首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Lectins have been used to analyze variations in the distribution and density of exposed saccharides of the sperm plasma membrane during physiologic maturation and after ejaculation. Studies have been conducted in a number of nonprimate species but have been conducted to only a limited extent in nonhuman primates. In this study, pure suspensions of chimpanzee sperm from the caput and cauda epididymis and from the ejaculate were labeled with lectins conjugated to fluorescein isothiocyanate in order to visualize changes in the distribution of exposed membrane glycocomponents. The lectins used were Con A, DBA, RCA-I, and WGA. Con A binding showed minimal change during epididymal transit, with an increased binding to the flagellum after ejaculation. DBA binding was relatively constant in all specimens. RCA-I showed distinct changes in binding pattern between epididymal and ejaculated sperm. On ejaculated sperm strong fluorescence was limited to the posterior head and to the midpiece. WGA binding increased during epididymal passage and decreased after ejaculation. There appears to be a wide variety of saccharide groups available for lectin binding on the surface of epididymal and ejaculated chimpanzee sperm. The general similarity in binding patterns of caput and cauda epididymal chimpanzee sperm exposed to Con A and DBA might reflect the fact that sperm morphology does not change during epididymal transit in this species, thus implying a more stable membrane structure than is present in other primates so far studied.  相似文献   

2.
Ram sperm, isolated from the caput, corpus, and cauda epididymidis, plus ejaculated cells were washed free of loosely bound components and tested for their ability to bind fluorescein-conjugated lectins (Con A, SBA, RCA, PNA, ECA and WGA) as assessed by epiluminescent-fluorescence light microscopy and flow cytometry. Detailed preliminary studies established an appropriate lectin-to-sperm ratio and incubation conditions for quantitative comparisons of sperm cell types and permitted a detailed analysis of both the amount of lectin bound as well as its distribution on the various aspects of the cell surface. Con A (mannose positive) bound weakly over the entire surface, with little change associated with maturation in the male tract. SBA (N-acetylgalactosamine positive) bound moderately strongly to caput sperm, with an emphasis on the apical ridge portion of the cell; during epididymal transit this binding was greatly diminished and was regained upon ejaculation. RCA, PNA, and ECA (galactose positive) gave generally equivalent results, where initially strong binding to the entire sperm surface decreased (over all parts of the surface except the anterior head) during epididymal maturation, with no change associated with ejaculation. WGA (sialic acid positive) binding initially was weak, but increased with epididymal transit and ejaculation. In vitro incubations with beta-galactosidase and neuraminidase confirmed the assignments given above. These data, when coupled with previous reports describing the heterogeneous distribution of proteins and lipids and changes in their distribution associated with epididymal maturation, serve to quantitatively describe changes in those aspects of the cell surface that are probably responsible for the acquisition of the capacity of the sperm to bind successfully to the oocyte.  相似文献   

3.
The cell surface glycoproteins of goat epididymal maturing spermatozoa have been investigated using lectins as surface probes that interact with specific sugars with high affinity. Concanavalin A (ConA) and wheat-germ agglutinin (WGA) showed high affinity for mature cauda epididymal sperm agglutination, whereas RCA2, kidney beans lectin and peanut agglutinin caused much lower or little agglutination of the cells. The mature sperm exhibited markedly higher efficacy than the immature caput epididymal sperm for binding both ConA and WGA, as evidenced by sperm agglutination and the binding of the fluorescence isothiocyanate (FITC)-labelled lectins. FITC-ConA binds uniformly to the entire mature sperm surface whereas FITC-WGA binds to the acrosomal cap region of the head. The FITC-RCA2 mainly labelled the posterior head of mature cauda sperm. However, no WGA-specific glycoprotein receptors could be detected in sperm plasma membrane (PM) by WGA-Sepharose affinity chromatography. The data implied that the epididymal sperm maturation is associated with a marked increase in the ConA/WGA receptors and that WGA receptors may be glycolipids rather than glycoproteins. Analysis of the ConA receptors of cauda sperm PM identified by ConA-Sepharose affinity chromatography and subsequent resolution in SDS-PAGE demonstrated the presence of five glycopolypeptides of different concentrations (98, 96, 43, 27 and 17 kDa) of goat sperm membrane. The immunoblot of these ConA-specific glycopeptides with anti-sperm membrane antiserum showed that 98- and 96-kDa receptors are immunoresponsive.  相似文献   

4.
Distribution of glycocompounds in human spermatozoa was studied by using fluorescent lectin-conjugates. Con A bound predominantly to acrosomal and posterior head regions whereas RCA I bound to the acrosomal region of intact spermatozoa, stained in suspension. Other lectins used (LCA, WGA, SBA, PNA) stained the the entire sperm surface. In airdried sperm smears binding of both Con A and RCA I were identical with the staining pattern obtained with living cells whereas LCA, WGA, SBA and PNA now bound heavily into acrosomal region. As a similar staining pattern was obtained with permeabilized sperm cells, this staining is apparently due to binding to intracellular structures. The efficiency of Lens culinaris agglutinin affinity chromatography in purification of human sperm glycoproteins was tested after their external radiolabelling with the neuraminidase/galactose oxidase/sodium borohydride method. 22% of applicated radioactivity could be eluted from the column with the specific inhibitory saccharide, and most of the radiolabelled surface glycoproteins of the whole sperm lysate, were also present in the LCA affinity column eluate. LCA affinity chromatography seems thus be an effective method to enrich membrane glycoproteins of human spermatozoa.  相似文献   

5.
During passage through the epididymis, spermatozoa undergo a number of changes which result in their acquisition of fertility and motility. Some of the changes that occur include loss of the cytoplasmic droplet and changes in sperm morphology, metabolism and properties of the nucleus and plasma membrane. Changes have also been reported in the acrosomic system of mammalian spermatozoa during their transit through the epididymis. In the present study, the quantitative changes of the glycoconjugate content in the acrosome of rat spermatozoa were examined during their passage through the epididymis using lectin-colloidal gold cytochemistry. Various regions of the epididymis (initial segment, caput, corpus and cauda epididymidis) were fixed by perfusion with 1% or 2% glutaraldehyde buffered in sodium cacodylate (0.1 M), dehydrated in ethanol and embedded without osmication in Lowicryl K4M. Lectin-colloidal gold labeling was performed on thin sections using Ricinus communis agglutinin I (RCA I) or Helix pomatia lectin (HPL) to detect D-galactose- and N-acetyl-D-galactosamine-containing glycoconjugates, respectively. The labeling density over the acrosome of the acrosomic system was evaluated as the number of gold particles per microns 2 of profile area using a Zeiss MOP-3 image analyzer. The overall mean labeling densities over the acrosome of spermatozoa for each lectin was estimated from 4 rats and over the four distinct epididymal regions. The mean labeling density of the acrosome with RCA I and HPL showed a similar pattern along the epididymis, although RCA I revealed approximately twice as many gold particles per epididymal region. In either case, there was a significant decrease in the labeling density of the acrosome of spermatozoa between the initial segment or caput epididymidis and cauda epididymidis (p less than 0.01). A similar decrease was also noted between the initial segment and corpus epididymidis (p less than 0.01). No change was found between the initial segment and caput epididymidis. Controls showed a virtual absence of labeling. These results suggest that in addition to a multitude of changes occurring to spermatozoa during epididymal transit, there are also significant quantitative changes in the glycoconjugate content within the acrosome.  相似文献   

6.
小鼠精子表面Con A结合糖复合物的形成与变化   总被引:4,自引:0,他引:4  
用辣根过氧化物酶标记的ConA(伴刀豆素A)对小鼠睾丸与附睾切片,以及对取自附睾和子宫(交配后)内的精子涂片进行了标记,旨在认识精子在发生、成熟和获能过程中表面糖复合物的形成与变化。本研究表明,睾丸内的生精细胞和支持细胞均呈ConA标记阳性。附睾的输出小管和附睾管上皮细胞,ConA标记呈中度至强阳性,有部位的差别。附睾头和附睾尾内精子表面的标记无明显差别,标记位置均主要在顶体区和尾部。精子在子宫内存留1.5小时后,顶体后区出现中度阳性标记,但存留3小时和6小时后,顶体和顶体后区的标记均减弱或消失。这些结果提示,(1)精子发生期即可合成ConA结合糖复合物,(2)精子在附睾成熟过程中表面的ConA结合糖复合物无明显变化,(3)精子获能后顶体后区出现的ConA结合糖复合物可能与受精能力有关。  相似文献   

7.
Summary During passage through the epididymis, spermatozoa undergo a number of changes which result in their acquisition of fertility and motility. Some of the changes that occur include loss of the cytoplasmic droplet and changes in sperm morphology, metabolism and properties of the nucleus and plasma membrane. Changes have also been reported in the acrosomic system of mammalian spermatozoa during their transit through the epididymis. In the present study, the quantitative changes of the glycoconjugate content in the acrosome of rat spermatozoa were examined during their passage through the epididymis using lectin-colloidal gold cytochemistry. Various regions of the epididymis (initial segment, caput, corpus and cauda epididymidis) were fixed by perfusion with 1% or 2% glutaraldehyde buffered in sodium cacodylate (0.1M), dehydrated in ethanol and embedded without osmication in Lowicryl K4M. Lectin-colloidal gold labeling was performed on thin sections usingRicinus communis agglutinin I (RCA I) orHelix pomatia lectin (HPL) to detectd-galactose-andN-acetyl-d-galactosamine-containing glycoconjugates, respectively. The labeling density over the acrosome of the acrosomic system was evaluated as the number of gold particles per m2 of profile area using a Zeiss MOP-3 image analyzer. The overall mean labeling densities over the acrosome of spermatozoa for each lectin was estimated from 4 rats and over the four distinct epididymal regions. The mean labeling density of the acrosome with RCA I and HPL showed a similar pattern along the epididymis, although RCA I revealed approximately twice as many gold particles per epididymal region. In either case, there was a significant decrease in the labeling density of the acrosome of spermatozoa between the initial segment or caput epididymidis and cauda epididymidis (p<0.01). A similar decrease was also noted between the initial segment and corpus epididymidis (p<0.01). No change was found between the initial segment and caput epididymidis. Controls showed a virtual absence of labeling. These results suggest that in addition to a multitude of changes occurring to spermatozoa during epididymal transit, there are also significant quantitative changes in the glycoconjugate content within the acrosome.  相似文献   

8.
Mammalian spermatozoa acquire functionality during epididymal maturation, and the ability to penetrate and fertilize the oocyte during capacitation. The aim of this study was to assess the effects of epididymal maturation, ejaculation and in vitro capacitation on sperm viability, acrosome integrity, mitochondrial activity, membrane fluidity, and calcium influx, both as indicators of capacitation status and sperm motility. Results indicated that boar spermatozoa acquired the ability to move in the epididymal corpus; however, their motility was not linear until the ejaculation. Epididymal spermatozoa showed low membrane fluidity and intracellular calcium content; ejaculation led to an increased calcium content, while membrane fluidity showed no changes. Acrosome integrity remained constant throughout the epididymal duct and after ejaculation and in vitro capacitation. The frequency of viable spermatozoa with intact mitochondrial sheath was higher in caput and ejaculated samples than in corpus and cauda samples, whereas the frequency of spermatozoa with high membrane potential was significantly lower in cauda samples. In vitro capacitation resulted in a decreased frequency of viable spermatozoa with intact mitochondrial sheath and an increased frequency of spermatozoa with high membrane potential in ejaculated samples. These results indicated that both epididymal maturation and ejaculation are key events for further capacitation, because only ejaculated spermatozoa are capable of undergoing the set of changes leading to capacitation.  相似文献   

9.
Spermatozoa acquire their motility and fertilizing ability during their passage through the epididymal canal. In the epididymal caput and corpus spermatozoa undergo several biochemical and metabolic changes while the cauda of the epididymis should be considered as the primarily site for storage of the spermatozoa. In the horse spermatozoa from cauda epididymis were collected and frozen, and the fertility of semen assessed. However, no studies have detailed semen characteristics of spermatozoa collected from the cauda epididymis in the jackass. In this study sperm characteristics of spermatozoa in the cauda epididymis of the donkey was reported and a comparison with ejaculated spermatozoal characteristics was performed. Samples from 10 Martina Franca jackasses were collected and analyzed for viability (Propidium iodide/Sybr-14? fluorescent stain), mitochondrial activity (Mitotraker? fluorescent stain), objective motility characteristics (by Computer Assisted Sperm Analyzer - CASA) and morphology. A higher viability and mitochondrial activity in the cauda epididymis samples were reported in this paper. Samples reported in this paper were identified and the percentage of total and progressive spermatozoa was comparable, but trajectories were more rapid (higher VCL) with less progressiveness (higher ALH and lower STR and LIN) in the cauda epididymis. Sperm morphology showed a pronounced variability between jackasses, with comparable values for all morphological subclasses. In this study the loss of the distal cytoplasmic droplets happen close to or after ejaculation because the percentage fell to nearly 0% after ejaculation. As suggested for bulls, the presence of a similar percentage in sperm with proximal cytoplasmic droplet in epididymal and ejaculated semen is likely to indicate a failure in the maturation process.  相似文献   

10.
Serum designated as IS obtained from a young healthy infertile woman induced a head-to-head agglutination of ejaculated boar sperm. The immunoglobulin G (IgG) prepared from IS localized to the acrosomal region of the sperm head obtained from the corpus and cauda epididymis as determined by an indirect immunofluorescent method. The IgG interacted with a boar sperm protein with an estimated molecular weight of 45-kDa, determined by sodium dodecyl sulfate-polyacrylamide gel electrophoretic (SDS-PAGE) immunoblotting technique. However, the IgG did not interact with proteins extracted from sperm obtained from the testis and caput epididymis or from non-gonadal tissues including liver, kidney, spleen, muscle and serum. The IgG interacted with additional proteins of about 75- and 38-kDa present in the corpus and cauda epididymal fluids but not those in the caput epididymal fluid. The staining intensity of the 75-kDa band was reduced and that of the 38-kDa was nullified with ejaculated seminal plasma proteins. The interacting proteins were adsorbed when chromatographed on Concanavalin A Sepharose column, suggesting that they are glycoproteins.  相似文献   

11.
The aim of the present study was to compare the influence of cultured epididymal epithelial cells (EEC) from corpus, caput or cauda, oviductal epithelial cells (OEC) and non-reproductive epithelial cells (LLC-PK1) on function and survival of epididymal and ejaculated spermatozoa, in the latter case to determine whether such influence differed between morphologically normal and abnormal spermatozoa. For this purpose, either spermatozoa were directly co-cultured with EEC from caput, corpus, or cauda, OEC and LLC-PK1 cells (experiment 1) or a membrane-diffusible insert was included in these co-cultures (experiment 2). EEC cultured from the three epididymal regions did not differently affect the sperm parameters. Morphologically normal spermatozoa presented a higher ability to bind EEC, OEC, and LLC-PK1 than abnormal spermatozoa with cytoplasmic droplets or with tail/head malformations. Epididymal spermatozoa were more able to bind EEC during the first 24 h of co-culture, while ejaculated spermatozoa presented a higher capacity to bind OEC between 30 min and 3 h of co-incubation. In all cases, the ability to bind to epithelial cells was higher when they were co-cultured with EEC and OEC than with LLC-PK1. After 2 h of co-culture, the viability of epididymal spermatozoa was better maintained when they bound EEC than when they bound OEC. Conversely, the viability of ejaculated spermatozoa was better maintained when bound OEC than when bound EEC after 24 and 48 h of co-culture. Our work, apart from corroborating the involvement of morphologically normal spermatozoa in the formation of sperm reservoir, highlights the importance of direct contact spermatozoa-EEC in maintaining the sperm survival in in vitro co-culture, and also suggests that a specific binding between EEC and epididymal spermatozoa exists.  相似文献   

12.
Developing spermatozoa require a series of posttesticular modifications within the luminal environment of the epididymis to achieve maturation; this involves several surface modifications including changes in plasma membrane lipids, proteins, carbohydrates, and alterations in the outer acrosomal membrane. Epididymal maturation can therefore allow sperm to gain forward motility and fertilization capabilities. The objective of this study was to identify maturation-dependent protein(s) and to investigate their role with the production of functionally competent spermatozoa. Lectin blot analyses of caput and cauda sperm plasma membrane fractions identified a 17.5 kDa wheat germ agglutinin (WGA)-binding polypeptide present in the cauda sperm plasma membrane not in the caput sperm plasma membrane. Among the several WGA-stained bands, the presence of a 17.5 kDa WGA-binding polypeptide band was detected only in cauda epididymal fluid not in caput epididymal fluid suggesting that the 17.5 kDa WGA-binding polypeptide is secreted from the cauda epididymis and binds to the cauda sperm plasma membrane during epididymal transit. Proteomic identification of the 17.5 kDa polypeptide yielded 13 peptides that matched the sequence of peroxiredoxin-5 (PRDX5) protein (Bos Taurus). We propose that bovine cauda sperm PRDX5 acts as an antioxidant enzyme in the epididymal environment, which is crucial in protecting the viable sperm population against the damage caused by endogeneous or exogeneous peroxide.  相似文献   

13.
14.
Mammalian spermatozoa mature while passing through the epididymis. Maturation is accompanied by thiol oxidation to disulfides. In rats, sperm become motile and fertile in the cauda. We have previously demonstrated that rat caput sperm contain mostly thiols and that upon passage from the corpus to the cauda epididymidis, sperm protein thiols are oxidized. The present work was undertaken to study the role of the regions of the epididymis in sperm maturation as reflected in the thiol status, fertility, and motility of the spermatozoa. The distal caput epididymidis of mature albino rats was ligated on one side. After 5 days, sperm were isolated from the ligated caput and from caput and cauda of the control side. Thiol groups in sperm, epididymal luminal fluid (EF), and epididymal tissue were labeled using the fluorescent thiol-labeling agent monobromobimane. After ligation, changes were observed in a) sperm proteins, sperm nuclear proteins, and epididymal fluid by electrophoresis; b) epididymal tissues by histochemistry; c) progressive motility by phase microscopy; and d) fertilizing ability after insemination into uteri of immature females. We found that after ligation, caput sperm thiols, especially protamine thiols, are oxidized, rendering them similar to mature sperm isolated from the cauda epididymidis. Spermatozoa from ligated caput epididymidis gain progressive motility and partial fertilizing ability. Morphology of epithelial cells of ligated caput is similar to that of cauda cells. However, other changes in caput EF and epithelium induced by ligation render the ligated caput epididymidis different from either control caput or cauda. Hence, sperm thiol oxidation, along with the development of fertilizing ability, can occur in sperm without necessity for sperm transit through the corpus and cauda epididymidis.  相似文献   

15.
Characterization of membrane-associated actin in boar spermatozoa   总被引:2,自引:0,他引:2  
Biochemical, immunological, and electron microscopic methods have been used to provide semi-quantitative estimates and to localize actin in membranes of boar spermatozoa. Immunoblots, using a monoclonal antibody raised against actin from chicken gizzard, detected the protein in caput and cauda sperm plasma membranes. Immunoassay indicated that approximately 1% of the total plasma membrane protein was actin. Monomeric actin accounted for more than one-half of the membrane actin. Approximately 30-40% of plasma membrane actin was insoluble in Triton X-100, and approximately 10% of the total actin remained insoluble after treatment with guanidine hydrochloride. The presence of F-actin in sperm plasma membranes and in plasma membrane detergent-insoluble proteins was detected by fluorescence microscopy using the specific probe NBD phallacidin. When S1 myosin subfragments attached to colloidal gold were used to localize F-actin by electron microscopy, the label was restricted to the outer acrosomal membrane of intact epididymal and ejaculated sperm. Filaments appeared in short arrays along the anterior region of the membrane. S1/gold labeled detergent-insoluble plasma membrane fractions but did not label the plasma membrane in intact sperm. Filaments were least prominent in intact caput spermatozoa and most prominent in ejaculated spermatozoa. We conclude that most actin associated with sperm membranes is in monomeric form in boar spermatozoa, but that actin filaments or protofilaments are components of the outer acrosomal membrane. These filaments may also associate with the plasma membrane overlying the acrosome.  相似文献   

16.
Motility patterns of caput epididymal chimpanzee sperm, caput epididymal chimpanzee sperm incubated in vitro with chimpanzee cauda epididymal fluid, and cauda epididymal chimpanzee sperm were assessed quantitatively. Sperm recovered from the caput epididymis showed no motility, whereas sperm recovered from cauda epididymis showed progressive forward motility. After incubation in cauda fluid, approximately 25% of caput epididymal sperm showed some motile activity. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed that the surface of caput epididymal sperm, incubated in cauda fluid, was modified by the appearance of a major protein-glycoprotein surface component with an apparent molecular weight of 27 kilodaltons (kD). THis 27-kD component was not detected on caput epididymal sperm incubated in buffer or in caput fluid. However, it was present in cauda fluid and on cauda epididymal sperm. Binding to caput epididymal sperm was cell specific in that chimpanzee erythrocytes incubated in cauda fluid did not bind this 27-kD cauda fluid component. Motility patterns of ejaculated chimpanzee sperm and of ejaculated chimpanzee sperm incubated in the uterus of adult female chimpanzees also were assessed quantitatively. Ejaculated sperm showed progressive forward motility, whereas in utero incubated ejaculated sperm showed hyperactivated motility typical of capacitated sperm. Electrophoretic analysis of 125I-labeled sperm plasma membrane preparations revealed the loss of a 27-kD component from the surface of ejaculated sperm after in utero incubation. No significant change in the 125I-distribution pattern was detectable when ejaculated sperm were incubated in buffer. These results suggest that the lumenal fluid component, which becomes adsorbed to the surface of chimpanzee sperm during maturation in the epididymis and which is removed from the surface of mature chimpanzee sperm in the female reproductive tract, affects sperm motility.  相似文献   

17.
Effect of diabetes mellitus on epididymal enzymes of adult rats.   总被引:1,自引:0,他引:1  
Diabetes mellitus caused significant reduction in serum testosterone and accessory sex glands weight. The sperm content of epididymal regions also decreased. Among the epididymal regions, the cauda epididymidal tissue alone showed significant reduction in Na(+)-K+ ATPase activity. However, Mg2+ ATPase activity was lowered in caput epididymidis only. Specific activity of Ca2+ ATPase significantly decreased in caput and cauda epididymides. All three ATPases decreased significantly in caput epididymidal spermatozoa leaving cauda epididymidal spermatozoa unaffected. Specific activity of alkaline phosphatase was suppressed in caput epididymidis and in the spermatozoa collected from caput and cauda epididymides, while the acid phosphatase was unaffected. In general, the results are suggestive of definite influence of diabetes on epididymal phosphatases which is region specific. Diabetes induced decrease in phosphatases may have an impact on secretory and absorptive functions of epididymis and thus on sperm maturation.  相似文献   

18.
The fine structure distribution of non-specific acid phosphatase was determined in the head region of mouse spermatozoa from the testes, the caput, corpus and cauda epididymidis and the ductus deferens. Enzymatic localization was achieved by the Gomori technique. The postacrosomal dense lamina, the nuclear side of the inner acrosomal membrane and the space between the plasmalemma and the outer acrosomal membrane showed reaction product in spermatozoa from the testis and caput epididymidis. Spermatozoa from the cauda epididymidis exhibited reaction product only between the plasmalemma and the outer acrosomal membrane. Spermatozoa from the corpus epididymidis and from the ductus deferens showed no reaction product in the head region. The changes observed in the distribution of acid phosphatase in the sperm head during epididymal transport may reflect maturational events.  相似文献   

19.
We have identified an 80 kDa protein in ejaculated bull spermatozoa (p80) which is found in acrosomal and post-acrosomal areas of the head. It has a hyaluronidase activity and shares homologies with PH-20, a sperm surface glycoprotein involved in sperm-egg interaction. The aim of the present study was to characterize bull sperm p80 protein at the nucleic and amino acid levels to determine whether it is the bovine PH-20 ortholog. The complete nucleotide sequence determined by RT-PCR, 3' and 5' RACE show that bull p80, displays identity with the PH-20 nucleotide and amino acid sequences. Messenger RNA and protein expressions determined by Northern blot and immunohistochemistry revealed that the protein is testicular (expressed in spermatocytes and spermatids). The localization of p80 on spermatozoa, determined by indirect immunofluorescence using a monoclonal antibody, shows the protein in acrosomal and post acrosomal areas of the head with an increase in the signal intensity as sperm progress through the epididymis. Post-translational modifications of the protein were investigated during the epididymal maturation by Western blot on protein extracts from sperm collected in the caput, corpus and cauda portions of bull epididymis. Glycolysation status of sperm p80 protein on proteins from ejaculated and epididymidal sperm was investigated. Result show that the glycosylation status is modified as spermatozoa migrate through the epididymis. Hyaluronidase activity evaluated in protein extracts from spermatozoa of the three different epididymal sections revealed that the activity is higher at pH 7 than 4 and is not affected by epididymal maturation. These data strongly suggest that p80 is the bovine PH-20.  相似文献   

20.
Intact chimpanzee caput and cauda epididymal sperm, sperm cell lysates, and caput and cauda epididymal fluid were radiolabeled by enzymatic iodination with lactoperoxidase and Na125 I and were compared by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Caput epididymal sperm showed nine labeled macromolecular components of 90, 64, 56, 48, 38, 31, 20, 18 and 16 Kd and cauda epididymal sperm showed eleven macromolecular components of 90, 64, 55, 47, 42, 33, 27, 18, 17, 15 and 11 Kd. Six of the components labeled on caput sperm (90, 64, 56, 48, 18 and 16 Kd) were detected in equal amounts of cauda sperm and two (38 and 20 Kd) were detected at greatly reduced labeling intensities. In the cauda epididymidis, four new components (33, 27, 17 and 11 Kd) became prominent features of the sperm surface. Analysis of labeled caput and cauda sperm cell lysates resolved components distinct from those detected on sperm surfaces. Electrophoresis of caput epididymal fluid showed five labeled components of 66, 56, 47, 41 and 37 Kd, while electrophoresis of cauda epididymal fluid showed eight labeled components of 92, 66, 56, 48, 31, 27, 24 and 11 Kd. Three components (66, 56 and 47 Kd) were present in both caput and cauda fluid, two (41 and 37 Kd) in caput fluid only, and five (92, 31, 27, 24 and 11 Kd) in cauda fluid only. Components of 37 Kd were labeled in caput fluid and on caput sperm but not on cauda sperm, whereas components of 27 Kd and 11 Kd were labeled in cauda fluid and on cauda sperm but not on caput sperm. These data show that chimpanzee sperm undergo extensive surface modifications during epididymal maturation and that some of these modifications may be related to exogenous proteins/glycoproteins in epididymal fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号