首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.

Background

A key event in transmissible spongiform encephalopathies (TSEs) is the conversion of the soluble, protease-sensitive glycosylated prion protein (PrPC) to an abnormally structured, aggregated and partially protease-resistant isoform (PrPSc). Both PrP isoforms bear two potential glycosylation sites and thus in a typical western blot with an anti-PrP antibody three distinct bands appear, corresponding to the di-, mono- or unglycosylated forms of the protein. The relative intensity and electrophoretic mobility of the three bands are characteristic of each TSE strain and have been used to discriminate between them.

Methodology/Principal Findings

In the present study we used lectin-based western blotting to evaluate possible variations in composition within sugar chains carried by PrPSc purified from subjects affected with different TSEs. Our findings indicate that in addition to the already well-documented differences in electrophoretic mobility and amounts of the glycosylated PrPSc forms, TSE strains also vary in the abundance of specific N-linked sugars of the PrPSc protein.

Conclusions/Significance

These results imply that PrP glycosylation might fine-tune the conversion of PrPC to PrPSc and could play an accessory role in the appearance of some of the characteristic features of TSE strains. The differences in sugar composition could also be used as an additional tool for discrimination between the various TSEs.  相似文献   

2.

Background

Prion diseases are fatal neurodegenerative disorders characterized by misfolding and aggregation of the normal prion protein PrPC. Little is known about the details of the structural rearrangement of physiological PrPC into a still-elusive disease-associated conformation termed PrPSc. Increasing evidence suggests that the amino-terminal octapeptide sequences of PrP (huPrP, residues 59–89), though not essential, play a role in modulating prion replication and disease presentation.

Methodology/Principal Findings

Here, we report that trypsin digestion of PrPSc from variant and sporadic human CJD results in a disease-specific trypsin-resistant PrPSc fragment including amino acids ∼49–231, thus preserving important epitopes such as the octapeptide domain for biochemical examination. Our immunodetection analyses reveal that several epitopes buried in this region of PrPSc are exposed in PrPC.

Conclusions/Significance

We conclude that the octapeptide region undergoes a previously unrecognized conformational transition in the formation of PrPSc. This phenomenon may be relevant to the mechanism by which the amino terminus of PrPC participates in PrPSc conversion, and may also be exploited for diagnostic purposes.  相似文献   

3.

Background

A hallmark of the prion diseases is the conversion of the host-encoded cellular prion protein (PrPC) into a disease related, alternatively folded isoform (PrPSc). The accumulation of PrPSc within the brain is associated with synapse loss and ultimately neuronal death. Novel therapeutics are desperately required to treat neurodegenerative diseases including the prion diseases.

Principal Findings

Treatment with glimepiride, a sulphonylurea approved for the treatment of diabetes mellitus, induced the release of PrPC from the surface of prion-infected neuronal cells. The cell surface is a site where PrPC molecules may be converted to PrPSc and glimepiride treatment reduced PrPSc formation in three prion infected neuronal cell lines (ScN2a, SMB and ScGT1 cells). Glimepiride also protected cortical and hippocampal neurones against the toxic effects of the prion-derived peptide PrP82–146. Glimepiride treatment significantly reduce both the amount of PrP82–146 that bound to neurones and PrP82–146 induced activation of cytoplasmic phospholipase A2 (cPLA2) and the production of prostaglandin E2 that is associated with neuronal injury in prion diseases. Our results are consistent with reports that glimepiride activates an endogenous glycosylphosphatidylinositol (GPI)-phospholipase C which reduced PrPC expression at the surface of neuronal cells. The effects of glimepiride were reproduced by treatment of cells with phosphatidylinositol-phospholipase C (PI-PLC) and were reversed by co-incubation with p-chloromercuriphenylsulphonate, an inhibitor of endogenous GPI-PLC.

Conclusions

Collectively, these results indicate that glimepiride may be a novel treatment to reduce PrPSc formation and neuronal damage in prion diseases.  相似文献   

4.

Background

According to the prevailing view, soluble oligomers or small fibrillar fragments are considered to be the most toxic species in prion diseases. To test this hypothesis, two conformationally different amyloid states were produced from the same highly pure recombinant full-length prion protein (rPrP). The cytotoxic potential of intact fibrils and fibrillar fragments generated by sonication from these two states was tested using cultured cells.

Methodology/Principal Findings

For one amyloid state, fibril fragmentation was found to enhance its cytotoxic potential, whereas for another amyloid state formed within the same amino acid sequence, the fragmented fibrils were found to be substantially less toxic than the intact fibrils. Consistent with the previous studies, the toxic effects were more pronounced for cell cultures expressing normal isoform of the prion protein (PrPC) at high levels confirming that cytotoxicity was in part PrPC-dependent. Silencing of PrPC expression by small hairpin RNAs designed to silence expression of human PrPC (shRNA-PrPC) deminished the deleterious effects of the two amyloid states to a different extent, suggesting that the role of PrPC-mediated and PrPC-independent mechanisms depends on the structure of the aggregates.

Conclusions/Significance

This work provides a direct illustration that the relationship between an amyloid''s physical dimension and its toxic potential is not unidirectional but is controlled by the molecular structure of prion protein (PrP) molecules within aggregated states. Depending on the structure, a decrease in size of amyloid fibrils can either enhance or abolish their cytotoxic effect. Regardless of the molecular structure or size of PrP aggregates, silencing of PrPC expression can be exploited to reduce their deleterious effects.  相似文献   

5.

Background

The accumulation of protease resistant conformers of the prion protein (PrPres) is a key pathological feature of prion diseases. Polyanions, including RNA and glycosaminoglycans have been identified as factors that contribute to the propagation, transmission and pathogenesis of prion disease. Recent studies have suggested that the contribution of these cofactors to prion propagation may be species specific.

Methodology/Principal Finding

In this study a cell-free assay was used to investigate the molecular basis of polyanion stimulated PrPres formation using brain tissue or cell line derived murine PrP. Enzymatic depletion of endogenous nucleic acids or heparan sulphate (HS) from the PrPC substrate was found to specifically prevent PrPres formation seeded by mouse derived PrPSc. Modification of the negative charge afforded by the sulphation of glycosaminoglycans increased the ability of a familial PrP mutant to act as a substrate for PrPres formation, while having no effect on PrPres formed by wildtype PrP. This difference may be due to the observed differences in the binding of wild type and mutant PrP for glycosaminoglycans.

Conclusions/Significance

Cofactor requirements for PrPres formation are host species and prion strain specific and affected by disease associated mutations of the prion protein. This may explain both species and strain dependent propagation characteristics and provide insights into the underlying mechanisms of familial prion disease. It further highlights the challenge of designing effective therapeutics against a disease which effects a range of mammalian species, caused by range of aetiologies and prion strains.  相似文献   

6.

Background

In prion disease, the peripheral expression of PrPC is necessary for the transfer of infectivity to the central nervous system. The spleen is involved in neuroinvasion and neural dissemination in prion diseases but the nature of this involvement is not known. The present study undertook the investigation of the spatial relationship between sites of PrPSc accumulation, localisation of nerve fibres and PrPC expression in the tissue compartments of the spleen of scrapie-inoculated and control sheep.

Methodology/Principal Findings

Laser microdissection and quantitative PCR were used to determine PrP mRNA levels and results were compared with immunohistochemical protocols to distinguish PrPC and PrPSc in tissue compartments of the spleen. In sheep experimentally infected with scrapie, the major sites of accumulation of PrPSc in the spleen, namely the lymphoid nodules and the marginal zone, expressed low levels of PrP mRNA. Double immunohistochemical labelling for PrPSc and the pan-nerve fibre marker, PGP, was used to evaluate the density of innervation of splenic tissue compartments and the intimacy of association between PrPSc and nerves. Some nerve fibres were observed to accompany blood vessels into the PrPSc-laden germinal centres. However, the close association between nerves and PrPSc was most apparent in the marginal zone. Other sites of close association were adjacent to the wall of the central artery of PALS and the outer rim of germinal centres.

Conclusions/Significance

The findings suggest that the degree of PrPSc accumulation does not depend on the expression level of PrPC. Though several splenic compartments may contribute to neuroinvasion, the marginal zone may play a central role in being the compartment with most apparent association between nerves and PrPSc.  相似文献   

7.

Background

Prions, infectious agents associated with prion diseases such as Creutzfeldt-Jakob disease in humans, bovine spongiform encephalopathy (BSE) in cattle, and scrapie in sheep and goats, are primarily comprised of PrPSc, a protease-resistant misfolded isoform of the cellular prion protein PrPC. Protein misfolding cyclic amplification (PMCA) is a highly sensitive technique used to detect minute amounts of scrapie PrPSc. However, the current PMCA technique has been unsuccessful in achieving good amplification in cattle. The detailed distribution of PrPSc in BSE-affected cattle therefore remains unknown.

Methodology/Principal Findings

We report here that PrPSc derived from BSE-affected cattle can be amplified ultra-efficiently by PMCA in the presence of sulfated dextran compounds. This method is capable of amplifying very small amounts of PrPSc from the saliva, palatine tonsils, lymph nodes, ileocecal region, and muscular tissues of BSE-affected cattle. Individual differences in the distribution of PrPSc in spleen and cerebrospinal fluid samples were observed in terminal-stage animals. However, the presence of PrPSc in blood was not substantiated in the BSE-affected cattle examined.

Conclusions/Significance

The distribution of PrPSc is not restricted to the nervous system and can spread to peripheral tissues in the terminal disease stage. The finding that PrPSc could be amplified in the saliva of an asymptomatic animal suggests a potential usefulness of this technique for BSE diagnosis. This highly sensitive method also has other practical applications, including safety evaluation or safety assurance of products and byproducts manufactured from bovine source materials.  相似文献   

8.

Background

Recent advances toward an effective therapy for prion diseases employ RNA interference to suppress PrPC expression and subsequent prion neuropathology, exploiting the phenomenon that disease severity and progression correlate with host PrPC expression levels. However, delivery of lentivirus encoding PrP shRNA has demonstrated only modest efficacy in vivo.

Methodology/Principal Findings

Here we describe a new siRNA delivery system incorporating a small peptide that binds siRNA and acetylcholine receptors (AchRs), acting as a molecular messenger for delivery to neurons, and cationic liposomes that protect siRNA-peptide complexes from serum degradation.

Conclusions/Significance

Liposome-siRNA-peptide complexes (LSPCs) delivered PrP siRNA specifically to AchR-expressing cells, suppressed PrPC expression and eliminated PrPRES formation in vitro. LSPCs injected intravenously into mice resisted serum degradation and delivered PrP siRNA throughout the brain to AchR and PrPC-expressing neurons. These data promote LSPCs as effective vehicles for delivery of PrP and other siRNAs specifically to neurons to treat prion and other neuropathological diseases.  相似文献   

9.
The central hallmark of prion diseases is the misfolding of cellular prion protein (PrPC) into a disease-associated aggregated isoform known as scrapie prion protein (PrPSc). NMR spectroscopy has made many essential contributions to the characterization of recombinant PrP in its folded, unfolded and aggregated states. Recent studies reporting on de novo generation of prions from recombinant PrP and infection of animals using prion aerosols suggest that adjustment of current biosafety measures may be necessary, particularly given the relatively high protein concentrations required for NMR applications that favor aggregation. We here present a protocol for the production of recombinant PrP under biosafety level 2 conditions that avoids entirely exposure of the experimenter to aerosols that might contain harmful PrP aggregates. In addition, we introduce an NMR sample tube setup that allows for safe handling of PrP samples at the spectrometer that usually is not part of a dedicated biosafety level 2 laboratory.  相似文献   

10.

Background

The conversion of the cellular prion protein (PrPC) into the infectious form (PrPSc) is the key event in prion induced neurodegenerations. This process is believed to involve a multi-step conformational transition from an α-helical (PrPC) form to a β-sheet-rich (PrPSc) state. In addition to the conformational difference, PrPSc exhibits as covalent signature the sulfoxidation of M213. To investigate whether such modification may play a role in the misfolding process we have studied the impact of methionine oxidation on the dynamics and energetics of the HuPrP(125–229) α-fold.

Methodology/Principal Findings

Using molecular dynamics simulation, essential dynamics, correlated motions and signal propagation analysis, we have found that substitution of the sulfur atom of M213 by a sulfoxide group impacts on the stability of the native state increasing the flexibility of regions preceding the site of the modification and perturbing the network of stabilizing interactions. Together, these changes favor the population of alternative states which maybe essential in the productive pathway of the pathogenic conversion. These changes are also observed when the sulfoxidation is placed at M206 and at both, M206 and M213.

Conclusions/Significance

Our results suggest that the sulfoxidation of Helix-3 methionines might be the switch for triggering the initial α-fold destabilization required for the productive pathogenic conversion.  相似文献   

11.
Aberrant self-assembly, induced by structural misfolding of the prion proteins, leads to a number of neurodegenerative disorders. In particular, misfolding of the mostly α-helical cellular prion protein (PrPC) into a β-sheet-rich disease-causing isoform (PrPSc) is the key molecular event in the formation of PrPSc aggregates. The molecular mechanisms underlying the PrPC-to-PrPSc conversion and subsequent aggregation remain to be elucidated. However, in persistently prion-infected cell-culture models, it was shown that treatment with monoclonal antibodies against defined regions of the prion protein (PrP) led to the clearing of PrPSc in cultured cells. To gain more insight into this process, we characterized PrP-antibody complexes in solution using a fast protein liquid chromatography coupled with small-angle x-ray scattering (FPLC-SAXS) procedure. High-quality SAXS data were collected for full-length recombinant mouse PrP [denoted recPrP(23–230)] and N-terminally truncated recPrP(89–230), as well as their complexes with each of two Fab fragments (HuM-P and HuM-R1), which recognize N- and C-terminal epitopes of PrP, respectively. In-line measurements by fast protein liquid chromatography coupled with SAXS minimized data artifacts caused by a non-monodispersed sample, allowing structural analysis of PrP alone and in complex with Fab antibodies. The resulting structural models suggest two mechanisms for how these Fabs may prevent the conversion of PrPC into PrPSc.  相似文献   

12.

Background

Imbalance of iron homeostasis has been reported in sporadic Creutzfeldt-Jakob-disease (sCJD) affected human and scrapie infected animal brains, but the contribution of this phenotype to disease associated neurotoxicity is unclear.

Methodology/Principal Findings

Using cell models of familial prion disorders, we demonstrate that exposure of cells expressing normal prion protein (PrPC) or mutant PrP forms to a source of redox-iron induces aggregation of PrPC and specific mutant PrP forms. Initially this response is cytoprotective, but becomes increasingly toxic with time due to accumulation of PrP-ferritin aggregates. Mutant PrP forms that do not aggregate are not cytoprotective, and cells show signs of acute toxicity. Intracellular PrP-ferritin aggregates induce the expression of LC3-II, indicating stimulation of autophagy in these cells. Similar observations are noted in sCJD and scrapie infected hamster brains, lending credence to these results. Furthermore, phagocytosis of PrP-ferritin aggregates by astrocytes is cytoprotective, while culture in astrocyte conditioned medium (CM) shows no measurable effect. Exposure to H2O2, on the other hand, does not cause aggregation of PrP, and cells show acute toxicity that is alleviated by CM.

Conclusions/Significance

These observations suggest that aggregation of PrP in response to redox-iron is cytoprotective. However, subsequent co-aggregation of PrP with ferritin induces intracellular toxicity unless the aggregates are degraded by autophagosomes or phagocytosed by adjacent scavenger cells. H2O2, on the other hand, does not cause aggregation of PrP, and induces toxicity through extra-cellular free radicals. Together with previous observations demonstrating imbalance of iron homeostasis in prion disease affected brains, these observations provide insight into the mechanism of neurotoxicity by redox-iron, and the role of PrP in this process.  相似文献   

13.
Wang X  Shi Q  Xu K  Gao C  Chen C  Li XL  Wang GR  Tian C  Han J  Dong XP 《PloS one》2011,6(1):e14602

Background

Genetic prion diseases are linked to point and inserted mutations in the prion protein (PrP) gene that are presumed to favor conversion of the cellular isoform of PrP (PrPC) to the pathogenic one (PrPSc). The pathogenic mechanisms and the subcellular sites of the conversion are not completely understood. Here we introduce several PRNP gene mutations (such as, PrP-KDEL, PrP-3AV, PrP-A117V, PrP-G114V, PrP-P102L and PrP-E200K) into the cultured cells in order to explore the pathogenic mechanism of familial prion disease.

Methodology/Principal Findings

To address the roles of aberrant retention of PrP in endoplasmic reticulum (ER), the recombinant plasmids expressing full-length human PrP tailed with an ER signal peptide at the COOH-terminal (PrP-KDEL) and PrP with three amino acids exchange in transmembrane region (PrP-3AV) were constructed. In the preparations of transient transfections, 18-kD COOH-terminal proteolytic resistant fragments (Ctm-PrP) were detected in the cells expressing PrP-KDEL and PrP-3AV. Analyses of the cell viabilities in the presences of tunicamycin and brefeldin A revealed that expressions of PrP-KDEL and PrP-3AV sensitized the transfected cells to ER stress stimuli. Western blots and RT-PCR identified the clear alternations of ER stress associated events in the cells expressing PrP-KDEL and PrP-3AV that induced ER mediated apoptosis by CHOP and capase-12 apoptosis pathway. Moreover, several familial CJD related PrP mutants were transiently introduced into the cultured cells. Only the mutants within the transmembrane region (G114V and A117V) induced the formation of Ctm-PrP and caused the ER stress, while the mutants outside the transmembrane region (P102L and E200K) failed.

Conclusions/Significance

The data indicate that the retention of PrP in ER through formation of Ctm-PrP results in ER stress and cell apoptosis. The cytopathic activities caused by different familial CJD associated PrP mutants may vary, among them the mutants within the transmembrane region undergo an ER-stress mediated cell apoptosis.  相似文献   

14.
Neurodegenerative diseases are often associated with misfolding and deposition of specific proteins in the nervous system. The prion protein, which is associated with transmissible spongiform encephalopathies (TSEs), is one of them. The normal function of the cellular form of the prion protein (PrPC) is mediated through specific signal transduction pathways and is linked to resistance to oxidative stress, neuronal outgrowth and cell survival. In TSEs, PrPC is converted into an abnormally folded isoform, called PrPSc, that may impair the normal function of the protein and/or generate toxic aggregates. To investigate these molecular events we performed a two-dimensional gel electrophoresis comparison of neuroblastoma N2a cells expressing different amounts of PrPC and eventually infected with the 22L prion strain. Mass spectrometry and peptide mass fingerprint analysis identified a series of proteins with modified expression. They included the chaperones Grp78/BiP, protein disulfide-isomerase A6, Grp75 and Hsp60 which had an opposite expression upon PrPC expression and PrPSc production. The detection of these proteins was coherent with the idea that protein misfolding plays an important role in TSEs. Other proteins, such as calreticulin, tubulin, vimentin or the laminin receptor had their expression modified in infected cells, which was reminiscent of previous results. Altogether our data provide molecular information linking PrP expression and misfolding, which could be the basis of further therapeutic and pathophysiological research in this field.Key words: chaperones, neuroblastoma, prion, proteomics  相似文献   

15.

Background

The cellular prion protein (PrPC) plays a key role in the pathogenesis of Transmissible Spongiform Encephalopathies in which the protein undergoes post-translational conversion to the infectious form (PrPSc). Although endocytosis appears to be required for this conversion, the mechanism of PrPC internalization is still debated, as caveolae/raft- and clathrin-dependent processes have all been reported to be involved.

Methodology/Principal Findings

We have investigated the mechanism of PrPC endocytosis in Fischer Rat Thyroid (FRT) cells, which lack caveolin-1 (cav-1) and caveolae, and in FRT/cav-1 cells which form functional caveolae. We show that PrPC internalization requires activated Cdc-42 and is sensitive to cholesterol depletion but not to cav-1 expression suggesting a role for rafts but not for caveolae in PrPC endocytosis. PrPC internalization is also affected by knock down of clathrin and by the expression of dominant negative Eps15 and Dynamin 2 mutants, indicating the involvement of a clathrin-dependent pathway. Notably, PrPC co-immunoprecipitates with clathrin and remains associated with detergent-insoluble microdomains during internalization thus indicating that PrPC can enter the cell via multiple pathways and that rafts and clathrin cooperate in its internalization.

Conclusions/Significance

These findings are of particular interest if we consider that the internalization route/s undertaken by PrPC can be crucial for the ability of different prion strains to infect and to replicate in different cell lines.  相似文献   

16.
Prion diseases are incurable neurodegenerative disorders in which the normal cellular prion protein (PrPC) converts into a misfolded isoform (PrPSc) with unique biochemical and structural properties that correlate with disease. In humans, prion disorders, such as Creutzfeldt-Jakob disease, present typically with a sporadic origin, where unknown mechanisms lead to the spontaneous misfolding and deposition of wild type PrP. To shed light on how wild-type PrP undergoes conformational changes and which are the cellular components involved in this process, we analyzed the dynamics of wild-type PrP from hamster in transgenic flies. In young flies, PrP demonstrates properties of the benign PrPC; in older flies, PrP misfolds, acquires biochemical and structural properties of PrPSc, and induces spongiform degeneration of brain neurons. Aged flies accumulate insoluble PrP that resists high concentrations of denaturing agents and contains PrPSc-specific conformational epitopes. In contrast to PrPSc from mammals, PrP is proteinase-sensitive in flies. Thus, wild-type PrP rapidly converts in vivo into a neurotoxic, protease-sensitive isoform distinct from prototypical PrPSc. Next, we investigated the role of molecular chaperones in PrP misfolding in vivo. Remarkably, Hsp70 prevents the accumulation of PrPSc-like conformers and protects against PrP-dependent neurodegeneration. This protective activity involves the direct interaction between Hsp70 and PrP, which may occur in active membrane microdomains such as lipid rafts, where we detected Hsp70. These results highlight the ability of wild-type PrP to spontaneously convert in vivo into a protease-sensitive isoform that is neurotoxic, supporting the idea that protease-resistant PrPSc is not required for pathology. Moreover, we identify a new role for Hsp70 in the accumulation of misfolded PrP. Overall, we provide new insight into the mechanisms of spontaneous accumulation of neurotoxic PrP and uncover the potential therapeutic role of Hsp70 in treating these devastating disorders.  相似文献   

17.

Background

Prion diseases are associated with a conformational switch for PrP from PrPC to PrPSc. Many genetic mutations are linked with prion diseases, such as mutations T188K/R/A with fCJD.

Scope of review

MD simulations for the WT PrP and its mutants were performed to explore the underlying dynamic effects of T188 mutations on human PrP. Although the globular domains are fairly conserved, the three mutations have diverse effects on the dynamics properties of PrP, including the shift of H1, the elongation of native β-sheet and the conversion of S2-H2 loop to a 310 helix.

Major conclusions

Our present study indicates that the three mutants for PrP may undergo different pathogenic mechanisms and the realistic atomistic simulations can provide insights into the effects of disease-associated mutations on PrP dynamics and stability, which can enhance our understanding of how mutations induce the conversion from PrPC to PrPSc.General significanceOur present study helps to understand the effects of T188K/R/A mutations on human PrP: despite the three pathogenic mutations almost do not alter the native structure of PrP, but perturb its stability. This instability may further modulate the oligomerization pathways and determine the features of the PrPSc assemblies.  相似文献   

18.
Wen Y  Li J  Xiong M  Peng Y  Yao W  Hong J  Lin D 《PloS one》2010,5(10):e13273

Background

The conformational conversion of the host-derived cellular prion protein (PrPC) into the disease-associated scrapie isoform (PrPSc) is responsible for the pathogenesis of transmissible spongiform encephalopathies (TSEs). Various single-point mutations in PrPCs could cause structural changes and thereby distinctly influence the conformational conversion. Elucidation of the differences between the wild-type rabbit PrPC (RaPrPC) and various mutants would be of great help to understand the ability of RaPrPC to be resistant to TSE agents.

Methodology/Principal Findings

We determined the solution structure of the I214V mutant of RaPrPC(91–228) and detected the backbone dynamics of its structured C-terminal domain (121–228). The I214V mutant displays a visible shift of surface charge distribution that may have a potential effect on the binding specificity and affinity with other chaperones. The number of hydrogen bonds declines dramatically. Urea-induced transition experiments reveal an obvious decrease in the conformational stability. Furthermore, the NMR dynamics analysis discloses a significant increase in the backbone flexibility on the pico- to nanosecond time scale, indicative of lower energy barrier for structural rearrangement.

Conclusions/Significance

Our results suggest that both the surface charge distribution and the intrinsic backbone flexibility greatly contribute to species barriers for the transmission of TSEs, and thereby provide valuable hints for understanding the inability of the conformational conversion for RaPrPC.  相似文献   

19.
The biochemical essence of prion replication is the molecular multiplication of the disease-associated misfolded isoform of prion protein (PrP), termed PrPSc, in a nucleic acid-free manner. PrPSc is generated by the protein misfolding process facilitated by conformational conversion of the host-encoded cellular PrP to PrPSc. Evidence suggests that an auxiliary factor may play a role in PrPSc propagation. We and others previously discovered that plasminogen interacts with PrP, while its functional role for PrPSc propagation remained undetermined. In our recent in vitro PrP conversion study, we showed that plasminogen substantially stimulates PrPSc propagation in a concentration-dependent manner by accelerating the rate of PrPSc generation while depletion of plasminogen, destabilization of its structure and interference with the PrP-plasminogen interaction hinder PrPSc propagation. Further investigation in cell culture models confirmed an increase of PrPSc formation by plasminogen. Although molecular basis of the observed activity for plasminogen remain to be addressed, our results demonstrate that plasminogen is the first cellular protein auxiliary factor proven to stimulate PrPSc propagation.Key words: prion, PrPSc, protein misfolding, auxiliary factor, plasminogen, PMCA, cell culture modelPrions are unique infectious particles that replicate in the absence of nucleic acids1 and cause fatal neurologic disorders in mammals.2 In fact, the prion particle is composed of an alternatively folded form of the cellular prion protein (PrPC) encoded by the Prnp gene. The misfolded form of PrPC, referred to as PrPSc, shares the same primary structure with PrPC,3 but exhibits distinctively different biochemical and biophysical properties.4,5 Moreover, animals lacking expression of the Prnp gene are resistant to prion infection,6 suggesting that PrPC serves as a precursor for PrPSc.The essence of prion biosynthesis is based on the protein-only hypothesis that postulates self-perpetuating replication of the prion protein.1 Although the exact replication process remains elusive, the template-assisted conversion model proposes an idea that PrPSc serves as a template to convert α-helices of PrPC into the β-sheets of PrPSc during prion replication.7 According to many lines of evidence, there exists an unidentified auxiliary factor, designated protein X, which favorably interacts with PrPC to produce a thermodynamically stable intermediate conformation called PrP*.8 By introducing PrPSc to a host, dimers will readily form between PrP* and PrPSc. This interaction induces PrP* to take on the conformation of PrPSc and results in a complex consisting of the template and the newly formed PrPSc molecules. Once the dimer disassociates protein X and the two PrPSc molecules are released and allowed to continue replicating in an exponential fashion. Recent observations that infectious material can be generated in vitro using recombinant PrP have authenticated the protein-only hypothesis.9,10 However, the infectivity of these in vitro generated PrPSc products is lower than that of brain-derived PrPSc, leading to the possibility that insufficient levels of the unidentified auxiliary factor are the limiting factor for these in vitro assays.To date, non-mammalian chaperone proteins, sulfated glycans and certain polyanionic macromolecules, such as RNA, have shown to increase the level of PrPSc in several different in vitro assays.1114 However, defining these molecules as cellular auxiliary factors that promote the conversion of PrPC to PrPSc has been prevented for several reasons. First, overexpression of yeast heat shock protein Hsp 104 in transgenic mice does not modulate the incubation time of disease and PrPSc accumulation upon prion inoculation.15 Although mammalian Hsp 70 is upregulated in humans and animals with prion diseases,16,17 it participates in downregulation, but not upregulation, of PrPSc accumulation.18 Second, the effect of sulfated glycans on PrPSc formation has been inconsistent1113 and certain sulfated glycans inhibit PrPSc propagation in animals and cultured cells.1921 Lastly, although RNA is able to increase PrPSc propagation and induce the formation of PrPSc de novo from purified PrPC in the absence of a PrPSc seed,22 its specificity is in question. Thus, an auxiliary factor that positively assists PrPSc replication and is composed of a mammalian cellular protein remains to be identified.Our approach to identify an auxiliary factor relies on the idea that the auxiliary factor interacts with PrPC as proposed in the protein X hypothesis.7 Therefore, we considered PrP ligands as the best candidates for this unidentified factor. By screening a phage display cDNA expression library from ScN2a cells, we identified kringle domains of plasminogen that interact with recombinant PrP folded in an α-helical conformation (α-PrP).23 In vitro binding assays showed that interaction between plasminogen and α-PrP that represents the conformational state of PrPC was enhanced by the introduction of a dominant negative mutation and the presence of the basic N-terminal sequences in PrP.23 Interaction of PrPC and plasminogen was further confirmed by the ability of plasminogen and its kringle domains to readily interact with α-PrP.2429 However, despite greater interaction with α-PrP, plasminogen also interacted with PrP in β-sheet conformations.23 Prior to our study, it was shown that PrPSc was immunoprecipitated with beads linked to plasminogen, its first three kringle domains [K(1+2+3)], and more recently the repeating YRG motif found within the plasminogen kringle domains.3033 However, the ability of plasminogen to bind to PrPSc was dependent on conditions of the lipid rafts and plasminogen was actually associated with PrPC in the intact lipid rafts.34To determine the functional relevance of this interaction for PrPSc replication, we explored whether plasminogen enhances PrPSc propagation using cell culture models and the in vitro PrP conversion assay, termed protein misfolding cyclic amplification (PMCA).35 The addition of plasminogen in PMCA resulted in the generation of significantly more PrPSc in a concentration-dependent manner (Fig. 1A), suggesting that plasminogen stimulates the conversion of PrPC to PrPSc. Indeed, our kinetic studies showed that plasminogen accelerates the rate of PrPSc generation during the early stages of the in vitro PrP conversion reaction (reviewed in ref. 35). In contrast, the addition of plasminogen in PMCA lacking either PrPC or PrPSc failed to generate PrPSc (Fig. 1B and C). These results suggest that both PrPC and PrPSc are required for PrPSc replication stimulated by plasminogen and that plasminogen facilitates neither spontaneous PrP conversion nor PrPSc augmentation through aggregating pre-existing PrPSc. Incubation of plasminogen with pre-formed PrPSc followed by treatments with proteinase K failed to either increase or decrease the PrPSc level compared to controls (Fig. 1D and E), suggesting that plasminogen is not involved in stabilization of PrPSc, enhancement of PrPSc resistance to protease or promotion of PrPSc binding to the membrane for western blotting. The activity to stimulate PrP conversion was a specific property of plasminogen and was not shared with other proteins such as a known PrP ligand and proteins abundantly found in the serum or at the extracellular matrices where plasminogen is present (reviewed in ref. 35). In addition, we found that the ability of plasminogen to assist in PrPSc propagation is preserved in its kringle domains (reviewed in ref. 35). Furthermore, the activity associated with plasminogen under cell-free conditions was reproduced in cell culture models. Plasminogen and its kringle domains increased PrPSc propagation in cultured cells chronically infected with mouse-adapted scrapie or chronic wasting disease prions (Fig. 2A–D). This suggests that the activity of plasminogen in PrPSc replication has biological relevance.Open in a separate windowFigure 1The role of plasminogen in PrPSc propagation. The effect of plasminogen (Plg) was assessed by PMCA using normal brain material supplemented with or without 0.5 µM human Glu-Plg (A–D) or using Plg-deficient (Plg-/-) brain material (F and G). Pre- (−) and post- (+) PMCA samples were treated with proteinase K (PK) and analyzed by western blotting. Seeds for PMCA were diluted either as indicated or 1:900 (G) −8,100 (F). (A) Stimulation of PrPSc propagation by Plg. (B) Plg-supplemented PMCA in the absence of SBH seeds. (C) Plg-supplemented PMCA in the absence of NBH. (D) Comparison of PrPSc levels in Plg-supplemented PMCA samples (during) vs. PMCA samples only incubated with Plg prior to PK digestion (after). (E) Comparison of PrPSc levels of ScN2a cell lysate after incubation with or without Plg prior to PK digestion. (F) PMCA with brain material of Plg-/- mice and genetically unaltered littermate controls (C). (G) Restoration of PMCA using Plg-/- brain material with Plg-supplementation. NBH, normal brain homogenate; SBH, sick brain homogenate; PrPKOBH, brain homogenate of PrPC-deficient mice; CL, cell lysate. Reproduced with permission from The FASEB Journal, Mays and Ryou 2010.35Open in a separate windowFigure 2PrPSc propagation increased by plasminogen in prion-infected cells. (A) The levels of PrP in ScN2a cells incubated with 0–0.5 µM human Glu-plasminogen (Plg) for two days. (B) The levels of PrP in ScN2a cells incubated with 0, 0.1 and 1.0 µM Plg or the first three kringle domains of Plg [K(1+2+3)] for six days. (C) The levels of 3F4-tagged PrPC and nascent PrPSc formation in ScN2a cells transiently transfected (Tfx) with plasmids encoding the 3F4-tagged PrP gene (PrP-3F4) and with an empty vector (mock). The transfected cells were treated with 0 or 1 µM K (1+2+3) for three days. (D) The levels of PrP in Elk21+ cells incubated with 0 and 0.5 µM Plg for two days. PrP was detected by anti-PrP antibody D13 (A and B), 3F4 (C) or 6H4 (D) before (−) and after (+) PK treatment. Reproduced by permission of the The FASEB Journal, Mays and Ryou 2010.35Corresponding to the results that plasminogen positively assists in PrPSc replication by stimulating conversion of PrPC to PrPSc, depletion of plasminogen from the PMCA reaction by using brain material derived from plasminogen-deficient mice restricted PrPSc replication to the basal level (Fig. 1F). Supplementation with plasminogen for PMCA using plasminogen-deficient brain homogenate restored PrPSc propagation to levels equivalent to that of control PMCA in which only brain material of their non-genetically altered littermates was used (Fig. 1G). Furthermore, structural destabilization of plasminogen affected the activity of plasminogen that enhances PrPSc propagation. Because intact disulfide bonds are critical in maintaining structural integrity and the binding activity of plasminogen, we conducted PMCA supplemented with either structurally intact or modified plasminogen to investigate the functionality of plasminogen. The result showed that plasminogen pre-treated sequentially with chemical agents that disrupt disulfide bonds and modify free sulfhydryl groups failed to stimulate PrPSc propagation (reviewed in ref. 35). In addition, we showed that interference with the plasminogen-PrP interaction using L-lysine abolished the plasminogen-mediated stimulation of PrPSc propagation in PMCA (reviewed in ref. 35). Because previous observations in immunoprecipitation30 and ELISA binding assays23 described that L-lysine specifically inhibited formation of the PrP-plasminogen complex, the presence of L-lysine in PMCA is considered to saturate the lysine binding motifs of kringle domains, which competitively prevents the kringle domains of plasminogen from interacting with PrP and inhibited PrP conversion. These various inhibition studies of PrPSc propagation provides confirmatory evidence that plasminogen plays an important role in PrPSc replication.Despite our progress in understanding the role of plasminogen in PrPSc propagation, we are still unable to address mechanistic details by which plasminogen exerts its function. In fact, plasminogen shares a number of the expected characteristics of the previously proposed auxiliary factor, although there are minor but distinctive discrepancies in their properties (summarized in Fig. 3). First, plasminogen may control conformational rearrangement of PrPC to PrP*, resembling a molecular chaperone. This scenario is identical to the protein X hypothesis, in which plasminogen replaces protein X to assist the conversion process. Second, plasminogen may promote aggregation of PrPSc already converted from PrPC. This will result in efficient formation of PrPSc multimers. Third, plasminogen may stabilize the pre-existing PrPSc aggregates so that stabilized aggregates are better protected from degradation or processing by the intrinsic clearance mechanism. This will result in increased accumulation and stability of PrPSc. In the second and third scenarios, the function of plasminogen is not involved in PrPC or its conversion process, but limited to the interaction with pre-formed PrPSc. Fourth, plasminogen may play a role as a scaffolding molecule that simply brings both PrPC and PrPSc together within a proximity. This will increase the frequency of interaction between PrPC and PrPSc for conversion. This scenario is distinguished from the other three by postulating plasminogen interaction with both isoforms of PrP. In contrast, plasminogen is assumed to interact with only PrPC or PrPSc in other cases. Although accumulating data including our recent studies provide critical pieces of evidence to envision described mechanistic insights, it is still premature to conclude the mechanism involved in plasminogen-mediated stimulation of PrPSc propagation.Open in a separate windowFigure 3Plausible mechanisms for plasminogen to enhance PrPSc propagation. Plasminogen may stimulate PrPSc propagation via conformational alteration of PrPC to PrP* (i), enhancement of PrPSc aggregation (ii), stabilization of pre-exisiting PrPSc aggregates (iii) or scaffolding to gather PrPC and PrPSc together (iv).

Table 1

Properties of plasminogen as an auxiliary factor for PrPSc propagation
Protein XPlasminogen
CompositionProtein; macromoleculesProtein
ExpressionBrain; neuron-specificBrain; neuroblastoma cell line, expressed more in the non-CNS
Subcellular localizationPlasma membrane; lipid raftsExtracellular matrix; lipid rafts
Association with diseaseIncreased protein levels in the sera of human patient with CJD
InteractionOnly with PrPCPrPSc, α-PrP, β-PrP
Binding sites on PrP
  • Q167, Q171, V214 and Q218 in the β2-α2 loop (164–174) and C-terminus (215–223)
  • Dominant negative mutations on the protein X binding sites such as Q167R and Q218K inhibited PrPSc formation in the cultured cells and prion transmission in transgenic mice
  • K23, K24 and K27 in the N-terminus: deletion of the N-terminal lysine cluster reduced dominant negative inhibition of PrPSc formation
  • Binds to N-terminally truncated PrP (89–230)
  • Increased binding activity to full-length PrP (23–230)
  • Increased binding activity to PrP with Q218K dominant negative mutation
  • The second kringle domain of plasminogen binds to the β2-α2 loop in silico
  • Binds to both lysine clusters located to the N-terminus (23–27) and middle (100–109) of PrP
Species specificity
  • Homotypic interaction with PrPC
  • Mouse protein X has lower binding affinity to human PrPC in the studies with transgenic mice
  • Unknown
  • Human plasminogen binds to human, mouse, bovine and ovine PrP
  • Human and bovine plasminogen converts mouse PrPC to PrPSc in PMCA
FunctionAn auxiliary role in conversion of PrPC to PrPScEnhances PrPSc propagation facilitated by PrP conversion in PMCA
Action mechanismBinds to PrPC and alters PrPC into PrP* that interacts with PrPSc for conversionUnknown
Open in a separate windowCNS, central nervous system; CJD, Creutzfeldt-Jakob disease; α-PrP, PrP in an α-helical conformation; β-PrP, PrP in an β-sheet conformation; PMCA, protein misfolding cyclic amplification.It is essential to address a few additional issues of PrPSc propagation stimulated by plasminogen aside from the mechanistic details. First, it is necessary to confirm the authenticity of PrPSc generated in the aid of plasminogen as a bona fide infectious agent. In addition, it would be interesting to compare the structural signatures of PrPSc generated in our study and found the prion seeds. This study may provide a clue to establish a structure-infectivity relationship for PrPSc. Furthermore, the ability to repeat our PMCA results in a similar assay reconstituted with defined components would clarify whether plasminogen directly contributes to PrPSc propagation. Finally, the contribution of plasminogen to the species barrier by controlling the compatibility between the host PrPC and prion strains should be determined. Collectively, these studies will be useful to identify an intricate regulatory role for plasminogen during PrPSc replication and prion transmission.Plasminogen has shown that it stimulates PrPSc propagation in the cell-free assays and cultured cells, while its role in animal models has not been obviously clarified. In opposition to the anticipated outcomes that the course of prion disease in plasminogen-deficient animals would be delayed, intracerebral prion infection of two independent mouse lines deficient in plasminogen resulted in either unchanged or accelerated disease progression when compared to the appropriate wild-type controls.36,37 These results do not support each other and there is no good interpretation to reconcile their incongruence. However, the discrepancy between the expectation and the actual outcomes of the previous studies can be caused by the intrinsic health problems associated with the mouse lines used for the studies,3840 which raises a question for the credibility of the model system. Some clinical phenotypes of confounding health problems in plasminogen-deficient mice overlap with the typical clinical signs of prion disease in mice. Furthermore, the drastically shortened life expectancy of plasminogen-deficient mice coincides with the incubation periods of mice inoculated with prion strains used in the previous studies. Lastly, the health problems of plasminogen-deficient mice could exacerbate the progression of the course of disease in mice inoculated with prions. Thus, either unchanged or shortened incubation periods of prion-inoculated plasminogen-deficient mice may not solely reflect the effect of plasminogen deficiency related to prion replication. Alternatively, the reason for observed outcomes from the in vivo models may be associated with the presence of functionally redundant proteins for plasminogen even under its absence. Because kringle domains of plasminogen share a well-conserved structure with those of other proteins such as tissue-type plasminogen activator, hepatocyte growth factor and apolipoprotein (a),41 it is possible to postulate that other proteins that contain kringle domains can functionally replace plasminogen. Therefore, an animal model that circumvents the drawbacks associated with the current models is needed to address the relevance of plasminogen in prion replication in vivo.Based on our study that identified plasminogen as the first cellular protein cofactor for PrPSc propagation, we anticipate an intriguing opportunity to develop future diagnosis and therapeutic intervention for prion disease. Previously, the identity of a proposed auxiliary factor was obscure so most approaches either targeted PrP isoforms or were empirical.42 Our study suggests that plasminogen is a novel target to interfere with PrPSc replication. Therefore, a variety of strategies that either deplete plasminogen or interfere with the formation of PrP-plasminogen complexes would work for development of a novel therapeutic intervention for prion disease. For instance, RNA interference of plasminogen expression, monoclonal anti-plasminogen antibody to block plasminogen binding to PrP, L-lysine that saturates the binding sites of plasminogen to PrP, and chemical agents that destabilize the structure of plasminogen are potential strategies for this purpose.In conclusion, plasminogen is a PrP ligand with the ability to stimulate PrPSc propagation. Our findings are indispensable in gaining a better understanding of the underlying mechanism for PrPSc propagation, while unveiling a new therapeutic target for prion disease.  相似文献   

20.

Background

It has been widely established that the conversion of the cellular prion protein (PrPC) into its abnormal isoform (PrPSc) is responsible for the development of transmissible spongiform encephalopathies (TSEs). However, the knowledge of the detailed molecular mechanisms and direct functional consequences within the cell is rare. In this study, we aimed at the identification of deregulated proteins which might be involved in prion pathogenesis.

Findings

Apolipoprotein E and peroxiredoxin 6 (PRDX6) were identified as upregulated proteins in brains of scrapie-infected mice and cultured neuronal cell lines. Downregulation of PrP gene expression using specific siRNA did not result in a decrease of PRDX6 amounts. Interestingly, selective siRNA targeting PRDX6 or overexpression of PRDX6 controlled PrPC and PrPSc protein amounts in neuronal cells.

Conclusions

Besides its possible function as a novel marker protein in the diagnosis of TSEs, PDRX6 represents an attractive target molecule in putative pharmacological intervention strategies in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号