首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Rapid, simple and sensitive derivative emission spectrofluorimetric methods have been developed for the simultaneous analysis of binary mixtures of guaifenesin (GUA) and phenylephrine hydrochloride (PHE). The methods are based upon measurement of the native fluorescence intensity of the two drugs at λex = 275 nm in methanolic solutions, followed by differentiation using first (D1) and second (D2) derivative techniques. The derivative fluorescence intensity–concentration plots were rectilinear over a range of 0.1–2 µg/mL for both GUA and PHE. The limits of detection were 0.027 (D1, GUA), 0.025 (D2, GUA), 0.031 (D1, PHE) and 0.033 (D2, PHE) µg/mL and limits of quantitation were 0.089 (D1, GUA), 0.083 (D2, GUA), 0.095 (D1, PHE) and 0.097 (D2, PHE) µg/mL. The proposed derivative emission spectrofluorimetric methods (D1 and D2) were successfully applied for the determination of the two compounds in binary mixtures and tablets with high precision and accuracy. The proposed methods were fully validated as per ICH guidelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
A highly sensitive, simple and rapid spectrofluorimetric method was developed for the determination of amisulpride (AMS) and bumidazone (BUM) in tablet form. The proposed method is based on measuring the native fluorescence of the studied drugs in methanol at 360 and 344 nm after excitation at 276 and 232 nm for AMS and BUM, respectively. The fluorescence–concentration plots were rectilinear over the ranges of 5.0–60.0 ng/mL for AMS and 0.5–5.0 µg/mL for BUM. The lower detection limits were 0.70 ng/mL and 0.06 µg/mL, and the lower quantification limits were 2.0 ng/mL and 0.18 µg/mL for AMS and BUM, respectively. The method was successfully applied for the analysis of AMS and BUM in commercial tablets. Statistical evaluation and comparison of the data obtained using the proposed and comparison methods revealed good accuracy and precision for the proposed method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A rapid, simple, accurate and highly sensitive spectrofluorimetric method was developed for the simultaneous analysis of nebivolol hydrochloride (NEB) and amlodipine besylate (AML). The method was based on measuring the synchronous fluorescence intensity of the drugs at Δλ = 40 nm in methanol. Various experimental parameters affecting the synchronous fluorescence of the studied drugs were carefully studied and optimized. The calibration plots were rectilinear over concentration ranges of 0.05–1.5 µg/mL and 0.5–10 µg/mL for NEB and AML with limits of detection (LOD) of 0.010 and 0.051 µg/mL and limits of quantitation (LOQ) of 0.031 and 0.156, respectively. The peak amplitudes (2D) of the second derivative synchronous fluorimetry (SDSF) were estimated at 282 nm for NEB and at 393 nm for AML. Good linearity was obtained over the concentration ranges. The proposed method was successfully applied to the determination of the studied compounds in laboratory‐prepared mixtures, commercial single and laboratory‐prepared tablets. The results were in good agreement with those obtained using the comparison method. The mean percent recoveries were found to be 100.12 ± 0.77 and 99.91 ± 0.77 for NEB and AML, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Amlodipine besylate (AML) is available in fixed‐dose combination tablets with either candesartan cilexetil (CAN) or telmisartan (TEL). This work describes a simple, selective and sensitive spectrofluorimetric method for analysis of AML/CAN and AML/TEL binary mixtures without prior separation. The method involves measurement of the native fluorescence of AML at excitation and emission wavelengths of 367 and 454 nm, respectively, in water without interference from either of the two drugs. By contrast, the intrinsic fluorescence of CAN was measured at excitation and emission wavelengths of 265 and 392 nm, respectively, in ethanol, while TEL was measured at 366 nm in 0.05 M sodium hydroxide solution using 294 nm as the excitation wavelength. The proposed spectrofluorimetric procedure was validated with respect to linearity, ranges, precision, accuracy, selectivity, robustness, detection and quantification limits. Regression analysis showed a good correlation between fluorescence intensity and concentration over the ranges 0.1–1.4, 0.025–0.25 and 0.0025–0.05 µg/mL for AML, CAN and TEL, respectively. Limits of detection were 0.034, 0.0063 and 0.0007 µg/mL for AML, CAN and TEL, respectively. The proposed method was successfully applied for the analysis of several synthetic binary mixtures of different ratios and laboratory‐prepared tablets with good recoveries, and no interference from common pharmaceutical additives was observed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
A simple, sensitive and rapid spectrofluorimetric method was developed for the determination of esomeprazole (EMZ) and pantoprazole (PRZ) in their pharmaceutical formulations and human plasma. The proposed method is based on the fluorescence spectral behavior of EMZ in methanol in the presence of 0.1 m NaOH containing 0.5% methyl cellulose (MC) at 306/345 nm. The fluorescence intensity of EMZ was enhanced about 1.3‐fold and good linearity in the range 0.4–4.0 µg/mL with a lower detection limit of 0.04 µg/mL and lower quantification limit of 0.14 µg/mL. For PRZ, its methanolic solution exhibited marked native fluorescence at 290/325 nm after enhancement (about 2.1‐ or 1.4‐fold) using either 0.025% sodium dodecyl sulfate (SDS) or 0.05% MC in the presence of 0.2 m borate buffer of pH 9.5. The fluorescence–concentration plots of PRZ were rectilinear over the ranges 0.2–2.0 and 0.3–3.0 µg/mL with lower detection limits of 0.02 and 0.03 µg/mL and lower quantification limits of 0.07 and 0.09 µg/mL using sodium dodecyl sulfate and MC, respectively. The method was successfully applied to the analysis of EMZ and PRZ in their commercial dosage forms and the results were in good agreement with those obtained with the comparison method. Furthermore, in a preliminary investigation, the proposed method was extended to the in vitro determination of the two drugs in spiked human plasma and the results were satisfactory. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A sensitive and simple spectrofluorimetric method has been developed and validated for the determination of the anti‐epileptic drug carbamazepine (CBZ) in its dosage forms. The method was based on a nucleophilic substitution reaction of CBZ with 4‐chloro‐7‐nitrobenzo‐2‐ oxa‐1,3‐diazole (NBD‐Cl) in borate buffer (pH 9) to form a highly fluorescent derivative that was measured at 530 nm after excitation at 460 nm. Factors affecting the formation of the reaction product were studied and optimized, and the reaction mechanism was postulated. The fluorescence–concentration plot is rectilinear over the range of 0.6–8 µg/mL with limit of detection of 0.06 µg/mL and limit of quantitation of 0.19 µg/mL. The method was applied to the analysis of commercial tablets and the results were in good agreement with those obtained using the reference method. Validation of the analytical procedures was evaluated according to ICH guidelines. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
A highly sensitive and simple spectrofluorimetric method was developed for the determination of loratadine (LRT) and desloratadine (DSL) in their pharmaceutical formulations. The proposed method is based on investigation of the fluorescence spectral behaviour of LRT and DSL in a sodium dodecyl sulphate (SDS) micellar system. In aqueous solution of acetate buffer of pH 4.5, the fluorescence intensities of both LRT and DSL were greatly enhanced (240%) in the presence of SDS. The fluorescence intensity was measured at 438 nm after excitation at 290 nm for both drugs. The fluorescence–concentration plots were rectilinear over the range 0.05–2.0 µg/mL for both LRT and DSL, with lower detection limits of 5.13 × 10?3 and 6.35 × 10?3 µg/mL for LRT and DSL, respectively. The method was successfully applied to the analysis of the two drugs in their commercial tablets, capsules and syrups, and the results were in good agreement with those obtained with the official or comparison methods. The proposed method is specific for the determination of LRT in the presence of other co‐formulated drugs, such as pseudoephedrine. The application of the proposed method was extended to stability studies of LRT and DSL after exposure to different forced degradation conditions, such as acidic, alkaline and oxidative conditions, according to ICH guidelines. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A rapid, simple, and sensitive second‐derivative synchronous fluorimetric method has been developed and validated for the simultaneous analysis of a binary mixture of desloratadine (DSL) and montelukast sodium (MKT) in their co‐formulated tablets. The method is based on measurement of the synchronous fluorescence intensities of the two drugs in McIlvaine's buffer, pH 2.3, in the presence of carboxy methyl cellulose sodium (CMC) as a fluorescence enhancer at a constant wavelength difference (Δλ) of 160 nm. The presence of CMC enhanced the synchronous fluorescence intensity of DSL by 216% and that of MKT by 28%. A linear dependence of the concentration on the amplitude of the second derivative synchronous fluorescence spectra was achieved over the ranges of 0.10–2.00 and 0.20–2.00 µg/mL with limits of detection of 0.02 and 0.03, and limits of quantification of 0.05 and 0.10 µg/mL for DSL and MKT, respectively. The proposed method was successfully applied for the determination of the studied compounds in laboratory‐prepared mixtures and tablets. The results were in good agreement with those obtained with the comparison method. The high sensitivity attained by the proposed method allowed the determination of MKT in spiked human plasma with average % recovery of 100.11 ± 2.44 (n = 3). Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

9.
An accurate, selective and sensitive spectrofluorimetric method was developed for the determination of citalopram hydrobromide in commercial dosage forms. The method was based on the formation of a fluorescent ion‐pair complex between citalopram hydrobromide and eosin Y in the presence of a disodium hydrogen phosphate/citric acid buffer solution of pH 3.4 that was extractable in dichloromethane. The extracted complex showed fluorescence intensity at λem = 554 nm after excitation at 259 nm. The calibration curve was linear over at concentrations of 2.0–26.0 µg/mL. Under optimized experimental conditions, the proposed method was validated as per ICH guidelines. The effect of common excipients used as additives was tested and the tolerance limit calculated. The limit of detection for the proposed method was 0.121 μg/mL. The proposed method was successfully applied to the determination of citalopram hydrobromide in commercial dosage forms. The results were compared with the reference RP‐HPLC method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Two simple, rapid and sensitive methods, namely, fourth‐derivative synchronous spectrofluorimetry (method I) and HPLC with fluorescence detection (method II) were developed for the simultaneous analysis of a binary mixture of itopride HCl (ITP) and domperidone (DOM) without prior separation. The first method was based on measuring the fourth derivative of the synchronous fluorescence spectra of the two drugs at Δλ = 40 nm in methanol. The different experimental parameters affecting the synchronous fluorescence of the studied drugs were carefully optimized. Chromatographic separation was performed in < 6.0 min using a RP C18 column (250 mm × 4.6 mm i.d., 5 µm particle size) with fluorescence detection at 344 nm after excitation at 285 nm. A mobile phase composed of a mixture of 0.02 M phosphate buffer with acetonitrile in a ratio of 55 : 45, pH 4.5, was used at a flow rate of 1 mL/min. Linearity ranges were found to be 0.1–2 µg/mL for ITP in both methods, whereas those for DOM were found to be 0.08–2 and 0.05–1.5 µg/mL in methods I and II, respectively. The proposed methods were successfully applied for the determination of the studied drugs in synthetic mixtures and laboratory‐prepared tablets. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
A sensitive spectrofluorimetric method using constant‐energy synchronous fluorescence technique is proposed for the determination of human albumin without separation. In this method, no reagent was used for enhancement of the fluorescence signal of albumin in the solution. Effects of some parameters, such as energy difference between excitation and emission monochromators (ΔE), emission and excitation slit widths and scan rate of wavelength were studied and the optimum conditions were established. For this purpose factorial design and response surface method were employed for optimization of the effective parameters on the fluorescence signal. The results showed that the scan rate of the wavelength has no significant effect on the analytical signal. The calibration curve was linear in the range 0.1–220.0 µg mL–1 of albumin with a detection limit of 7.0 × 10–3 µg mL–1. The relative standard deviations (RSD) for six replicate measurements of albumin were calculated as 2.2%, 1.7% and 1.3% for 0.5, 10.0 and 100.0 µg mL–1 albumin, respectively. Furthermore the proposed method has been employed for the determination of albumin in human serum and urine samples. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A simple and sensitive spectrofluorimetric method was developed for the determination of Ribavirin in pharmaceutical formulations. The proposed method was based on the fluorescence spectral behaviour of Ribavirin in a sodium dodecyl sulfate (SDS) micellar system. In an aqueous acetate buffer solution of pH 4.0, the fluorescence intensity of Ribavirin was significantly enhanced by about 217% in the presence of SDS. Fluorescence intensity was measured at 396 nm after excitation at 270 nm for Ribavirin. The fluorescence‐concentration plot was rectilinear over the range of 0.01‐3.0 µg/mL for Ribavirin with a lower detection limit of 5.02 x 10‐3 µg/mL. The method was successfully applied to the analysis of the drug in its commercial capsules. Results were in good agreement with those obtained with the official method. The application of the proposed method was extended to stability studies of Ribavirin after exposure to different forced degradation conditions such as acidic, alkaline, photo and oxidative conditions according to ICH guidelines. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
The aim of this work is to optimize a spectrofluorimetric method for the determination of cefdinir (CFN) using the Taguchi method. The proposed method is based on the oxidative coupling reaction of CFN and cerium(IV) sulfate. The quenching effect of CFN on the fluorescence of the produced cerous ions is measured at an emission wavelength (λem) of 358 nm after excitation (λex) at 301 nm. The Taguchi orthogonal array L9 (34) was designed to determine the optimum reaction conditions. The results were analyzed using the signal‐to‐noise (S/N) ratio and analysis of variance (ANOVA). The optimal experimental conditions obtained from this study were 1 mL of 0.2% MBTH, 0.4 mL of 0.25% Ce(IV), a reaction time of 10 min and methanol as the diluting solvent. The calibration plot displayed a good linear relationship over a range of 0.5–10.0 µg/mL. The proposed method was successfully applied to the determination of CFN in bulk powder and pharmaceutical dosage forms. The results are in good agreement with those obtained using the comparison method. Finally, the Taguchi method provided a systematic and efficient methodology for this optimization, with considerably less effort than would be required for other optimizations techniques. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
Aliskiren hemifumarate (ALS) and amlodipine besylate (AML) were simultaneously determined by two different spectrofluorimetric techniques. The first technique depends on direct measurement of the steady‐state fluorescence intensities of ALS and AML at 313 nm and 452 nm upon excitation at 290 and 375 nm, respectively, in a solvent composed of methanol and water (10: 90, v/v) . The second technique utilizes synchronous fluorimetric quantitative screening of the emission spectra of ALS and AML at 272 and 366 nm, respectively using Δλ of 97 nm. Effects of different solvents and surfactants on relative fluorescence intensity were studied. The method was validated according to ICH guidelines. Linearity, accuracy and precision were found to be satisfactory in both techniques over the concentration ranges of 1–15 and 0.4–4 µg/mL for ALS and AML, respectively. In the first technique, limit of detection and limit of quantification were estimated and found to be 0.256 and 0.776 µg/mL for ALS as well as 0.067 and 0.204 µg/mL for AML, respectively. Also, limit of detection and limit of quantification were calculated in the synchronous method and found to be 0.293 and 0.887 µg/mL for ALS as well as 0.034 and 0.103 µg/mL for AML, respectively. The methods were successfully applied for the determination of the two drugs in their co‐formulated tablets. The results were compared statistically with reference methods and no significant difference was found. The developed methods are rapid, sensitive, inexpensive and accurate for the quality control and routine analysis of the cited drugs in bulk and in pharmaceutical preparations without pre‐separation. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A simple, sensitive and rapid HPLC method with fluorescence detection for the determination of dimethyl‐4,4′‐dimethoxy‐5,6,5′,6′‐dimethylene dioxybiphenyl‐2,2′‐dicarboxylate (DDB) in the raw material and pill form was developed. Liquid chromatography was performed on a C18 column (250 × 4.6 mm i.d., 5 µm particle size), the mobile phase consisted of methanol and 0.05 M sodium dihydrogen phosphate buffer (80 : 20, v/v), and the apparent pH of the mobile phase was adjusted to 3. The fluorescence detector was operated at excitation/emission wavelengths of 275/400 nm. The proposed method allows the determination of DDB within concentration range 0.1–1.5 µg/mL with a limit of detection of 0.032 µg/mL, a limit of quantification of 0.097 µg/mL and a correlation coefficient of 0.9997. The proposed method has been successfully applied for the analysis of DDB in its pills with a percentage recovery of 98.45 ± 0.32. The method was fully validated according to ICH guidelines. Moreover, the high sensitivity of the method permits its use in an in vitro dissolution test for DDB under simulated intestinal conditions. In addition, the proposed method was extended to a content uniformity test according to USP guidelines. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
A novel, quick, simple and highly sensitive spectrofluorimetric method was developed and validated for the determination of sitagliptin (SG) in its pharmaceutical formulations. The proposed method is based on investigation of the fluorescence spectral behavior of sitagliptin in an SDS micellar system. In an aqueous solution of phosphate buffer pH 4.0, the fluorescence intensity of SG in the presence of SDS was greatly enhanced, by 200%, i.e. twofold enhancement. The fluorescence intensity of SG was measured at 300 nm after excitation at 270 nm. The method showed good linearity in the range 0.03–10.0 µg/mL with a good correlation coefficient (r = 0.9998). The limits of detection and quantitation values were 5.31 and 16.1 ng/mL, respectively. The proposed method was successfully applied to the analysis of SG in its single and co‐formulated commercial tablets; the results were in good agreement with those obtained using a reference method. Application of the proposed method was extended to stability studies of SG after exposure to different forced degradation conditions according to the ICH guidelines, such as acidic, alkaline, thermal, photo‐ and oxidative stress. The chemical structure of certain potential degradation products (DPs) were investigated using LC‐MS. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
In weak acidic medium, the anticancer antibiotics bleomycin A5 (BLMA5) and bleomycin A2 (BLMA2) bind with halofluorescein dyes, such as erythrosin (Ery), eosin Y (EY) and eosin B (EB), to form ion‐association complexes, which causes fluorescence quenching of halofluorescein dyes. The quenching values (ΔF) are directly in proportional to the concentrations of bleomycins over the range 0.09–2.5 µg/mL. Based on this, a fluorescence quenching method for the determination of BLMA5 and BLMA2 has been developed. The dynamic range is 0.12–2.5 µg/mL for the determination of BLMA5 and 0.09–2.0 µg/mL for BLMA2, with detection limits (3σ) of 0.04 µg/mL for BLMA5, 0.03 µg/mL for BLMA2, respectively. It has been applied to determine the two antibiotics in human serum, urine and rabbit serum samples. The recovery is in the range 90–102%. In this work, the optimum reaction conditions and the spectral characteristics of the fluorescence are investigated. The reasons for fluorescence quenching are discussed, based on the fluorescence theory. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

18.
A new, sensitive and selective spectrofluorimetric method has been developed for the determination of duloxetine (DLX) in capsule and spiked human plasma. DLX, as a secondary amine compound, reacts with 7‐chloro‐4‐nitrobenzofurazon (NBD‐Cl), a highly sensitive fluorogenic and chromogenic reagent used in many investigations. The method is based on the reaction between the drug and NBD‐Cl in borate buffer at pH 8.5 to yield a highly fluorescent derivative that is measured at 523 nm after excitation at 478 nm. The fluorescence intensity was directly proportional to the concentration over the range 50–250 ng/mL. The reaction product was also measured spectrophotometrically. The relation between the absorbance at 478 nm and the concentration is rectilinear over the range 1.0–12.0 µg/mL. The methods were successfully applied for the determination of this drug in pharmaceutical dosage form. The spectrofluorimetric method was also successfully applied to the determination of duloxetine in spiked human plasma. The suggested procedures could be used for the determination of DLX in pure form, capsules and human plasma being sensitive, simple and selective. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

19.
A novel method for the determination of proteins was developed, based on the enhancement of fluorescence with 4‐chloro‐(2′‐hydroxylophenylazo)rhodanine–Ti(IV) [ClHARP–Ti(IV)] complex as a fluorescence probe. The excitation and emission wavelengths of the system were 335 nm and 376 nm, respectively. The presence of bis(2‐ethylhexyl)sulphosuccinate sodium salt (AOT) microemulsion greatly increased the sensitivity of the system. Under optimal conditions, four kinds of proteins, including bovine serum albumin (BSA), human serum albumin (HSA), egg albumin (Ova), and γ‐globin (γ‐G) were studied. The detection limits were 0.182 µg/mL for BSA, 0.0788 µg/mL for HSA, 0.216 µg/mL for Ova and 0.484 µg/mL for γ‐G. The linear ranges of the calibration were 0–12.0, 0–10.0, 0–18.0 and 0–18.0 µg/mL, respectively. The method possessed high sensitivity, good selectivity and was applied to the analysis of protein in milk powder and cornmeal with satisfactory results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
Xiong X  Zhang Q  Nan Y  Gu X 《Luminescence》2012,27(5):371-378
A simple one‐step method is established for plasma determination of ibuprofen and its pharmacokinetic study. The method involves simple sample pre‐treatment by dilution, rapid separation by ultrafiltration (UF) and online sensitive detection by chemiluminescence (CL) based on significant intensity enhancement of ibuprofen on the weak CL of potassium permanganate and sodium sulphite in an acidic system. The calibration curve for ibuprofen is linear in the range 0.1–50.0 µg/mL in rat plasma. Average recoveries of ibuprofen at 0.80, 12.0 and 40.0 µg/mL amounted to 98.0 ± 4.2%, 101.2 ± 3.6% and 99.3 ± 5.4%, respectively. Standard deviations of intra‐ and inter‐day measurement precision and accuracy are within ±10.0%. The detection limit for ibuprofen is 10.0 µg/L in plasma samples. Pharmacokinetic study of ibuprofen by the validated method shows that the mean plasma drug concentration–time course confirms to a classical two‐compartment open model with first‐order absorption. The proposed method will be an alternative for pre‐clinical pharmacokinetic study of ibuprofen and other non‐steroidal anti‐inflammatory drugs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号