首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Herpes simplex virus (HSV) ribonucleotide reductase is formed by the association of two distinct dimeric subunits, R1 and R2. Attempts to purify either the HSV holoenzyme or its R1 subunit in their active form have been unsuccessful until now. The C terminus of the R2 protein being involved in the association with R1, the synthetic nonapeptide corresponding to this terminus, impedes the formation of the holoenzyme by competing with R2 for a critical site on R1. Based upon these observations, we developed an affinity chromatographic procedure to purify the R1 protein from HSV-1-infected baby hamster kidney cells. Specific binding of R1 to an affinity column made by linking the peptide HSV R2-(326-337) to Affi-Gel 10, followed by specific elution with an excess of an analogous peptide exhibiting a higher affinity for R1 yielded, in a single step, highly purified R1 protein. The purified R1 preparations contained approximately 95% of intact R1, the remaining 5% consisting of two R1 copurifying proteolytic breakdown products. The purified R1 protein exhibited a high reductase specific activity when mixed with an excess of the R2 subunit. Moreover, in vitro kinase assays revealed that the purified R1 protein of HSV-1 possesses an autophosphorylating activity also able to phosphorylate alpha-casein and histone II-S. The intrinsic protein kinase activity of HSV R1 is associated with its unique N-terminal domain which is absent from all other reductase subunits 1 and contains consensus motifs found in Ser/Thr protein kinases. A preliminary characterization of the kinase activity of the R1 protein of HSV-1 ribonucleotide reductase is presented.  相似文献   

2.
Phosphatidylinositol 3-kinase-related kinases (PIKKs) consisting of SMG-1, ATM, ATR, DNA-PKcs, and mTOR are a family of proteins involved in the surveillance of gene expression in eukaryotic cells. They are involved in mechanisms responsible for genome stability, mRNA quality, and translation. They share a large N-terminal domain and a C-terminal FATC domain in addition to the unique serine/threonine protein kinase (PIKK) domain that is different from classical protein kinases. However, structure-function relationships of PIKKs remain unclear. Here we have focused on one of the PIKK members, SMG-1, which is involved in RNA surveillance, termed nonsense-mediated mRNA decay (NMD), to analyze the roles of conserved and SMG-1-specific sequences on the intrinsic kinase activity. Analyses of sets of point and deletion mutants of SMG-1 in a purified system and intact cells revealed that the long N-terminal region and the conserved leucine in the FATC domain were essential for SMG-1 kinase activity. However, the conserved tryptophan in the TOR SMG-1 (TS) homology domain and the FATC domain was not. In addition, the long insertion region between PIKK and FATC domains was not essential for SMG-1 kinase activity. These results indicated an unexpected feature of SMG-1, i.e. that distantly located N- and C-terminal sequences were essential for the intrinsic kinase activity.  相似文献   

3.
We have shown recently that PrkC, which is involved in developmental processes in Bacillus subtilis, is a Ser/Thr kinase with features of the receptor kinase family of eukaryotic Hanks kinases. In this study, we expressed and purified from Escherichia coli the cytoplasmic domain of PrkC containing the kinase and a short juxtamembrane region. This fragment, which we designate PrkCc, undergoes autophosphorylation in E.coli. PrkCc is further autophosphorylated in vitro, apparently through a trans-kinase, intermolecular reaction. PrkC also displays kinase activity with myelin basic protein. Using high mass accuracy electrospray tandem mass spectrometry (LC-MS/MS) and nanoelectrospray tandem mass spectrometry, we identified seven phosphorylated threonine and one serine residue in PrkCc. All the corresponding residues were replaced by systematic site-directed mutagenesis and the purified mutant proteins were tested for in vitro kinase activity. Single and multiple replacement of four threonine residues, clustered between residues 162 and 167 in a putative activation loop, substantially reduced kinase activity and the effect was clearly additive. Replacement of the other three threonine residues, clustered between residues 290 and 320, had relatively little effect on activity. In contrast, substitution of Ser214, which is conserved in closely related receptor kinase-like bacterial proteins, independently affected activity and may represent a novel regulatory mechanism. When projected onto a 3D structure of PrkC modelled on the structure of known Hanks kinases, the first cluster of phospho-threonine residues falls precisely in the activation loop, controlling the access of substrate and ATP to the catalytic site of many eukaryotic receptor kinases, whereas the second cluster is located in the juxtamembrane region. These results indicate that regulation of PrkC kinase activity (and presumably autophosphorylation) includes a conserved activation loop mechanism. The juxtamembrane phospho-threonine residues may be essential, for example for the recruitment of other proteins necessary for a PrkC signalling cascade or for coupling to other signalling pathways. This is the first structure-function analysis of a bacterial receptor-like kinase of the Hanks family.  相似文献   

4.
The segment C-terminal to the hydrophobic motif at the V5 domain of protein kinase C (PKC) is the least conserved both in length and in amino acid identity among all PKC isozymes. By generating serial truncation mutants followed by biochemical and functional analyses, we show here that the very C terminus of PKCalpha is critical in conferring the full catalytic competence to the kinase and for transducing signals in cells. Deletion of one C-terminal amino acid residue caused the loss of approximately 60% of the catalytic activity of the mutant PKCalpha, whereas deletion of 10 C-terminal amino acid residues abrogated the catalytic activity of PKCalpha in immune complex kinase assays. The PKCalpha C-terminal truncation mutants were found to lose their ability to activate mitogen-activated protein kinase, to rescue apoptosis induced by the inhibition of endogenous PKC in COS cells, and to augment melatonin-stimulated neurite outgrowth. Furthermore, molecular dynamics simulations revealed that the deletion of 1 or 10 C-terminal residues results in the deformation of the V5 domain and the ATP-binding pocket, respectively. Finally, PKCalpha immunoprecipitated using an antibody against its C terminus had only marginal catalytic activity compared with that of the PKCalpha immunoprecipitated by an antibody against its N terminus. Therefore, the very C-terminal tail of PKCalpha is a novel determinant of the catalytic activity of PKC and a promising target for selective modulation of PKCalpha function. Molecules that bind preferentially to the very C terminus of distinct PKC isozymes and suppress their catalytic activity may constitute a new class of selective inhibitors of PKC.  相似文献   

5.
The large subunit of the herpes simplex virus type 2 (HSV-2) ribonucleotide reductase (RR1) is demonstrated to possess serine/threonine-specific kinase activity. Computer-assisted sequence analysis identified regions within the amino terminus of ICP10 that are homologous to the catalytic domain of known protein kinases (PKs). An in vitro kinase assay confirmed the ability of ICP10, immunoprecipitated from either HSV-2-infected cells or from cells transfected with an ICP10 expression vector, to autophosphorylate and transphosphorylate exogenous substrates in the presence of ATP and Mg2+. The HSV-1 RR1 was shown to be negative for PK activity under these conditions. PK activity was localized to a 57-kDa amino-terminal region within ICP10 that lacked RR activity.  相似文献   

6.
Human HPTP beta is unique among mammalian receptor-like protein tyrosine phosphatases in that it has only a single catalytic domain. The intracellular region of HPTP beta was expressed in bacteria, purified, and characterized. It exhibits high activity toward all substrates tested and is potently inhibited by zinc. Vanadate and polyanions also inhibited activity. The juxta-membrane segment of HPTP beta (residues 1622-1639) potentially functions as a negative regulatory sequence since its deletion can increase HPTP beta activity 5-fold. This segment contains up to two sites for protein kinase C phosphorylation, although in vitro phosphorylation by this kinase did not affect HPTP beta activity. The boundaries of the catalytic domain were delineated by truncation analyses. Successive deletion of N-terminal sequence prior to residue 1684 had little effect on substrate affinity and at most reduced activity about 6-fold. Further removal of residues 1684-1686 resulted in a marked 50-500-fold drop in activity, and loss of N-terminal sequence prior to residue 1690 abolished activity. Based on these analyses a highly conserved motif was identified in all mammalian tyrosine phosphatases (E/q) (F/y)XX(L/i), corresponding to positions 1684-1688 of HPTP beta. Mutation of residue 1684 or 1685 generally gave rise to proteins with marked temperature sensitivity. These mutant HPTP beta were active but had reduced activity compared to the wild type enzyme. In conjunction, these results suggest that this region represents the N-terminal border of the catalytic domain and is essential for correct phosphatase folding although not directly involved in catalysis. Parallel truncation studies have defined residues 1930-1939/40 as the C-terminal border of the catalytic domain.  相似文献   

7.
Myxococcus xanthus is a gram-negative bacterium that forms multicellular fruiting bodies upon starvation. Here, we demonstrate that it contains at least 13 eukaryotic-like protein Ser/Thr kinases (Pkn1 to Pkn13) individually having unique features. All contain the kinase domain of approximately 280 residues near the N-terminal end, which share highly conserved features in eukaryotic Ser/Thr kinases. The kinase domain is followed by a putative regulatory domain consisting of 185 to 692 residues. These regulatory domains share no significant sequence similarities. The C-terminal regions of 11 kinases contain at least 1 transmembrane domain, suggesting that they function as transmembrane sensor kinases. From the recent genomic analysis, protein Ser/Thr kinases were found in various pathogenic bacteria and coexist with protein His kinases. Phylogenetic analysis of these Ser/Thr kinases reveals that all bacterial Ser/Thr kinases were evolved from a common ancestral kinase together with eukaryotic Tyr and Ser/Thr kinases. Coexistence of both Ser/Thr and His kinases in some organisms may be significant in terms of functional differences between the two kinases. We argue that both kinases are essential for some bacteria to adapt optimally to severe environmental changes.  相似文献   

8.
The Myxococcus xanthus gene, pkn9 , encodes a protein that contains significant homology with eukaryotic Ser/Thr protein kinases. The pkn9 gene was singled out of a previously identified family of kinase genes by amplification techniques that displayed differences in kinase gene expression during selected periods of the M. xanthus life cycle. Pkn9 was constitutively expressed during vegetative growth and upregulated during the aggregation stage of early development. It consists of 589 amino acids, and its N-terminal 394 residues show 38% identity with both Pkn1 and Pkn2 of M. xanthus . This region also shows 29, 25 and 29% identity with myosin light-chain kinase, protein kinase C, and cAMP-dependent protein kinase, respectively. A 22-residue hydrophobic transmembrane domain separates the kinase domain from the 173-residue C-terminal domain that resides on the outside of the inner membrane. The C-terminal domain contains two sets of tandem repeats of 13 and 10 residues which have no known function. When expressed in Escherichia coli under the T7 promoter, Pkn9 was found to be phosphorylated on serine and threonine residues. Disruption of the pkn9 kinase catalytic subdomains I–III by the insertion of a kanamycin-resistance gene resulted in slightly delayed, smaller and more-crowded fruiting bodies, while spore formation was normal. Total deletion of the pkn9 gene caused severely reduced progression through development resulting in light loose mounds that become slightly more compact over time. Development progressed further at the centre than at the edge of the spot, and spore formation was significantly reduced. Two-dimensional gel analysis revealed that both the disruption and the deletion of pkn9 prevented the expression of five membrane proteins (KREP9-1-4). These results suggest that the loss of Pkn9 kinase activity caused altered fruiting-body formation, the absence of the KREP9 proteins in the membrane, and reduced spore production.  相似文献   

9.
Transient receptor potential (TRP) channels modulate calcium levels in eukaryotic cells in response to external signals. A novel transient receptor potential channel has the ability to phosphorylate itself and other proteins on serine and threonine residues. The catalytic domain of this channel kinase has no detectable sequence similarity to classical eukaryotic protein kinases and is essential for channel function. The structure of the kinase domain, reported here, reveals unexpected similarity to eukaryotic protein kinases in the catalytic core as well as to metabolic enzymes with ATP-grasp domains. The inclusion of the channel kinase catalytic domain within the eukaryotic protein kinase superfamily indicates a significantly wider distribution for this group of signaling proteins than suggested previously by sequence comparisons alone.  相似文献   

10.
S Lin  W Chen    S S Broyles 《Journal of virology》1992,66(5):2717-2723
The nucleotide sequence of the vaccinia virus open reading frame B1 predicts a polypeptide with significant sequence similarity to the catalytic domain of known protein kinases. To determine whether the B1R polypeptide is a protein kinase, we have expressed it in bacteria as a fusion with glutathione S-transferase. Affinity-purified preparations of the fusion protein were found to undergo autophosphorylation and also phosphorylated the exogenous substrates casein and histone H1. Mutation of lysine 41 to glutamine within the conserved kinase catalytic domain II abrogated protein kinase activity on all three protein substrates, supporting the notion that the protein kinase activity is inherent to the B1R polypeptide. Casein and histone H1 were phosphorylated on serine and threonine residues. The B1R fusion protein was phosphorylated on a threonine residue(s) by an apparently intramolecular mechanism. The autophosphorylation reaction resulted in phosphorylation of the glutathione S-transferase portion of the fusion and not the protein kinase domain. The protein kinase activity of B1R was specific for ATP as the phosphate donor; GTP was not utilized to a detectable extent. Immunoblotting experiments with anti-B1R antiserum showed that the protein kinase is located in the virion particle. Chromatography of virion extracts resulted in separation of the B1R protein kinase from the bulk of the total protein kinase activity, indicating that multiple protein kinases are present in the virion particle and that B1R is distinct from the previously described vaccinia virus-associated protein kinase.  相似文献   

11.
The host cell regulators and substrates of the Rous sarcoma virus transforming protein pp60v-src remain largely unknown. Viral mutants which induce a host-dependent phenotype may result from mutations which affect the interaction of pp60v-src with host cell components. To isolate such mutants and to examine the role of different regions of src in regulating pp60v-src function, we generated 46 linker insertion and 5 deletion mutations within src. The mutant src genes were expressed in chicken embryo fibroblasts and in rat-2 cells by using retrovirus expression vectors. Most linker insertions within the kinase domain (residues 260 to 512) inactivated kinase activity and transforming capacity, while most insertions in the N-terminal domain and at the extreme C terminus were tolerated. A number of mutations generated a host-dependent phenotype. Insertions after residues 225 and 227, within the N-terminal regulatory domain (SH2), produced a fusiform transformation in chicken embryo fibroblasts and abolished transformation in rat-2 cells; a similar phenotype also resulted from two deletions affecting SH2 (residues 149 to 174 and residues 77 to 225). Insertions immediately C terminal to Lys-295, which is involved in ATP binding, also produced a conditional phenotype. Insertions after residues 299 and 300 produced a temperature-sensitive phenotype, while insertions after residues 304 and 306 produced a host cell-dependent phenotype. An insertion which removed the major tyrosine autophosphorylation site (Tyr-416) greatly reduced transformation of rat-2 cells, a property not previously observed with other mutations at this site. We conclude that mutations at certain sites within src result in conditional phenotypes. These sites may represent regions important in interactions with host cell components.  相似文献   

12.
Gamma-aminobutyric acid Type A (GABAA) receptors are the major sites of synaptic inhibition in the central nervous system. These receptors are thought to be pentameric complexes of homologous transmembrane glycoproteins. Molecular cloning has revealed a multiplicity of different GABAA receptor subunits divided into five classes, alpha, beta, gamma, delta, and rho, based on sequence homology. Within the proposed major intracellular domain of these subunits, there are numerous potential consensus sites for protein phosphorylation by a variety of protein kinases. We have used purified fusion proteins of the major intracellular domain of GABAA receptor subunits produced in Escherichia coli to examine the phosphorylation of these subunits by cAMP-dependent protein kinase (PKA) and protein kinase C (PKC). The purified fusion protein of the intracellular domain of the beta 1 subunit was an excellent substrate for both PKA and PKC. PKA and PKC phosphorylated the beta 1 subunit fusion protein on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 409 in the intracellular domain of the beta 1 subunit to an alanine residue eliminated the phosphorylation of the beta 1 subunit fusion protein by both protein kinases. The purified fusion proteins of the major intracellular domain of the gamma 2S and gamma 2L subunits of the GABAA receptor were rapidly and stoichiometrically phosphorylated by PKC but not by PKA. The phosphorylation of the gamma 2S subunit occurred on serine residues on a single tryptic phosphopeptide. Site-directed mutagenesis of serine 327 of the gamma 2S subunit fusion protein to an alanine residue eliminated the phosphorylation of the gamma 2S fusion protein by PKC. The gamma 2L subunit is an alternatively spliced form of the gamma 2S subunit that differs by the insertion of 8 amino acids (LLRMFSFK) within the major intracellular domain of the gamma 2S subunit. The PKC phosphorylation of the gamma 2L subunit occurred on serine residues on two tryptic phosphopeptides. Site-specific mutagenesis of serine 343 within the 8-amino acid insert to an alanine residue eliminated the PKC phosphorylation of the novel site in the gamma 2L subunit. No phosphorylation of a purified fusion protein of the major intracellular loop of the alpha 1 subunit was observed with either PKA or PKC. These results identify the specific amino acid residues within GABAA receptor subunits that are phosphorylated by PKA and PKC and suggest that protein phosphorylation of these sites may be important in regulating GABAA receptor function.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Gene 12 of equine herpesvirus 1 (EHV-1), the homolog of herpes simplex virus (HSV) VP16 (alpha TIF, Vmw65), was cloned into a eukaryotic expression vector by PCR and used in transactivation studies of both the EHV-1 and HSV-1 IE1 promoters. Results demonstrated that the product of gene 12 is a potent transactivator of immediate-early gene expression of both viruses, which requires sequences in the upstream HSV-1 promoter for activity. Mutational analysis of the gene 12 open reading frame indicated that removal of the C-terminal 7 amino acids, which contain a short region of homology with the extreme C terminus of VP16, inactivated the protein. Within this region, only a single methionine residue appeared to be essential for activity, implying that gene 12 may have a modular array of organization similar to that of VP16. However, fusion of the gene 12 C terminus to a truncated form of VP16, which contained the complex formation domain, did not restore activity to the HSV-1 protein. These data demonstrate that the EHV-1 immediate-early transactivator may not be functionally colinear with VP16, with transactivation requiring both the C terminus and another region(s) present within the N-terminal portion.  相似文献   

14.
A series of wild-type and mutant raf genes was transfected into NIH 3T3 cells and analyzed for transforming activity. Full-length wild-type c-raf did not show transforming activity. Two types of mutations resulted in oncogenic activity similar to that of v-raf: truncation of the amino-terminal half of the protein and fusion of the full-length molecule to gag sequences. A lower level of activation was observed for a mutant with a tetrapeptide insertion mapping to conserved region 2 (CR2), a serine- and threonine-rich domain located 100 residues amino-terminal of the kinase domain. To determine essential structural features of the transforming region of raf, we analyzed point and deletion mutants of v-raf. Substitutions of Lys-56 modulated the transforming activity, whereas mutation of Lys-53, a putative ATP binding residue, abolished it. Deletion analysis established that the minimal transforming sequence coincided precisely with CR3, the conserved Raf kinase domain. Thus, oncogenic activation of the Raf kinase can be achieved by removal of CR1 and CR2 or by steric distortion and requires retention of an active kinase domain. These findings are consistent with a protein structure model for the nonstimulated enzyme in which the active site is buried within the protein.  相似文献   

15.
Proteins encoded by oncogenes such as v-fps/fes, v-src, v-yes, v-abl, and v-fgr are cytoplasmic protein tyrosine kinases which, unlike transmembrane receptors, are localized to the inside of the cell. These proteins possess two contiguous regions of sequence identity: a C-terminal catalytic domain of 260 residues with homology to other tyrosine-specific and serine-threonine-specific protein kinases, and a unique domain of approximately 100 residues which is located N terminal to the kinase region and is absent from kinases that span the plasma membrane. In-frame linker insertion mutations in Fujinami avian sarcoma virus which introduced dipeptide insertions into the most stringently conserved segment of this N-terminal domain in P130gag-fps impaired the ability of Fujinami avian sarcoma virus to transform rat-2 cells. The P130gag-fps proteins encoded by these transformation-defective mutants were deficient in protein-tyrosine kinase activity in rat cells. However v-fps polypeptides derived from the mutant Fujinami avian sarcoma virus genomes and expressed in Escherichia coli as trpE-v-fps fusion proteins displayed essentially wild-type enzymatic activity, even though they contained the mutated sites. Deletion of the N-terminal domain from wild-type and mutant v-fps bacterial proteins had little effect on autophosphorylating activity. The conserved N-terminal domain of P130gag-fps is therefore not required for catalytic activity, but can profoundly influence the adjacent kinase region. The presence of this noncatalytic domain in all known cytoplasmic tyrosine kinases of higher and lower eucaryotes argues for an important biological function. The relative inactivity of the mutant proteins in rat-2 cells compared with bacteria suggests that the noncatalytic domain may direct specific interactions of the enzymatic region with cellular components that regulate or mediate tyrosine kinase function.  相似文献   

16.
The large subunit of herpes simplex virus (HSV) ribonucleotide reductase (RR), RR1, contains a unique amino-terminal domain which has serine/threonine protein kinase (PK) activity. To examine the role of the PK activity in virus replication, we studied an HSV type 2 (HSV-2) mutant with a deletion in the RR1 PK domain (ICP10ΔPK). ICP10ΔPK expressed a 95-kDa RR1 protein (p95) which was PK negative but retained the ability to complex with the small RR subunit, RR2. Its RR activity was similar to that of HSV-2. In dividing cells, onset of virus growth was delayed, with replication initiating at 10 to 15 h postinfection, depending on the multiplicity of infection. In addition to the delayed growth onset, virus replication was significantly impaired (1,000-fold lower titers) in nondividing cells, and plaque-forming ability was severely compromised. The RR1 protein expressed by a revertant virus [HSV-2(R)] was structurally and functionally similar to the wild-type protein, and the virus had wild-type growth and plaque-forming properties. The growth of the ICP10ΔPK virus and its plaque-forming potential were restored to wild-type levels in cells that constitutively express ICP10. Immediate-early (IE) genes for ICP4, ICP27, and ICP22 were not expressed in Vero cells infected with ICP10ΔPK early in infection or in the presence of cycloheximide, and the levels of ICP0 and p95 were significantly (three- to sevenfold) lower than those in HSV-2- or HSV-2(R)-infected cells. IE gene expression was similar to that of the wild-type virus in cells that constitutively express ICP10. The data indicate that ICP10 PK is required for early expression of the viral regulatory IE genes and, consequently, for timely initiation of the protein cascade and HSV-2 growth in cultured cells.  相似文献   

17.
Coordinated temporal and spatial regulation of the actin cytoskeleton is essential for diverse cellular processes such as cell division, cell motility and the formation and maintenance of specialized structures in differentiated cells. In plasmodia of Physarum polycephalum, the F-actin capping activity of the actin-fragmin complex is regulated by the phosphorylation of actin. This is mediated by a novel type of protein kinase with no sequence homology to eukaryotic-type protein kinases. Here we present the crystal structure of the catalytic domain of the first cloned actin kinase in complex with AMP at 2.9 A resolution. The three-dimensional fold reveals a catalytic module of approximately 160 residues, in common with the eukaryotic protein kinase superfamily, which harbours the nucleotide binding site and the catalytic apparatus in an inter-lobe cleft. Several kinases that share this catalytic module differ in the overall architecture of their substrate recognition domain. The actin-fragmin kinase has acquired a unique flat substrate recognition domain which is supposed to confer stringent substrate specificity.  相似文献   

18.
BACKGROUND: The yeast SNF1 protein kinase and the mammalian AMP-activated protein kinase are highly conserved heterotrimeric complexes that are "metabolic master switches" involved in the switch from fermentative/anaerobic to oxidative metabolism. They are activated by cellular stresses that deplete cellular ATP, and SNF1 is essential in the response to glucose starvation. In both cases, activation requires phosphorylation at a conserved threonine residue within the activation loop of the kinase domain, but identifying the upstream kinase(s) responsible for this has been a challenging, unsolved problem. RESULTS: Using a library of strains that express 119 yeast protein kinases as GST fusions, we identified Elm1p as the sole kinase that could activate the kinase domain of AMP-activated protein kinase in vitro. Elm1p also activated the purified SNF1 complex, and this correlated with phosphorylation of Thr210 in the activation loop. Removal of the C-terminal domain increased the Elm1p kinase activity, indicating that it is auto-inhibitory. Expression of activated, truncated Elm1p from its own promoter gave a constitutive pseudohyphal growth phenotype that was rescued by deletion of SNF1, showing that Snf1p was acting downstream of Elm1p. Deletion of ELM1 does not give an snf- phenotype. However, Elm1p is closely related to Pak1p and Tos3p, and a pak1Delta tos3Delta elm1Delta triple mutant had an snf1- phenotype, i.e., it would not grow on raffinose and did not display hyperphosphorylation of the SNF1 target, Mig1p, in response to glucose starvation. CONCLUSIONS: Elm1p, Pak1p, and Tos3p are upstream kinases for the SNF1 complex that have partially redundant functions.  相似文献   

19.
Human lemur (Lmr) kinases are predicted to be Tyr kinases based on sequences and are related to neurotrophin receptor Trk kinases. This study used homogeneous recombinant KPI-2 (Lmr2, LMTK2, Cprk, brain-enriched protein kinase) kinase domain and a library of 1,154 peptides on a microarray to analyze substrate specificity. We found that KPI-2 is strictly a Ser/Thr kinase that reacts with Ser either preceded by or followed by Pro residues but unlike other Pro-directed kinases does not strictly require an adjacent Pro residue. The most reactive peptide in the library corresponds to Ser-737 of cystic fibrosis transmembrane conductance regulator, and the recombinant R domain of cystic fibrosis transmembrane conductance regulator was a preferred substrate. Furthermore the KPI-2 kinase phosphorylated peptides corresponding to the single site in phosphorylase and purified phosphorylase b, making this only the second known phosphorylase b kinase. Phosphorylase was used as a specific substrate to show that KPI-2 is inhibited in living cells by addition of nerve growth factor or serum. The results demonstrate the utility of the peptide library to probe specificity and discover kinase substrates and offer a specific assay that reveals hormonal regulation of the activity of this unusual transmembrane kinase.  相似文献   

20.
Members of the AGC subfamily of protein kinases including protein kinase B, p70 S6 kinase, and protein kinase C (PKC) isoforms are activated and/or stabilized by phosphorylation of two residues, one that resides in the T-loop of the kinase domain and the other that is located C-terminal to the kinase domain in a region known as the hydrophobic motif. Atypical PKC isoforms, such as PKCzeta, and the PKC-related kinases, like PRK2, are also activated by phosphorylation of their T-loop site but, instead of possessing a phosphorylatable Ser/Thr in their hydrophobic motif, contain an acidic residue. The 3-phosphoinositide-dependent protein kinase (PDK1) activates many members of the AGC subfamily of kinases in vitro, including PKCzeta and PRK2 by phosphorylating the T-loop residue. In the present study we demonstrate that the hydrophobic motifs of PKCzeta and PKCiota, as well as PRK1 and PRK2, interact with the kinase domain of PDK1. Mutation of the conserved residues of the hydrophobic motif of full-length PKCzeta, full-length PRK2, or PRK2 lacking its N-terminal regulatory domain abolishes or significantly reduces the ability of these kinases to interact with PDK1 and to become phosphorylated at their T-loop sites in vivo. Furthermore, overexpression of the hydrophobic motif of PRK2 in cells prevents the T-loop phosphorylation and thus inhibits the activation of PRK2 and PKCzeta. These findings indicate that the hydrophobic motif of PRK2 and PKCzeta acts as a "docking site" enabling the recruitment of PDK1 to these substrates. This is essential for their phosphorylation by PDK1 in cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号