首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 374 毫秒
1.
The AddAB enzyme is important to homologous DNA recombination in Bacillus subtilis, where it is thought to be the functional counterpart of the RecBCD enzyme of Escherichia coli. In vivo, AddAB responds to a specific five-nucleotide sequence (5'-AGCGG-3' or its complement) in a manner analogous to the response of the RecBCD enzyme to interaction with chi sequences. Here, we show that purified AddAB enzyme is able to load at a double-stranded DNA end and is both a DNA helicase and nuclease, whose combined action results in the degradation of both strands of the DNA duplex. During translocation, recognition of the properly oriented sequence 5'-AGCGG-3' causes attenuation of the AddAB enzyme nuclease activity that is responsible for degradation of the strand 3'-terminal at the entry site. Therefore, we conclude that 5'-AGCGG-3' is the B. subtilis Chi site and it is hereafter referred to as chi(Bs). After encountering chi(Bs), both the degradation of the 5'-terminal strand and the helicase activity persist. Thus, processing of a double-stranded DNA end by the AddAB enzyme produces a duplex DNA molecule with a protruding 3'-terminated single-stranded tail, a universal intermediate of the recombination process.  相似文献   

2.
RecBCD enzyme switches lead motor subunits in response to chi recognition   总被引:1,自引:0,他引:1  
RecBCD is a DNA helicase comprising two motor subunits, RecB and RecD. Recognition of the recombination hotspot, chi, causes RecBCD to pause and reduce translocation speed. To understand this control of translocation, we used single-molecule visualization to compare RecBCD to the RecBCD(K177Q) mutant with a defective RecD motor. RecBCD(K177Q) paused at chi but did not change its translocation velocity. RecBCD(K177Q) translocated at the same rate as the wild-type post-chi enzyme, implicating RecB as the lead motor after chi. P1 nuclease treatment eliminated the wild-type enzyme's velocity changes, revealing a chi-containing ssDNA loop preceding chi recognition and showing that RecD is the faster motor before chi. We conclude that before chi, RecD is the lead motor but after chi, the slower RecB motor leads, implying a switch in motors at chi. We suggest that degradation of foreign DNA needs fast translocation, whereas DNA repair uses slower translocation to coordinate RecA loading onto ssDNA.  相似文献   

3.
Homologous recombination in Bacillus subtilis requires the product of the addA and addB genes, the AddAB enzyme. This enzyme, which is both a helicase and a powerful nuclease, is thought to be the counterpart of the Escherichia coli RecBCD enzyme. From this analogy, it is expected that the nuclease activity of AddAB can be downregulated by a specific DNA sequence, which would correspond to the chi site in E. coli . Using protection of linear double-stranded DNA as a criterion, we identified the five-nucleotide sequence 5'-AGCGG-3', or its complement 5'-CCGCT-3', as being sufficient for AddAB nuclease attenuation. We have shown further that this attenuation occurs only if the sequence is properly oriented with respect to the translocating AddAB enzyme. Finally, inspection of the complete B. subtilis genome revealed that this five-nucleotide sequence is over-represented and is, in a majority of cases, co-oriented with DNA replication. Based on these observations, we propose that 5'-AGCGG-3', or its complement, is the B. subtilis analogue of the E. coli chi sequence.  相似文献   

4.
RecBCD enzyme is a heterotrimeric helicase/nuclease that initiates homologous recombination at double-stranded DNA breaks. Several of its activities are regulated by the DNA sequence chi (5'-GCTGGTGG-3'), which is recognized in cis by the translocating enzyme. When RecBCD enzyme encounters chi, the intensity and polarity of its nuclease activity are changed, and the enzyme gains the ability to load RecA protein onto the chi-containing, unwound single-stranded DNA. Here, we show that interaction with chi also affects translocation by RecBCD enzyme. By observing translocation of individual enzymes along single molecules of DNA, we could see RecBCD enzyme pause precisely at chi. Furthermore, and more unexpectedly, after pausing at chi, the enzyme continues translocating but at approximately one-half the initial rate. We propose that interaction with chi results in an enzyme in which one of the two motor subunits, likely the RecD motor, is uncoupled from the holoenzyme to produce the slower translocase.  相似文献   

5.
RecBCD enzyme is a heterotrimeric helicase/nuclease that initiates homologous recombination at double-stranded DNA breaks. The enzyme is driven by two motor subunits, RecB and RecD, translocating on opposite single-strands of the DNA duplex. Here we provide evidence that, although both motor subunits can support the translocation activity for the enzyme, the activity of the RecB subunit is necessary for proper function of the enzyme both in vivo and in vitro. We demonstrate that the RecBCD(K177Q) enzyme, in which RecD helicase is disabled by mutation of the ATPase active site, complements recBCD deletion in vivo and displays all of the enzymatic activities that are characteristic of the wild-type enzyme in vitro. These include helicase and nuclease activities and the abilities to recognize the recombination hotspot chi and to coordinate the loading of RecA protein onto the ssDNA it produces. In contrast, the RecB(K29Q)CD enzyme, carrying a mutation in the ATPase site of RecB helicase, fails to complement recBCD deletion in vivo. We further show that even though RecB(K29Q)CD enzyme displays helicase and nuclease activities, its inability to translocate along the 3'-terminated strand results in the failure to recognize chi and to load RecA protein. Our findings argue that translocation by the RecB motor is required to deliver RecC subunit to chi, whereas the RecD subunit has a dispensable motor activity but an indispensable regulatory function.  相似文献   

6.
Homologous recombination and double-stranded DNA break repair in Escherichia coli are initiated by the multifunctional RecBCD enzyme. After binding to a double-stranded DNA end, the RecBCD enzyme unwinds and degrades the DNA processively. This processing is regulated by the recombination hot spot, Chi (chi: 5'-GCTGGTGG-3'), which induces a switch in the polarity of DNA degradation and activates RecBCD enzyme to coordinate the loading of the DNA strand exchange protein, RecA, onto the single-stranded DNA products of unwinding. Recently, a single mutation in RecB, Asp-1080 --> Ala, was shown to create an enzyme (RecB(D1080A)CD) that is a processive helicase but not a nuclease. Here we show that the RecB(D1080A)CD enzyme is also unable to coordinate the loading of the RecA protein, regardless of whether chi sites are present in the DNA. However, the RecB(D1080A)CD enzyme does respond to chi sites by inactivating in a chi-dependent manner. These data define a locus of the RecBCD enzyme that is essential not only for nuclease function but also for the coordination of RecA protein loading.  相似文献   

7.
E. coli RecBCD, a helicase/nuclease involved in double stranded (ds) DNA break repair, binds to a dsDNA end and melts out several DNA base pairs (bp) using only its binding free energy. We examined RecBCD-DNA initiation complexes using thermodynamic and structural approaches. Measurements of enthalpy changes for RecBCD binding to DNA ends possessing pre-melted ssDNA tails of increasing length suggest that RecBCD interacts with ssDNA as long as 17–18 nucleotides and can melt at least 10–11 bp upon binding a blunt DNA end. Cryo-EM structures of RecBCD alone and in complex with a blunt-ended dsDNA show significant conformational heterogeneities associated with the RecB nuclease domain (RecBNuc) and the RecD subunit. In the absence of DNA, 56% of RecBCD molecules show no density for the RecB nuclease domain, RecBNuc, and all RecBCD molecules show only partial density for RecD. DNA binding reduces these conformational heterogeneities, with 63% of the molecules showing density for both RecD and RecBNuc. This suggests that the RecBNuc domain is dynamic and influenced by DNA binding. The major RecBCD-DNA structural class in which RecBNuc is docked onto RecC shows melting of at least 11 bp from a blunt DNA end, much larger than previously observed. A second structural class in which RecBNuc is not docked shows only four bp melted suggesting that RecBCD complexes transition between states with different extents of DNA melting and that the extent of melting regulates initiation of helicase activity.  相似文献   

8.
In Escherichia coli, chi (5'-GCTGGTGG-3') is a recombination hotspot recognized by the RecBCD enzyme. Recognition of chi reduces both nuclease activity and translocation speed of RecBCD and activates RecA-loading ability. RecBCD has two motor subunits, RecB and RecD, which act simultaneously but independently. A longstanding hypothesis to explain the changes elicited by chi interaction has been "ejection" of the RecD motor from the holoenzyme at chi. To test this proposal, we visualized individual RecBCD molecules labeled via RecD with a fluorescent nanoparticle. We could directly see these labeled, single molecules of RecBCD moving at up to 1835 bp/s (approximately 0.6 microm/s). Those enzymes translocated to chi, paused, and continued at reduced velocity, without loss of RecD. We conclude that chi interaction induces a conformational change, resulting from binding of chi to RecC, and not from RecD ejection. This change is responsible for alteration of RecBCD function that persists for the duration of DNA translocation.  相似文献   

9.
The RecBCD enzyme of Escherichia coli is an ATP-dependent DNA exonuclease and a helicase. Its exonuclease activity is subject to regulation by an octameric nucleotide sequence called chi. In this study, site-directed mutations were made in the carboxyl-terminal nuclease domain of the RecB subunit, and their effects on RecBCD's enzymatic activities were investigated. Mutation of two amino acid residues, Asp(1067) and Lys(1082), abolished nuclease activity on both single- and double-stranded DNA. Together with Asp(1080), these residues compose a motif that is similar to one shown to form the active site of several restriction endonucleases. The nuclease reactions catalyzed by the RecBCD enzyme should therefore follow the same mechanism as these restriction endonucleases. Furthermore, the mutant enzymes were unable to produce chi-specific fragments that are thought to result from the 3'-5' and 5'-3' single-stranded exonuclease activities of the enzyme during its reaction with chi-containing double-stranded DNA. The results show that the nuclease active site in the RecB C-terminal 30-kDa domain is the universal nuclease active site of RecBCD that is responsible for DNA degradation in both directions during the reaction with double-stranded DNA. A novel explanation for the observed nuclease polarity switch and RecBCD-DNA interaction is offered.  相似文献   

10.
To study the fate of linear DNA in Escherichia coli cells, we linearized plasmid DNA at a specific site in vivo and monitored its behavior in recA mutant cells deficient in recombinational repair. Earlier, we had found that in wild-type (WT) cells linearized DNA is degraded to completion by RecBCD nuclease. We had also found that in WT cells chi sites on linear DNA inhibit RecBCD degradation by turning off its nucleolytic activities. Now we report that chi sites do not work in the absence of the RecA protein, suggesting that RecA is required in vivo to turn off the degradative activities of the RecBCD enzyme. We also report that the degradation of linearized plasmid DNA, even devoid of chi sites, is never complete in recA cells. Investigation of this linear DNA stability indicates that a fraction of recA cells are recBC phenocopies due to ongoing chromosomal DNA degradation, which titrates RecBCD nuclease. A possible role for RecBCD-promoted DNA degradation in controlling chromosomal DNA replication in E. coli is discussed.  相似文献   

11.
AddAB and RecBCD-type helicase-nuclease complexes control the first stage of bacterial homologous recombination (HR) – the resection of double strand DNA breaks. A switch in the activities of the complexes to initiate repair by HR is regulated by a short, species-specific DNA sequence known as a Crossover Hotspot Instigator (Chi) site. It has been shown that, upon encountering Chi, AddAB and RecBCD pause translocation before resuming at a reduced rate. Recently, the structure of B.subtilis AddAB in complex with its regulatory Chi sequence revealed the nature of Chi binding and the paused translocation state. Here the structural features associated with Chi binding are described in greater detail and discussed in relation to the related E.coli RecBCD system.  相似文献   

12.
AddAB is a helicase-nuclease that processes double-stranded DNA breaks for repair by homologous recombination. This process is modulated by Chi recombination hotspots: specific DNA sequences that attenuate the nuclease activity of the translocating AddAB complex to promote downstream recombination. Using a combination of kinetic and imaging techniques, we show that AddAB translocation is not coupled to DNA unwinding in the absence of single-stranded DNA binding proteins because nascent single-stranded DNA immediately re-anneals behind the moving enzyme. However, recognition of recombination hotspot sequences during translocation activates unwinding by coupling these activities, thereby ensuring the downstream formation of single-stranded DNA that is required for RecA-mediated recombinational repair. In addition to their implications for the mechanism of double-stranded DNA break repair, these observations may affect our implementation and interpretation of helicase assays and our understanding of helicase mechanisms in general.  相似文献   

13.
The equilibrium binding of Escherichia coli RecBC and RecBCD helicases to duplex DNA ends containing varying lengths of polyethylene glycol (PEG) spacers within pre-formed 3'-single-stranded (ss) DNA ((dT)n) tails was studied. These studies were designed to test a previous proposal that the 3'-(dT)n tail can be looped out upon binding RecBC and RecBCD for 3'-ssDNA tails with n>or=6 nucleotides. Equilibrium binding of protein to unlabeled DNA substrates with ends containing PEG-substituted 3'-ssDNA tails was examined by competition with a Cy3-labeled reference DNA which undergoes a Cy3 fluorescence enhancement upon protein binding. We find that the binding affinities of both RecBC and RecBCD for a DNA end are unaffected upon substituting PEG for the ssDNA between the sixth and the final two nucleotides of the 3'-(dT)n tail. However, placing PEG at the end of the 3'-(dT)n tail increases the binding affinities to their maximum values (i.e. the same as binding constants for RecBC or RecBCD to a DNA end with only a 3'-(dT)6 tail). Equilibrium binding studies of a RecBC mutant containing a nuclease domain deletion, RecB(Deltanuc)C, suggest that looping of the 3'-tail (when n>or=6 nucleotides) occurs even in the absence of the RecB nuclease domain, although the nuclease domain stabilizes such loop formation. Computer modeling of the RecBCD-DNA complexes suggests that the loop in the 3'-ssDNA tail may form at the RecB/RecC interface. Based on these results we suggest a model for how a loop in the 3'-ssDNA tail might form upon encounter of a "Chi" recognition sequence during unwinding of DNA by the RecBCD helicase.  相似文献   

14.
The AddAB helicase and nuclease complex is used for repairing double-strand DNA breaks in the many bacteria that do not possess RecBCD. Here, we show that AddAB, from the Gram-negative opportunistic pathogen Bacteroides fragilis, can rescue the ultraviolet sensitivity of an Escherichia coli recBCD mutant and that addAB is required for survival of B. fragilis following DNA damage. Using single-molecule observations we demonstrate that AddAB can translocate along DNA at up to 250 bp per second and can unwind an average of 14 000 bp, with some complexes capable of unwinding 40 000 bp. These results demonstrate the importance of processivity for facilitating encounters with recognition sequences that modify enzyme function during homologous recombination.  相似文献   

15.
RecBCD has two conflicting roles in Escherichia coli. (i) As ExoV, it is a potent double-stranded (ds)DNA exonuclease that destroys linear DNA produced by restriction of foreign DNA. (ii) As a recombinase, it promotes repair of dsDNA breaks and genetic recombination in the vicinity of chi recombination hot-spots. These paradoxical roles are accommodated by chi-dependent attenuation of RecBCD exonuclease activity and concomitant conversion of the enzyme to a recombinase. To challenge the proposal that chi converts RecBCD from a destructive exonuclease to a recombinogenic helicase, we mutated the nuclease catalytic centre of RecB and tested the resulting mutants for genetic recombination and DNA repair in vivo. We predicted that, if nuclease activity inhibits recombination and helicase activity is sufficient for recombination, the mutants would be constitutive recombinases, as has been seen in recD null mutants. Conversely, if nuclease activity is required, the mutants would be recombination deficient. Our results indicate that 5' --> 3' exonuclease activity is essential for recombination by RecBCD at chi recombination hot-spots and at dsDNA ends in recD mutants. In the absence of RecB-dependent nuclease function, recombination becomes entirely dependent on the 5' --> 3' single-stranded (ss)DNA exonuclease activity of RecJ and the helicase activity of RecBC(D).  相似文献   

16.
In bacterial cells, processing of double-stranded DNA breaks for repair by homologous recombination is dependent upon the recombination hotspot sequence Chi and is catalysed by either an AddAB- or RecBCD-type helicase-nuclease. Here, we report the crystal structure of AddAB bound to DNA. The structure allows identification of a putative Chi-recognition site in an inactivated helicase domain of the AddB subunit. By generating mutant protein complexes that do not respond to Chi, we show that residues responsible for Chi recognition are located in positions equivalent to the signature motifs of a conventional helicase. Comparison with the related RecBCD complex, which recognizes a different Chi sequence, provides further insight into the structural basis for sequence-specific ssDNA recognition. The structure suggests a simple mechanism for DNA break processing, explains how AddAB and RecBCD can accomplish the same overall reaction with different sets of functional modules and reveals details of the role of an Fe-S cluster in protein stability and DNA binding.  相似文献   

17.
To understand how bulky adducts might perturb DNA helicase function, three distinct DNA-binding agents were used to determine the effects of DNA alkylation on a DNA helicase. Adozelesin, ecteinascidin 743 (Et743) and hedamycin each possess unique structures and sequence selectivity. They bind to double-stranded DNA and alkylate one strand of the duplex in cis, adding adducts that alter the structure of DNA significantly. The results show that Et743 was the most potent inhibitor of DNA unwinding, followed by adozelesin and hedamycin. Et743 significantly inhibited unwinding, enhanced degradation of DNA, and completely eliminated the ability of the translocating RecBCD enzyme to recognize and respond to the recombination hotspot chi. Unwinding of adozelesin-modified DNA was accompanied by the appearance of unwinding intermediates, consistent with enzyme entrapment or stalling. Further, adozelesin also induced "apparent" chi fragment formation. The combination of enzyme sequestering and pseudo-chi modification of RecBCD, results in biphasic time-courses of DNA unwinding. Hedamycin also reduced RecBCD activity, albeit at increased concentrations of drug relative to either adozelesin or Et743. Remarkably, the hedamycin modification resulted in constitutive activation of the bottom-strand nuclease activity of the enzyme, while leaving the ability of the translocating enzyme to recognize and respond to chi largely intact. Finally, the results show that DNA alkylation does not significantly perturb the allosteric interaction that activates the enzyme for ATP hydrolysis, as the efficiency of ATP utilization for DNA unwinding is affected only marginally. These results taken together present a unique response of RecBCD enzyme to bulky DNA adducts. We correlate these effects with the recently determined crystal structure of the RecBCD holoenzyme bound to DNA.  相似文献   

18.
The RecB and RecD subunits of the RecBCD enzyme of Escherichia coli contain amino acid sequences similar to a consensus mononucleotide binding motif found in a large number of other enzymes. We have constructed by site-directed mutagenesis a lysine-to-glutamine mutation in this sequence in the RecB protein. The mutant enzyme (RecB-K29Q-CD) has essentially no nuclease or ATP hydrolysis activity on double-stranded DNA, showing the importance of RecB for unwinding double-stranded DNA. However, ATP hydrolysis stimulated by single-stranded DNA is reduced by only about 5-8-fold compared to the wild-type, nuclease activity on single-stranded DNA is reduced by less than 2-fold, and the nuclease activity of the RecB-K29Q-CD enzyme requires ATP. The effects of the RecB mutation suggest that the RecD protein hydrolyzes ATP and can stimulate the RecBCD enzyme nuclease activity on single-stranded DNA.  相似文献   

19.
In Escherichia coli, homologous recombination initiated at double-stranded DNA breaks requires the RecBCD enzyme, a multifunctional heterotrimeric complex that possesses processive helicase and exonuclease activities. Upon encountering the DNA regulatory sequence, chi, the enzymatic properties of RecBCD enzyme are altered. Its helicase activity is reduced, the 3'-->5'nuclease activity is attenuated, the 5'-->3' nuclease activity is up-regulated, and it manifests an ability to load RecA protein onto single-stranded DNA. The net result of these changes is the production of a highly recombinogenic structure known as the presynaptic filament. Previously, we found that the recC1004 mutation alters chi-recognition so that this mutant enzyme recognizes an altered chi sequence, chi*, which comprises seven of the original nucleotides in chi, plus four novel nucleotides. Although some consequences of this mutant enzyme-mutant chi interaction could be detected in vivo and in vitro, stimulation of recombination in vivo could not. To resolve this seemingly contradictory observation, we examined the behavior of a RecA mutant, RecA(730), that displays enhanced biochemical activity in vitro and possesses suppressor function in vivo. We show that the recombination deficiency of the RecBC(1004)D-chi* interaction can be overcome by the enhanced ability of RecA(730) to assemble on single-stranded DNA in vitro and in vivo. These data are consistent with findings showing that the loading of RecA protein by RecBCD is necessary in vivo, and they show that RecA proteins with enhanced single-stranded DNA-binding capacity can partially bypass the need for RecBCD-mediated loading.  相似文献   

20.
The AddAB and RecBCD helicase-nucleases are related enzymes prevalent among bacteria but not eukaryotes and are instrumental in the repair of DNA double-strand breaks and in genetic recombination. Although these enzymes have been extensively studied both genetically and biochemically, inhibitors specific for this class of enzymes have not been reported. We developed a high-throughput screen based on the ability of phage T4 gene 2 mutants to grow in Escherichia coli only if the host RecBCD enzyme, or a related helicase-nuclease, is inhibited or genetically inactivated. We optimized this screen for use in 1536-well plates and screened 326,100 small molecules in the NIH molecular libraries sample collection for inhibitors of the Helicobacter pylori AddAB enzyme expressed in an E. coli recBCD deletion strain. Secondary screening used assays with cells expressing AddAB or RecBCD and a viability assay that measured the effect of compounds on cell growth without phage infection. From this screening campaign, 12 compounds exhibiting efficacy and selectivity were tested for inhibition of purified AddAB and RecBCD helicase and nuclease activities and in cell-based assays for recombination; seven were active in the 0.1-50 μM range in one or another assay. Compounds structurally related to two of these were similarly tested, and three were active in the 0.1-50 μM range. These compounds should be useful in further enzymatic, genetic, and physiological studies of these enzymes, both purified and in cells. They may also lead to useful antibacterial agents, since this class of enzymes is needed for successful bacterial infection of mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号