首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Point mutations in the gene of pyruvate oxidase from Lactobacillus plantarum, with proline residue 178 changed to serine, serine 188 to asparagine, and alanine 458 to valine, as well as a combination of the three single point mutations, lead to a significant functional stabilization of the protein. The enzyme is a tetrameric flavoprotein with tightly bound cofactors, FAD, TPP, and divalent metal ions. Thus, stabilization may be achieved either at the level of tertiary or quaternary interactions, or by enhanced cofactor binding. In order to discriminate between these alternatives, unfolding, dissociation, and cofactor binding of the mutant proteins were analyzed. The point mutations do not affect the secondary and tertiary structure, as determined by circular dichroism and protein fluorescence. Similarly, the amino acid substitutions neither modulate the enzymatic properties of the mutant proteins nor do they stabilize the structural stability of the apoenzymes. This holds true for both the local and the global structure with unfolding transitions around 2.5 M and 5 M urea, respectively. On the other hand, deactivation of the holoenzyme (by urea or temperature) is significantly decreased. The most important stabilizing effect is caused by the Ala-Val exchange in the C-terminal domain of the molecule. Its contribution is close to the value observed for the triple mutant, which exhibits maximum stability, with a shift in the thermal transition of ca. 10 degrees C. The effects of the point mutations on FAD binding and subunit association are interconnected. Because FAD binding is linked to oligomerization, the stability of the mutant apoenzyme-FAD complexes is increased. Accordingly, mutants with maximum apparent FAD binding exhibit maximum stability. Analysis of the quaternary structure of the mutant enzymes in the absence and in the presence of coenzymes gives clear evidence that both improved ligand binding and subunit interactions contribute to the observed thermal stabilization.  相似文献   

2.
Pyruvate oxidase, a tetrameric enzyme consisting of 4 identical subunits, dissociates into apoenzyme monomers and free FAD when treated with acid ammonium sulfate in the presence of high concentrations of potassium bromide. Reconstitution of the native enzymatically active protein can be accomplished by incubating equimolar concentrations of apomonomers and FAD at pH 6.5. The kinetics of the reconstitution reaction have been measured by 1) enzyme activity assays, 2) spectrophotometric assays to measure FAD binding, and 3) high performance liquid chromatography analysis measuring the distribution of monomeric, dimeric, and tetrameric species during reconstitution. The kinetic analysis indicates that the second order reaction of apomonomers with FAD to form an initial monomer-FAD complex is fast. The rate-limiting step for enzymatic reactivation appears to be the folding of the polypeptide chain in the monomer-FAD complex to reconstitute the three-dimensional FAD binding site prior to subunit reassociation. The subsequent formation of native tetramers appears to proceed via an essentially irreversible dimer assembly pathway.  相似文献   

3.
A new method is described for the large-scale reversible dissociation of flavoproteins into apoprotein and prosthetic group using hydrophobic-interaction chromatography. Lipoamide dehydrogenase from Azotobacter vinelandii and butyryl-CoA dehydrogenase from Megasphaera elsdenii are selected to demonstrate the usefulness of the method. In contrast to conventional methods, homogeneous preparations of apoproteins in high yields are obtained. The apoproteins show high reconstitutability. The holoenzymes are bound to phenyl-Sepharose CL-4B at neutral pH in the presence of ammonium sulfate. FAD is subsequently removed at pH 3.5-4.0 by addition of high concentrations of KBr. Large amounts of apoenzymes (200-500 mg), showing negligible residual activity, are eluted at neutral pH in the presence of 50% ethylene glycol. The holoenzyme of lipoamide dehydrogenase can be reconstituted while the apoprotein is still bound to the column or the apoenzyme can be isolated in the free state. In both cases the yield and degree of reconstitution of holoenzyme is more than 90% of starting material. Apo-lipoamide-dehydrogenase exists mainly as a monomer in solution and reassociates to the native dimeric structure in the presence of FAD. The apoenzyme is stable for a long period of time when kept in 50% ethylene glycol at -18 degrees C. Steady-state fluorescence-polarization measurements of protein-bound FAD indicate that reconstituted lipoamide dehydrogenase possesses a high stability which is governed by the low dissociation rate constant of the apoenzyme-FAD complex. The holoenzyme of butyryl-CoA dehydrogenase cannot be reconstituted when the apoenzyme is bound to the column. However, stable apoprotein can be isolated in the free state yielding 50-80% of starting material, depending on the immobilization conditions. The coenzyme A ligand present in native holoenzyme is removed during apoprotein preparation. The apoenzyme is relatively stable when kept in 50% ethylene glycol at -18 degrees C. From kinetic and gel filtration experiments it is concluded that the reconstitution reaction of butyryl-CoA dehydrogenase is governed by both the pH-dependent hydrodynamic properties of apoenzyme and the pH-dependent stability of reconstituted enzyme. At pH 7, the apoenzyme is in equilibrium between dimeric and tetrameric forms and reassociates to a native-like tetrameric structure in the presence of FAD. The stability of reconstituted enzyme is strongly influenced by the presence of CoA ligands as shown by fluorescence-polarization measurements. The degree of reconstitution of butyryl-CoA dehydrogenase is more than 80% of the original specific activity under certain conditions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

4.
The quenching of tryptophanyl fluorescence of native and denatured D-amino acid oxidase from hog kidney was measured. About 60% of the tryptophanyl fluorescence of the native apoenzyme was quenched by iodide at pH 8.3, and 25 degrees C. All of the tryptophanyl fluorescence of the apoenzyme in 6 M guanidine hydrochloride was quenched. The tryptophanyl fluorescence quenching of the holoenzyme by 1-methyl nicotinamide chloride was low in comparison with that of the apoenzyme. These results of the quenching experiments are discussed based on the intermolecular collision quenching mechanism. By measuring the fluorescence intensities of the tryptophanyl residues and FAD of the holoenzyme solution, and the fluorescence polarization of the holoenzyme solution containing halide anions such as iodide, bromide, chloride, or fluoride, we found that FAD dissociates from the holoenzyme in the presence of iodide, bromide, or chloride, and the ability to dissociate FAD from the holoenzyme decreases in order iodide, bromide, and chloride. However, fluoride seems to enhance the association reaction of FAD with the apoenzyme. These results were consistent with the visible absorption spectra and derivative spectra of free FAD and the holoenzyme in the presence and absence of halide anions.  相似文献   

5.
Effects of temperature and monovalent cations on the activity and the quaternary structure of tryptophanase of Escherichia coli were studied. The conversion of the apoenzyme into the active holoenzyme was attained at 30 degrees C in Tris-HCl buffer (pH 8.0) containing pyridoxal-P and K+, while no conversion occurred at 5 degrees C. The active holoenzyme thus formed was stable even at 5 degrees C, as long as the cation was present. When K+ was absent, however, the active enzyme gradually lost the activity upon chilling to 5 degrees C. The HPLC gel filtration analysis of the active holoenzyme and the low temperature-inactivated enzyme species revealed that the tetrameric holoenzyme dissociated into the dimeric apoenzyme concomitant with the low temperature-induced inactivation at 5 degrees C. The results of HPLC experiments together with other available evidence also suggest that the inactive tetrameric holoenzyme was first formed from the dimeric apoenzyme and pyridoxal-P prior to the formation of the active holoenzyme and that the cation promoted the conversion of the inactive holoenzyme into the active holoenzyme rather than being involved in the conversion of the apoenzyme and pyridoxal-P into the holoenzyme. Among various cations tested for the above effects, NH4+ exhibited the largest effect and K+ the second.  相似文献   

6.
d-amino acid oxidase from Trigonopsis variabilis (TvDAAO) is a flavoenzyme with high biotechnological and industrial interest. The overexpression and purification of the apoprotein form of a recombinant His-tagged TvDAAO allowed us to go deep into the structural differences between apoenzyme and holoenzyme, and on the cofactor binding and its contribution to enzyme stability. A significant decrease in intrinsic fluorescence emission took place upon FAD binding, associated to cofactor induced conformational transitions or subunit dimerization that could affect the local environment of protein tryptophan residues. Furthermore, acrylamide-quenching experiments indicated that one of the five tryptophan residues of TvDAAO became less accessible upon FAD binding. A K(d)=1.5+/-0.1x10(-7) M for the dissociation of FAD from TvDAAO was calculated from binding experiments based on both quenching of FAD fluorescence and activity titration curves. Secondary structure prediction indicated that TvDAAO is a mixed alpha/beta protein with 8 alpha-helices and 14 beta-sheets connected by loops. Prediction results were in good agreement with the estimates obtained by circular dichroism which indicated that both the apoenzyme and the holoenzyme had the same structural component ratios: 34% alpha-helix content, 20% beta-structure content (14% antiparallel and 6% parallel beta-sheet), 15% beta-turns and 31% of random structure. Circular dichroism thermal-transition curves suggested single-step denaturation processes with apparent midpoint transition temperatures (T(m)) of 37.9 degrees C and 41.4 degrees C for the apoenzyme and the holoenzyme, respectively. A three-dimensional model of TvDAAO built by homology modelling and consistent with the spectroscopic studies is shown. Comparing our results with those reported for pig kidney (pkDAAO) and Rhodotorula gracilis (RgDAAO) d-amino acid oxidases, a "head-to-head" interaction between subunits in the TvDAAO dimer might be expected.  相似文献   

7.
1. The holoenzyme of D-amino acid oxidase [D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3] was found to combine with 1-anilinonaphthalene-8-sulfonate without liberation of its coenzyme, FAD. No energy transfer interaction was found to occur between the bound dye and FAD of the holoenzyme. On the other hand, when the apoenzyme was bound to the dye and then to FAD, energy transfer interaction between the bound dye and bound FAD was observed. In both cases, the dye competes with the substrate, D-alanine. It is concluded that the dye bound to the holoenzyme is oriented in such a special manner that the mutual orientation factor between the dye and FAD becomes very small in magnitude. 2. When the apoenzyme combined with the dye, the monomer-dimer equilibrium of the apoenzyme shifted towards the dimer. On the other hand, 4-monobenzoylamido-4'-aminostilbene-2,2'-disulfonate combined with the apoenzyme to induce monomerization.  相似文献   

8.
Fumarate reductase apoenzyme having the ability to reconstitute active enzyme was obtained by dialyzing the holoenzyme against 1 M KBr. The dissociation constant of the FAD-apoenzyme complex was 2.3 X 10(-8) M. The denatured holoenzyme and apoenzyme possessed seven sulfhydryl (SH) groups as determined with 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB). In the native apoenzyme, five SH-groups reacted with DTNB, and four of them were completely protected by the addition of FAD, while in the native holoenzyme, one was modified without inactivation. These results indicate that one SH-group is located on the surface of the enzyme molecule, four at or near the FAD-binding site, and two deeply embedded in the molecule. The modification of the apoenzyme caused inhibition of binding of FAD, resulting in loss of the ability to reconstitute enzymatic activity. Analyses of the data by statistical and kinetic methods suggested that a reactive SH-group is involved among the four SH-groups in the binding of FAD to the apoenzyme.  相似文献   

9.
Glyoxalate carboligase (EC 4.1.1.47) has been purified to electrophoretic homogeneity from Escherichia coli. The enzyme was found to be a dimer of subunits of identical molecular weight of 68,000. Resolution of the holoenzyme into apoenzyme and FAD led to a dissociation of the dimer into monomers. The apoenzyme could be reconsitituted to full catalytic activity with FAD or the flavin coenzyme analogue 5-deazaFAD. Reconstitution of the apoenzyme with the reduced flavin analogue 1,5-dihydro-5-deazaFADH2 led to the recovery of 50% of enzymatic activity. The reconstitution of apoglyoxalate carboligase with all three coenzymes followed Michaelis-Menten kinetics with Km values of 0.25, 0.74, and 0.72 muM for FAD deazaFAD, and deazaFADH2, respectively.  相似文献   

10.
G Payne  M Wills  C Walsh  A Sancar 《Biochemistry》1990,29(24):5706-5711
Escherichia coli DNA photolyase contains two chromophore cofactors, 1,5-dihydroflavin adenine dinucleotide (FADH2) and (5,10-methenyltetrahydrofolyl)polyglutamate (5,10-MTHF). A procedure was developed for reversible resolution of apophotolyase and its chromophores. To investigate the structures important for the binding of FAD to apophotolyase and of photolyase to DNA, reconstitution experiments with FAD, FMN, riboflavin, 1-deazaFAD, 5-deazaFAD, and F420 were attempted. Only FAD and 5-deazaFAD showed high-affinity binding to apophotolyase. The apoenzyme had no affinity to DNA but did regain its specific binding to thymine dimer containing DNA upon binding stoichiometrically to FAD or 5-deazaFAD. Successful reduction of enzyme-bound FAD with dithionite resulted in complete recovery of photocatalytic activity.  相似文献   

11.
The apoenzyme of D-amino acid oxidase from Rhodotorula gracilis was obtained at pH 7.5 by dialyzing the holoenzyme against 2 M KBr in 0.25 M potassium phosphate, 0.3 mM EDTA, 5 mM 2-mercaptoethanol and 20% glycerol. To recover a reconstitutable and highly stable apoprotein, it is essential that phosphate ions and glycerol be present at high concentrations. Apo-D-amino acid oxidase is entirely present as a monomeric protein, while the reconstituted holoenzyme is a dimer of 79 kDa. The equilibrium binding of FAD to apoprotein was measured from the quenching of flavin fluorescence and by differential spectroscopy: a Kd of 2.0 x 10(-8) M was calculated. The kinetics of formation of the apoprotein-FAD complex were studied by the quenching of protein and flavin fluorescence, by differential spectroscopy and by activity measurements. In all cases a two-stage process was shown to be present with a fairly rapid first phase, followed by a slow secondary change which represents only 4-6% of the total recombination process. In no conditions was a lag in the recovery of maximum catalytic activity observed. The process of FAD binding to yeast D-amino acid oxidase appears to be of the type Apo + FAD in equilibrium holoenzyme, even though the existence of a transient intermediate not detectable under our conditions cannot be ruled out.  相似文献   

12.
Type 4 phosphodiesterases (PDE4s) are metallohydrolases that catalyze the hydrolysis of cAMP to AMP. At the bottom of its active site lie two divalent metal ions in a binuclear motif which are involved in both cAMP binding and catalysis [(2000) Science 288, 1822-1825; (2000) Biochemistry 39, 6449-6458]. Using a SPA-based equilibrium [(3)H]rolipram binding assay, we have determined that Mg(2+), Mn(2+), and Co(2+) all mediated a high-affinity (K(d) between 3 and 8 nM) and near stoichiometric (R)-rolipram binding to PDE4. In their absence, (R)-rolipram binds stoichiometrically to the metal ion-free apoenzyme with a K(d) of approximately 150 nM. The divalent cation dose responses in mediating the high-affinity rolipram/PDE4 interaction mirror their efficacy in catalysis, suggesting that both metal ions of the holoenzyme are involved in mediating the high-affinity (R)-rolipram/PDE4 interaction. The specific rolipram binding to the apo- and holoenzyme is differentially displaced by cAMP, AMP, and other inhibitors, providing a robust tool to dissect the components of metal ion-dependent and independent PDE4/ligand interactions. cAMP binds to the holoenzyme with a K(s) of 1.9 microM and nonproductively to the apoenzyme with a K(d) of 179 microM. In comparison, AMP binds to the holo- and apoenzyme with K(d) values of 7 and 11 mM, respectively. The diminished Mg(2+)-dependent component of AMP binding to PDE4 suggests that most of the Mg(2+)/phosphate interaction in the cAMP/PDE4 complex is disrupted upon the hydrolysis of the cyclic phosphoester bond, leading to the rapid release of AMP.  相似文献   

13.
The self-association pattern of D-amino acid oxidase holoenzyme in 0.1 M sodium pyrophosphate, pH 8.3, at 25 degrees C was examined by the low-angle laser light-scattering method. As to the results of nonlinear least-squares analysis of the apparent weight-average molecular weight (Mwapp) versus protein concentration (c) data, the following three models fitted equally well the data over the concentration range of 0.03-11.4 mg/ml: 1) the model of isodesmic indefinite self-association of the monomer where the dimerization constant differs from the isodesmic association constant, 2) the model which involves the dimerization of the monomer and isodesmic indefinite self-association of the dimer, and 3) the model which involves the trimerization of the monomer and isodesmic indefinite self-association of the trimer. In a more limited concentration range (0.3-11.4 mg/ml), a model of isodesmic indefinite self-association of the stable dimer where the dimer does not dissociate into the monomers cannot be excluded from the above three models. Measurements with the concentration range lowered to 0.03 mg/ml enabled us to exclude unequivocally the model involving such a stable dimer and to extrapolate the Mwapp data to the Mr of the monomer at infinite dilution as in the case of the apoenzyme. The observed sedimentation boundary profiles were qualitatively consistent with the idealized boundary profiles calculated with the model which involves the dimerization of the monomer and isodesmic indefinite self-association of the dimer, so this model is the most probable of the models examined. These results provide the first evidence that the association mode of the holoenzyme is different from that of the apoenzyme, i.e. isodesmic indefinite self-association of the monomer (Tojo, H., Horiike, K., Shiga, K., Nishina, Y., Watari, H., and Yamano, T. (1985) J. Biol. Chem. 260, 12607-12614). The overall linkage scheme, between binding of coenzyme FAD and subunit association, was considered, and the overall free energy change in each process in the scheme was calculated. The total stabilization energies of the intersubunit interaction in the holoenzyme relative to the apoenzyme were found to be -2.2 kcal/mol at the dimerization step and -0.5 kcal/mol at the step of the addition of the dimer to any 2i-mer (i = 1,2, ...).  相似文献   

14.
The binding of divalent cations and nucleotide to bovine brain glutamine synthetase and their effects on the activity of the enzyme were investigated. In ADP-supported gamma-glutamyl transfer at pH 7.2, kinetic analyses of saturation functions gave [S]0.5 values of approximately 1 microM for Mn2+, approximately 2 mM for Mg2+, 19 nM for ADP.Mn, and 7.2 microM for ADP.Mg. The method of continuous variation applied to the Mn2+-supported reaction indicated that all subunits of the purified enzyme express activity when 1.0 equiv of ADP is bound per subunit. Measurements of equilibrium binding of Mn2+ to the enzyme in the absence and presence of ADP were consistent with each subunit binding free Mn2+ (KA approximately equal to 1.5 X 10(5) M-1) before binding the Mn.ADP complex (KA' approximately equal to 1.1 X 10(6) M-1). The binding of the first Mn2+ or Mg2+ to each subunit produces structural perturbations in the octameric enzyme, as evidenced by UV spectral and tryptophanyl residue fluorescence changes. The enzyme, therefore, has one structural site per subunit for Mn2+ or Mg2+ and a second site per subunit for the metal ion-nucleotide complex, both of which must be filled for activity expression. Chloride binding (KA' approximately equal to 10(4) M-1) to the enzyme was found to have a specific effect on the protein conformation, producing a substantial (30%) quench of tryptophanyl fluorescence and increasing the affinity of the enzyme 2-4-fold for Mg2+ or Mn2+. Arsenate, which activates the gamma-glutamyl transfer activity by binding to an allosteric site, and L-glutamate also cause conformational changes similar to those produced by Cl- binding. Anion binding to allosteric sites and divalent metal ion binding at active sites both produce tryptophanyl residue exposure and tyrosyl residue burial without changing the quaternary enzyme structure.  相似文献   

15.
EF-Tu from B. stearothermophilus binds divalent metal ions even in the absence of guanine nucleotides. The association constants necessary for characterizing the multiple equilibria between EF-Tu, GDP and the divalent ions magnesium and manganese were determined by equilibrium dialysis. The constants are 4.6 X 10(4) M-1 and 5.4 X 10(5) M-1 for the binding of Mg2 and 1.0 X 10(5) M-1 and 1.1 X 10(6) M-1 for the binding of Mn2 to EF-Tu and EF-Tu . GDP, respectively. In the absence of divalent ions EF-Tu binds GMP, GDP and GTP with association constants of 3 x 10(3) M-1, 1.7 x 10(7) M-1 and 1.3 x 10(6) M-1, respectively. The binding of GDP in the presence of metal ions is an order of magnitude stronger than in the absence of metal ions.  相似文献   

16.
Chang GG  Tong L 《Biochemistry》2003,42(44):12721-12733
Malic enzyme is a tetrameric protein with double dimer structure in which the dimer interface is more intimately contacted than the tetramer interface. Each monomeric unit of the enzyme is composed of four structural domains, which show a different folding topology from those of the other oxidative decarboxylases. The active center is located at the interface between domains B and C. For human mitochondrial malic enzyme, there is an exo nucleotide-binding site for the inhibitor ATP and an allosteric site for the activator fumarate, located at the tetramer and dimer interfaces, respectively. Crystal structures of the enzyme in various complexed forms indicate that the enzyme may exist in equilibrium among two open and two closed forms. Interconversion among these forms involves rigid-body movements of the four structural domains. Substrate binding at the active site shifts the open form to the closed form that represents an active site closure. Fumarate binding at the allosteric site induces the interconversion between forms I and II, which is mediated by the movements of domains A and D. Structures of malic enzyme from different sources are compared with an emphasis on the differences and their implications to structure-function relationships. The binding modes of the substrate, product, cofactors, and transition-state analogue at the active site, as well as ATP and fumarate at the exo site and allosteric site, respectively, provide a clear account for the catalytic mechanism, nucleotide specificities, allosteric regulation, and functional roles of the quaternary structure. The proposed catalytic mechanism involves tyrosine-112 and lysine-183 as the general acid and base, respectively. In addition, a divalent metal ion (Mn(2+) or Mg(2+)) is essential in helping the catalysis. Binding of the metal ion also plays an important role in stabilizing the quaternary structural integrity of the enzyme.  相似文献   

17.
C T Hou 《Biochemistry》1975,14(17):3899-3902
Circular dichroism studies have been carried out on both apo- and holoprotocatechuate 3,4-dioxygenase from Pseudomonas aeruginosa, in the absence and presence of competitive inhibitors, protocatechualdehyde and 4-nitrocatechol. The apo- and holoenzyme showed identical spectra in the ultraviolet region between 200 and 250 nm (peptide back bone region), but the low intensity negative bands at 330 and 480 nm of the holoenzyme were completely absent in the apoenzyme. On the side chain region, the positive ellipticity peaks of the holoenzyme change into a lower intensity and broader band indicating the participation of aromatic amino acid residues in the primary binding of iron ion. Under anaerobic conditions, spectral changes were evident in the side chain region for the binary complexes of both the holo- and the apoenzyme with protocatechuate. The presence of iron in the holoenzyme results in an increase in positive ellipticity between 290 and 320 nm. Either with or without the iron, the enzyme protein binds protocatechuate and has a greater positive circular dichroism increase at 240-260 nm. CD difference spectra indicate that the modes of binding to form the binary complexes of holo- or apoenzyme with either substrates or competitive inhibitors are different. The bound iron ion stimulates binding. Spectral changes of the holoenzyme in the aromatic region were also observed in different pH environments of lower enzymatic activity. It is still not established whether these aromatic residues play an active or passive role in the binding of iron and/or substrates and inhibitors.  相似文献   

18.
The preparation of a reconstitutable apoprotein is widely recognized as an important tool for studying the interactions between protein and coenzyme and also for characterizing the coenzyme-binding site of the protein. Here is described the kinetic analysis of the reconstitution of Aerococcus viridans lactate oxidase apoenzyme with FMN and FAD in the presence of substrate. The reconstitution was followed by measuring the increase in catalytic capacity with time. Lactate oxidase activity was easily removed by obtaining its apoenzyme in an acidic saturated ammonium sulphate solution. When the apoenzyme was reconstituted by the addition of FMN or FAD, a marked lag period was observed, after which the system reached a steady state (linear rate). To explain the binding mechanism of the cofactors to the apoenzyme, a kinetic model is proposed, in which the constants, k3 and k-3, representing the interaction of apoenzyme with cofactor are considered slow and responsible for the lag in the expression of activity. The affinity of apoenzyme was 51-fold higher for FMN than FAD.  相似文献   

19.
H M Miziorko  R C Sealy 《Biochemistry》1980,19(6):1167-1171
Ribulosebisphosphate carboxylase forms a stable quaternary complex with CO2, divalent cation, and carboxypentitol bisphosphate. Incorporation of nonexchangeable CO2 into the complex requires the presence of a divalent cation. MG2+, Mn2+, or Co2+ supports stoichiometric binding of CO2 activator. When the quaternary complex is formed in the presence of saturating CO2, stoichiometric amounts of cation are bound in a nonexchangeable fashion. Incorporation of Mn2+ into an enzyme-CO2-Mn2+-carboxypentitol bisphosphate complex permitted investigation of cation environment by electron spin resonance (ESR) techniques. Measurements at 9 and 35 GHz suggest rhombic distortion of the coordination sphere of bound Mn2+. A complex inner sphere liganding of the cation bound in the quaternary complex would account for both the ESR spectra and the marked stability of the complex with respect to cation exchange.  相似文献   

20.
In Escherichia coli cells expressing 6-hydroxy-D-nicotine oxidase (6-HDNO), a flavoprotein with covalently bound FAD, approximately 40% of the polypeptide is in its apoform. We investigated whether in vivo holoenzyme formation was influenced by the association of the apoenzyme with cellular chaperones. Immunoprecipitation of apoenzyme-containing cell extract with protein-A-Sepharose-bound 6-HDNO- or GroEL-specific antibodies failed to reveal the formation of complexes between these proteins. The limiting factor in holoenzyme formation in vivo appeared to be the intracellular supply of phosphorylated tricarbon compounds (e.g. glycerol-3-P) acting as allosteric effectors in the flavinylation reaction. When holoenzyme formation from purified apo6-HDNO was investigated in vitro, addition of GroEL and GroES to the reaction assays increased the yield of holoenzyme formation. The observed increase in apoenzyme to holoenzyme transition was ATP independent, and the effect of GroE could be simulated by high concentrations of glycerol (40%). Apparently, a nonspecific protein-protein interaction between the GroE proteins and the apo6-HDNO favored holoenzyme formation. The refolding of guanidinium hydrochloride-unfolded holoenzyme, however, was catalyzed by GroEL and GroES in an ATP-dependent reaction. Recovery of the native, enzymatically active, conformation ranged from 30 to 40%. When apo6-HDNO was denatured and refolded, the same dependence on GroE and ATP was observed in the recovery of a conformation able to incorporate FAD and to holoenzyme. [14C] FAD in the refolding assay yielded radioactively labeled 6-HDNO demonstrating the autocatalytical covalent incorporation of FAD into the polypeptide during the folding process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号