and p19Arf expression in skeletal muscle and fat. Inactivation of p16Ink4a in BubR1 mutant mice delays both cellular senescence and aging specifically in these tissues. Surprisingly, however, inactivation of p19Arf has the opposite effect; it exacerbates in vivo senescence and aging in skeletal muscle and fat. These mouse studies suggest that p16Ink4a is indeed an effector of aging and in vivo senescence, but p19Arf an attenuator. Thus, the role of the p19Arf-p53 pathway in aging and in vivo senescence seems far more complex than previously anticipated.  相似文献   

13.
Replication stress (RS) is a source of DNA damage that has been linked to cancer and aging, which is suppressed by the ATR kinase. In mice, reduced ATR levels in a model of the ATR-Seckel syndrome lead to RS and accelerated aging. Similarly, ATR-Seckel embryonic fibroblasts (MEF) accumulate RS and undergo cellular senescence. We previously showed that senescence of ATR-Seckel MEF cannot be rescued by p53-deletion. Here, we show that the genetic ablation of the INK4a/Arf locus fully rescues senescence on ATR mutant MEF, but also that induced by other conditions that generate RS such as low doses of hydroxyurea or ATR inhibitors. In addition, we show that a persistent exposure to RS leads to increased levels of INK4a/Arf products, revealing that INK4a/ARF behaves as a bona fide RS checkpoint. Our data reveal an unknown role for INK4a/ARF in limiting the expansion of cells suffering from persistent replication stress, linking this well-known tumor suppressor to the maintenance of genomic integrity.  相似文献   

14.
15.
The frequent loss of both INK4a and ARF in melanoma raises the question of which INK4a-ARF gene product functions to suppress melanoma genesis in vivo. Moreover, the high incidence of INK4a-ARF inactivation in transformed melanocytes, along with the lack of p53 mutation, implies a cell type-specific role for INK4a-ARF that may not be complemented by other lesions of the RB and p53 pathways. A mouse model of cutaneous melanoma has been generated previously through the combined effects of INK4a(Delta2/3) deficiency (null for INK4a and ARF) and melanocyte-specific expression of activated RAS (tyrosinase-driven H-RAS(V12G), Tyr-RAS). In this study, we made use of this Tyr-RAS allele to determine whether activated RAS can cooperate with p53 loss in melanoma genesis, whether such melanomas are biologically comparable to those arising in INK4a(Delta2/3-/-) mice, and whether tumor-associated mutations emerge in the p16(INK4a)-RB pathway in such melanomas. Here, we report that p53 inactivation can cooperate with activated RAS to promote the development of cutaneous melanomas that are clinically indistinguishable from those arisen on the INK4a(Delta2/3) null background. Genomewide analysis of RAS-induced p53 mutant melanomas by comparative genomic hybridization and candidate gene surveys revealed alterations of key components governing RB-regulated G(1)/S transition, including c-Myc, cyclin D1, cdc25a, and p21(CIP1). Consistent with the profile of c-Myc dysregulation, the reintroduction of p16(INK4a) profoundly reduced the growth of Tyr-RAS INK4a(Delta2/3-/-) tumor cells but had no effect on tumor cells derived from Tyr-RAS p53(-/-) melanomas. Together, these data validate a role for p53 inactivation in melanomagenesis and suggest that both the RB and p53 pathways function to suppress melanocyte transformation in vivo in the mouse.  相似文献   

16.
17.
Tumor suppression by Ink4a-Arf: progress and puzzles   总被引:34,自引:0,他引:34  
  相似文献   

18.
The ARF and p53 tumor suppressors mediate Myc-induced apoptosis and suppress lymphoma development in E mu-myc transgenic mice. Here we report that the proapoptotic Bcl-2 family member Bax also mediates apoptosis triggered by Myc and inhibits Myc-induced lymphomagenesis. Bax-deficient primary pre-B cells are resistant to the apoptotic effects of Myc, and Bax loss accelerates lymphoma development in E mu-myc transgenics in a dose-dependent fashion. Eighty percent of lymphomas arising in wild-type E mu-myc transgenics have alterations in the ARF-Mdm2-p53 tumor suppressor pathway characterized by deletions in ARF, mutations or deletions of p53, and overexpression of Mdm2. The absence of Bax did not alter the frequency of biallelic deletion of ARF in lymphomas arising in E mu-myc transgenic mice or the rate of tumorigenesis in ARF-null mice. Furthermore, Mdm2 was overexpressed at the same frequency in lymphomas irrespective of Bax status, suggesting that Bax resides in a pathway separate from ARF and Mdm2. Strikingly, lymphomas from Bax-null E mu-myc transgenics lacked p53 alterations, whereas 27% of the tumors in Bax(+/-) E mu-myc transgenic mice contained p53 mutations or deletions. Thus, the loss of Bax eliminates the selection of p53 mutations and deletions, but not ARF deletions or Mdm2 overexpression, during Myc-induced tumorigenesis, formally demonstrating that Myc-induced apoptotic signals through ARF/Mdm2 and p53 must bifurcate: p53 signals through Bax, whereas this is not necessarily the case for ARF and Mdm2.  相似文献   

19.
The INK4a/ARF locus encodes two physically linked tumor suppressor proteins, p16(INK4a) and ARF, which regulate the RB and p53 pathways, respectively. The unusual genomic relationship of the open reading frames of these proteins initially fueled speculation that only one of the two was the true tumor suppressor, and loss of the other merely coincidental in cancer. Recent human and mouse genetic data, however, have firmly established that both proteins possess significant in vivo tumor suppressor activity, although there appear to be species- and cell-type specific differences between the two. For example, ARF plays a clear role in preventing Myc-induced lymphomagenesis in mice, whereas the role for p16(INK4a) is human carcinomas is more firmly established. In this review, I discuss the evolutionary history of the locus, the relative importance of these tumor suppressor genes in human cancer, and recent information suggesting novel biochemical and physiologic functions of these proteins in vivo.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号