首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
3.

Background

Anesthetic propofol has immunomodulatory effects, particularly in the area of anti-inflammation. Bacterial endotoxin lipopolysaccharide (LPS) induces inflammation through toll-like receptor (TLR) 4 signaling. We investigated the molecular actions of propofol against LPS/TLR4-induced inflammatory activation in murine RAW264.7 macrophages.

Methodology/Principal Findings

Non-cytotoxic levels of propofol reduced LPS-induced inducible nitric oxide synthase (iNOS) and NO as determined by western blotting and the Griess reaction, respectively. Propofol also reduced the production of tumor necrosis factor-α (TNF-α), interleukin (IL)-6, and IL-10 as detected by enzyme-linked immunosorbent assays. Western blot analysis showed propofol inhibited LPS-induced activation and phosphorylation of IKKβ (Ser180) and nuclear factor (NF)-κB (Ser536); the subsequent nuclear translocation of NF-κB p65 was also reduced. Additionally, propofol inhibited LPS-induced Akt activation and phosphorylation (Ser473) partly by reducing reactive oxygen species (ROS) generation; inter-regulation that ROS regulated Akt followed by NF-κB activation was found to be crucial for LPS-induced inflammatory responses in macrophages. An in vivo study using C57BL/6 mice also demonstrated the anti-inflammatory properties against LPS in peritoneal macrophages.

Conclusions/Significance

These results suggest that propofol reduces LPS-induced inflammatory responses in macrophages by inhibiting the interconnected ROS/Akt/IKKβ/NF-κB signaling pathways.  相似文献   

4.
Chi F  Bo T  Wu CH  Jong A  Huang SH 《PloS one》2012,7(4):e35862

Background

IbeA-induced NF-κB signaling through its primary receptor vimentin as well as its co-receptor PSF is required for meningitic E. coli K1 penetration and leukocyte transmigration across the blood-brain barrier (BBB), which are the hallmarks of bacterial meningitis. However, it is unknown how vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB, which are required for bacteria-mediated pathogenicities.

Methodology/Principal Findings

IbeA-induced E. coli K1 invasion, polymorphonuclear leukocyte (PMN) transmigration and IKK/NF-κB activation are blocked by Caffeic acid phenethyl ester (CAPE), an inhibitor of NF-κB. IKKα/β phosphorylation is blocked by ERK inhibitors. Co-immunoprecipitation analysis shows that vimentin forms a complex with IκB, NF-κB and tubulins in the resting cells. A dissociation of this complex and a simultaneous association of PSF with NF-κB could be induced by IbeA in a time-dependent manner. The head domain of vimentin is required for the complex formation. Two cytoskeletal components, vimentin filaments and microtubules, contribute to the regulation of NF-κB. SiRNA-mediated knockdown studies demonstrate that IKKα/β phosphorylation is completely abolished in HBMECs lacking vimentin and PSF. Phosphorylation of ERK and nuclear translocation of NF-κB are entirely dependent on PSF. These findings suggest that vimentin and PSF cooperatively contribute to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB activation. PSF is essential for translocation of NF-κB and ERK to the nucleus.

Conclusion/Significance

These findings reveal previously unappreciated facets of the IbeA-binding proteins. Cooperative contributions of vimentin and PSF to IbeA-induced cytoplasmic activation and nuclear translocation of NF-κB may represent a new paradigm in pathogen-induced signal transduction and lead to the development of novel strategies for the prevention and treatment of bacterial meningitis.  相似文献   

5.
6.
Pan L  Li Y  Jia L  Qin Y  Qi G  Cheng J  Qi Y  Li H  Du J 《PloS one》2012,7(4):e35315

Background

Cathepsin S (Cat S) is overexpressed in human atherosclerotic and aneurysmal tissues and may contributes to degradation of extracellular matrix, especially elastin, in inflammatory diseases. We aimed to define the role of Cat S in cardiac inflammation and fibrosis induced by angiotensin II (Ang II) in mice.

Methods and Results

Cat S-knockout (Cat S−/−) and littermate wild-type (WT) C57BL/6J mice were infused continuously with Ang II (750 ng/kg/min) or saline for 7 days. Cat S−/− mice showed severe cardiac fibrosis, including elevated expression of collagen I and α-smooth muscle actin (α-SMA), as compared with WT mice. Moreover, macrophage infiltration and expression of inflammatory cytokines (tumor necrosis factor α, transforming growth factor β and interleukin 1β) were significantly greater in Cat S−/− than WT hearts. These Ang II-induced effects in Cat S−/− mouse hearts was associated with abnormal accumulation of autophagosomes and reduced clearance of damaged mitochondria, which led to increased levels of reactive oxygen species (ROS) and activation of nuclear factor-kappa B (NF-κB) in macrophages.

Conclusion

Cat S in lysosomes is essential for mitophagy processing in macrophages, deficiency in Cat S can increase damaged mitochondria and elevate ROS levels and NF-κB activity in hypertensive mice, so it regulates cardiac inflammation and fibrosis.  相似文献   

7.
8.

Background

Maintenance of healthy bone requires the balanced activities of osteoclasts (OCs), which resorb bone, and osteoblasts, which build bone. Disproportionate action of OCs is responsible for the bone loss associated with postmenopausal osteoporosis and rheumatoid arthritis. NF-κB inducing kinase (NIK) controls activation of the alternative NF-κB pathway, a critical pathway for OC differentiation. Under basal conditions, TRAF3-mediated NIK degradation prevents downstream signaling, and disruption of the NIK:TRAF3 interaction stabilizes NIK leading to constitutive activation of the alternative NF-κB pathway.

Methodology/Principal Findings

Using transgenic mice with OC-lineage expression of NIK lacking its TRAF3 binding domain (NT3), we now find that alternative NF-κB activation enhances not only OC differentiation but also OC function. Activating NT3 with either lysozyme M Cre or cathepsinK Cre causes high turnover osteoporosis with increased activity of OCs and osteoblasts. In vitro, NT3-expressing precursors form OCs more quickly and at lower doses of RANKL. When cultured on bone, they exhibit larger actin rings and increased resorptive activity. OC-specific NT3 transgenic mice also have an exaggerated osteolytic response to the serum transfer model of arthritis.

Conclusions

Constitutive activation of NIK drives enhanced osteoclastogenesis and bone resorption, both in basal conditions and in response to inflammatory stimuli.  相似文献   

9.
10.

Background

Nitrosylcobalamin (NO-Cbl) is a chemotherapeutic pro-drug derived from vitamin B12 that preferentially delivers nitric oxide (NO) to tumor cells, based upon increased receptor expression. NO-Cbl induces Apo2L/TRAIL-mediated apoptosis and inhibits survival signaling in a variety of malignant cell lines. Chemotherapeutic agents often simultaneously induce an apoptotic signal and activation of NF-κB, which has the undesired effect of promoting cell survival. The specific aims of this study were to 1) measure the anti-tumor effects of NO-Cbl alone and in combination with conventional chemotherapeutic agents, and to 2) examine the mechanism of action of NO-Cbl as a single agent and in combination therapy.

Methodology

Using anti-proliferative assays, electrophoretic mobility shift assay (EMSA), immunoblot analysis and kinase assays, we demonstrate an increase in the effectiveness of chemotherapeutic agents in combination with NO-Cbl as a result of suppressed NF-κB activation.

Results

Eighteen chemotherapeutic agents were tested in combination with NO-Cbl, in thirteen malignant cell lines, resulting in a synergistic anti-proliferative effect in 78% of the combinations tested. NO-Cbl pre-treatment resulted in decreased NF-κB DNA binding activity, inhibition of IκB kinase (IKK) enzymatic activity, decreased AKT activation, increased caspase-8 and PARP cleavage, and decreased cellular XIAP protein levels.

Conclusion

The use of NO-Cbl to inhibit survival signaling may enhance drug efficacy by preventing concomitant activation of NF-κB or AKT.  相似文献   

11.
Chen CC  Hung TH  Wang YH  Lin CW  Wang PY  Lee CY  Chen SF 《PloS one》2012,7(1):e30294

Background

Traumatic brain injury (TBI) initiates a neuroinflammatory cascade that contributes to neuronal damage and behavioral impairment. This study was undertaken to investigate the effects of wogonin, a flavonoid with potent anti-inflammatory properties, on functional and histological outcomes, brain edema, and toll-like receptor 4 (TLR4)- and nuclear factor kappa B (NF-κB)-related signaling pathways in mice following TBI.

Methodology/Principal Findings

Mice subjected to controlled cortical impact injury were injected with wogonin (20, 40, or 50 mg·kg−1) or vehicle 10 min after injury. Behavioral studies, histology analysis, and measurement of blood-brain barrier (BBB) permeability and brain water content were carried out to assess the effects of wogonin. Levels of TLR4/NF-κB-related inflammatory mediators were also examined. Treatment with 40 mg·kg−1 wogonin significantly improved functional recovery and reduced contusion volumes up to post-injury day 28. Wogonin also significantly reduced neuronal death, BBB permeability, and brain edema beginning at day 1. These changes were associated with a marked reduction in leukocyte infiltration, microglial activation, TLR4 expression, NF-κB translocation to nucleus and its DNA binding activity, matrix metalloproteinase-9 activity, and expression of inflammatory mediators, including interleukin-1β, interleukin-6, macrophage inflammatory protein-2, and cyclooxygenase-2.

Conclusions/Significance

Our results show that post-injury wogonin treatment improved long-term functional and histological outcomes, reduced brain edema, and attenuated the TLR4/NF-κB-mediated inflammatory response in mouse TBI. The neuroprotective effects of wogonin may be related to modulation of the TLR4/NF-κB signaling pathway.  相似文献   

12.
Meng Z  Lou S  Tan J  Xu K  Jia Q  Zheng W 《PloS one》2012,7(3):e33597

Objective

To evaluate changes of nuclear factor-kappa B (NF-κB) during radioiodine 131 (131I) therapy and whether NF-κB inhibition could enhance 131I-induced apoptosis in differentiated thyroid cancer (DTC) cells in a synergistic manner.

Methods

Three human DTC cell lines were used. NF-κB inhibition was achieved by using a NF-κB inhibitor (Bay 11-7082) or by p65 siRNA transfection. Methyl-thiazolyl-tetrazolium assay was performed for cell viability assessment. DNA-binding assay, luciferase reporter assay, and Western blot were adopted to determine function and expression changes of NF-κB. Then NF-κB regulated anti-apoptotic factors XIAP, cIAP1, and Bcl-xL were measured. Apoptosis was analyzed by Western blot for caspase 3 and PARP, and by flow cytometry as well. An iodide uptake assay was performed to determine whether NF-κB inhibition could influence radioactive iodide uptake.

Results

The methyl-thiazolyl-tetrazolium assay showed significant decrease of viable cells by combination therapy than by mono-therapies. The DNA-binding assay and luciferase reporter assay showed enhanced NF-κB function and reporter gene activities due to 131I, yet significant suppression was achieved by NF-κB inhibition. Western blot proved 131I could increase nuclear NF-κB concentration, while NF-κB inhibition reduced NF-κB concentration. Western blot also demonstrated significant up-regulation of XIAP, cIAP1, and Bcl-xL after 131I therapy. And inhibition of NF-κB could significantly down-regulate these factors. Finally, synergism induced by combined therapy was displayed by significant enhancements of cleaved caspase 3 and PARP from Western blot, and of Annexin V positively staining from flow cytometry. The iodine uptake assay did not show significant changes when NF-κB was inhibited.

Conclusion

We demonstrated that 131I could induce NF-κB activation, which would attenuate 131I efficacy in DTC cells. NF-κB inhibition by Bay 11-7082 or by p65 siRNA transfection was effective in suppressing NF-κB regulated anti-apoptotic changes and in combined regimen apoptosis was achieved synergistically.  相似文献   

13.
Jiang A  Liu C  Song Y  Liu F  Li Q  Wu Z  Yu L  Lv Y 《PloS one》2011,6(9):e24960

Background

We have observed at our clinical work that acute lung injury (ALI) often occurs in patients transplanted with donor livers persevered for long time. So, we conducted this study to investigate the influence of cold preservation time (CPT) of donor liver on ALI induced by liver transplantation (LT), and further study the role of nuclear factor-κB (NF-κB) in the process.

Methods

Wistar rats were used as donors and recipients to establish orthotopic rat liver transplantation models. Donor livers were preserved at 4°C for different lengths of time. The effect of NF-κB inhibitor, ammonium pyrrolidinedithiocarbamate (PDTC), on ALI was detected. All samples were harvested after 3 h reperfusion. The severity of liver injury was evaluated first. The expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in liver tissue and liver outflow serum were measured respectively. The severity indexes of ALI, the activity of NF-κB and inhibitor-κBα (I-κBα) in lung/liver were measured accordingly.

Results

With the prolonged liver CPT, the liver damage associated indexes and ALI-related indexes all increased significantly. TNF-α and IL-1β in liver outflow serum increased accordingly, and the activity of NF-κB in liver/lung increased correspondingly. All these ALI-associated indexes could be partially reversed by the use of PDTC.

Conclusions

Extended CPT aggravates the damage of donor liver and induces the expressions of TNF-α and IL-1β in liver. These inflammatory factors migrate to lung via liver outflow blood and activate NF-κB in lung, inducing ALI finally. NF-κB may play a critical role in LT-related ALI. Patients with or at risk of ALI may benefit from acute anti-inflammatory treatment with PDTC.  相似文献   

14.
15.

Background

Increased levels of NF-κB are hallmarks of pancreatic ductal adenocarcinoma (PDAC) and both classical and alternative NF-κB activation pathways have been implicated.

Methodology/Principal Findings

Here we show that activation of the alternative pathway is a source for the high basal NF-κB activity in PDAC cell lines. Increased activity of the p52/RelB NF-κB complex is mediated through stabilization and activation of NF-κB-inducing kinase (NIK). We identify proteasomal downregulation of TNF receptor-associated factor 2 (TRAF2) as a mechanism by which levels of active NIK are increased in PDAC cell lines. Such upregulation of NIK expression and activity levels relays to increased proliferation and anchorage-independent growth, but not migration or survival of PDAC cells.

Conclusions/Significance

Rapid growth is one characteristic of pancreatic cancer. Our data indicates that the TRAF2/NIK/NF-κB2 pathway regulates PDAC cell tumorigenicity and could be a valuable target for therapy of this cancer.  相似文献   

16.
Ma X  Yang L  Xiao L  Tang M  Liu L  Li Z  Deng M  Sun L  Cao Y 《PloS one》2011,6(11):e24647

Background

The latent membrane protein 1 (LMP1) encoded by EBV is expressed in the majority of EBV-associated human malignancies and has been suggested to be one of the major oncogenic factors in EBV-mediated carcinogenesis. In previous studies we experimentally demonstrated that down-regulation of LMP1 expression by DNAzymes could increase radiosensitivity both in cells and in a xenograft NPC model in mice.

Results

In this study we explored the molecular mechanisms underlying the radiosensitization caused by the down-regulation of LMP1 in nasopharyngeal carcinoma. It was confirmed that LMP1 could up-regulate ATM expression in NPCs. Bioinformatic analysis of the ATM ptomoter region revealed three tentative binding sites for NF-κB. By using a specific inhibitor of NF-κB signaling and the dominant negative mutant of IkappaB, it was shown that the ATM expression in CNE1-LMP1 cells could be efficiently suppressed. Inhibition of LMP1 expression by the DNAzyme led to attenuation of the NF-κB DNA binding activity. We further showed that the silence of ATM expression by ATM-targeted siRNA could enhance the radiosensitivity in LMP1 positive NPC cells.

Conclusions

Together, our results indicate that ATM expression can be regulated by LMP1 via the NF-κB pathways through direct promoter binding, which resulted in the change of radiosensitivity in NPCs.  相似文献   

17.
18.

Introduction

Glucocorticoid (GC) therapy remains important in improving the prognosis of patients with systemic lupus erythematosus (SLE). However, some patients do not achieve an effective response with GC treatment, creating an obstacle to the remission of SLE. Identification of the underlying mechanisms responsible for steroid resistance can be significant. Macrophage migration inhibitory factor (MIF) arouses our interest because of its reciprocal relationship with GCs. In the present study, we investigated for the first time whether MIF correlated with steroid resistance in SLE and explored potential mechanisms of action.

Methods

Sixty-two patients with SLE (40 steroid sensitive and 22 steroid resistant) and 21 normal controls were recruited. Serum levels of MIF were measured by ELISA. Cytosolic MIF and IκB expression in peripheral blood mononuclear cells (PBMCs) were determined by western blotting. The electrophoretic mobility shift assay was assessed by NF-κB in nuclear aliquots. Gene silencing was applied to reduce expression of MIF in PBMCs in steroid-resistant patients. PBMCs obtained from steroid-sensitive patients were treated with recombinant human MIF of different concentrations.

Results

MIF levels in serum and PBMCs were higher in steroid-resistant patients compared with steroid-sensitive patients and controls. In contrast to the steroid-sensitive group, NF-κB levels were significantly higher and IκB levels lower in steroid-resistant patients. After MIF gene silencing, IκB levels in cells from steroid-resistant patients were increased. In steroid-sensitive patients, a decrease in IκB levels and an increase in NF-κB expression from baseline were detected in PBMCs treated with a higher concentration of recombinant human MIF. Treatment with recombinant human MIF did not regulate expression of IκB and NF-κB in PBMCs from patients treated with an anti-MIF monoclonal antibody.

Conclusions

Our results indicated that MIF may play a role in the formation of steroid resistance in SLE by affecting the NF-κB/IκB signaling cascade. As a regulator of glucocorticoid sensitivity, MIF may be a potential target for steroid sparing.  相似文献   

19.

Background

Dengue virus (DENV) infection is the most common mosquito-borne viral disease threatening human health around the world. Type I interferon (IFN) and cytokine production are crucial in the innate immune system. We previously reported that DENV serotype 2 (DENV-2) induced low levels of interferon regulatory factor 3 and NF-κB activation, thus leading to reduced production of IFN-β in the early phase of infection. Here, we determined whether DENV infection not only hampers type I IFN activation but also cytokine production triggered by Toll-like receptor (TLR) signaling.

Methodology/Principal Findings

We used quantitative RT-PCR and found that only low levels of IFN-β and inflammatory cytokines such as interleukin 10 (IL-10), IL-12 and tumor necrosis factor α (TNFα) mRNA were detected in DENV-2–infected bone-marrow–derived dendritic cells. Furthermore, DENV-2 infection repressed cytokine production triggered by TLR signaling. To elucidate the molecular mechanisms underlying this suppression event, we measured NF-κB activation by p65 nuclear translocation and luciferase reporter assay and found that NF-κB activation triggered by TLR ligands was blocked by DENV-2 infection. As well, extracellular signal-regulated kinase (ERK) activity was suppressed by DENV-2 infection.

Conclusions/Significance

To downregulate the host innate immunity, DENV-2 by itself is a weak inducer of type I IFN and cytokines, furthermore DENV-2 can also block the TLR-triggered ERK–NF-κB activation and cytokine production.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号