首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Egg hatch was greatest (78.33%) for eggs not previously desiccated. A reduction in numbers hatched occurred as the relative humidity at which they were dried decreased. Some eggs hatched (0.67–79.33%) at pH levels of 3.10–10.01 with the highest hatch at pH 5.60. Water temperature greatly affected egg hatch. No hatch occurred until temperatures were above 14°C. A constant 29°C significantly inhibited hatching. Egg hatch increased 13.00 to 43.42% as salinity decreased from 2200 to 9.24 micromhos/cm. As little as 13 mm of flooded soil covering the eggs prevented them from hatching for 14 days. Eighteen percent hatch resulted when soil and eggs were redistributed to a 1 mm soil layer. Egg samples from the same parent, even though treated similarly, often hatched at greatly varying rates and only rarely was hatching 100% within a replication.  相似文献   

2.
Uwe H. Humpesch 《Oecologia》1982,55(3):285-288
Summary Eggs of Ecdyonurus picteti from the Herrnalmbach and Seebach, and E. venosus and Rhithrogena cf. hybrida from the Seebach were fertilized artificially and kept at fluctuating temperatures (range 2.8°–18.1° C) in the laboratory. The percentage of eggs that hatched at each sinusoidal temperature cycle ranged from 0 to 49% and values were similar to those obtained for eggs reared under constant temperature conditions. The hatching time (days after fertilization for 10, 50% and 90% of the eggs to hatch) decreased with increasing temperature and the relationship between the two variables was well described by a powerlaw within the range 2.8°–18.1° C for E. venosus. A similar relationship has been found for the effect of constant temperature on the hatching time of eggs of E. venosus. It appears that the effect of temperature on the rate of change in the hatching time and the rate of development is approximately similar for both constant and fluctuating temperatures.  相似文献   

3.
The effect of temperature on the ovipositional biology ofBoophilus annulatus (Say) was determined under laboratory conditions. Engorged females subjected to constant temperatures of 12 and 45°C died without ovipositing, while females held at 15 and 40°C laid eggs which did not hatch. The preoviposition period at 25–40°C was 2–3 days; however, significant increases occurred at 20°C (5.2 days) and at 15°C (16.3 days). The number of eggs laid per female was ca. 2700 at temperatures of 25–35°C, but decreased significantly at 20°C (ca. 2300 eggs/female), 15°C (ca. 1800 eggs/female), and at 40°C (ca. 300 eggs/female). No differences were observed in the Conversion Efficiency Index (CEI) values at temperatures of 20–30°C (ca. 50%), while temperatures of 15 and 40°C produced the lowest CEI values at 35.6 and 4.9%, respectively. Hatch-ability of eggs was ca. 80% at temperatures of 20–35°C. Incubation period of eggs ranged from 52.2 days at 20°C to 16.2 days at 35°C. The thermal threshold for egg development determined by linear regression was 12.9°C. Females subjected to four fluctuating temperature regimes produced no differences in number of eggs/female (ca. 2400), CEI (ca. 50%), or hatchability of eggs (ca. 75%). Preoviposition period and incubation were significantly affected by a change in the thermoperiod, becoming longer in duration as the temperatures were decreased. From studying females exposed for various intervals from 0 to 105 days at 12°C, indications were that the longer the exposure period the more adverse the effects were on oviposition and egg-hatch. Correspondingly, exposure of eggs to a temperature of 15°C for up to 105 days gave indications that the longer the eggs remained at 15°C, the lower the hatch would be after transfer back to a temperature of 25°C.  相似文献   

4.
The viability of Ochlerotatus albifasciatus (Macquart) eggs stored at room temperature and at 5 degrees C was studied over 31 months. After 12, 18 and 31 months of storage, eggs were acclimatized at 22 degrees C for ten days, and then inundated twice every seven days. The effect of the storage period on the percentage of hatching was analyzed by one way ANOVA. Differences on the hatching response between the first and second flooding were analyzed by paired t-test. Differences on the hatching response between the two storage conditions were analyzed by Mann-Whitney rank test. Results showed that (1) Oc. albifasciatus eggs were able to survive and hatch over 31 months; (2) the percent hatching of eggs stored at 5 degrees C was higher than that of eggs stored at room temperature; and (3) low temperatures and long periods without water favor installment hatching.  相似文献   

5.
The timing of oviposition and hatching of Ixodes pacificus was investigated in the field and at constant temperatures in the laboratory. Replete females held at temperatures between 9 and 29°C began depositing eggs a mean of 9–70 days after drop off. Egg masses held between 12 and 25°C commenced hatching 25–178 days after the onset of oviposition. Eggs held at 9 or 29°C did not hatch. The lower temperature thresholds for development (LTD) for oviposition and hatching were 6.5 and 9°C, respectively. The number of degree days required for oviposition and hatching was 173 and 588, respectively. Replete females placed in the field on 2 December through to 8 March deposited eggs from 2 February through to 24 April; the eggs commenced hatching between 2 July and 21 August. Unfed larvae from two of 20 egg masses survived through the winter and fed readily when exposed to deer mice (Peromyscus maniculatus) on 22 April. Replete larvae were returned to the field and moulted between 9 and 21 August. Larvae exposed to deer mice in August, 4 weeks after hatching, also fed readily. Although further studies are needed to clarify the timing of nymphal development, the present study suggests that I. pacificus requires more than 1 year to complete its life cycle.  相似文献   

6.
本文研究了三叶虫萤Emeia pseudosauteri在不同恒温设置和室内变温条件下卵孵化率和初孵幼虫存活率,并通过直接最优法和直线回归法计算出了三叶虫萤卵的发育起点温度和有效积温。结果表明:12~30℃恒温条件下,卵的孵化率随着温度升高显著下降(P<0.05),且均低于室内变温条件(P<0.05)下的孵化率;初孵幼虫在恒温15℃下的存活率最高,为73.13%;低于12℃和高于30℃恒温中初孵幼虫均无法存活;在恒温条件12~30℃下,卵的发育历期随温度升高而缩短,其中恒温12℃下最长,发育历期为42.96 d(n=3),恒温30℃下最短,发育历期仅12.75 d(n=3)。通过直接最优法计算出三叶虫萤卵的发育起点温度为3.52℃,有效积温分别为382.20 d·℃。上述结果为三叶虫萤的人工繁育提供了参考。  相似文献   

7.
SUMMARY. Eggs of Ephemerella ignita (Poda) were kept at eight constant temperatures (range 5.9–19.8°C) in the laboratory. Over 85% of the eggs hatched in the temperature range 10.0–14.2°C but the percentage decreased markedly to 39% at 5.9°C and 42% at 19.8°C. Hatching time (days after oviposition) decreased with increasing water temperature over the range 5.9–14.2°C and the relationship between the two variables was well described by a hyperbola. Therefore, the time taken for development was expressed in units of degree-days above a threshold temperature. Mean values (with 95%CL) were 552 (534–573) degree-days above 4.25°C for 10% of the eggs hatched, 862 (725–1064) degree-days above 3.57°C for 50% hatched and 1383 (1294–1486) degree-days above 3.14°C for 90% hatched. These values can be used to predict hatching times at temperatures below 14.68°C for 10% hatched, 14.54°C for 50% hatched and 14.45°C for 90% hatched. At higher temperatures, the hatching time and the number of degree-days required for development both increased with increasing temperature. Equations were developed to estimate the number of degree-days required for development at these higher temperatures.
Eggs were also placed in the Wilfin Beck, a small stony stream in the English Lake District. Maximum and minimum water temperatures were recorded in each week and the summation of degree-days was used to predict the dates on which 10%, 50% and 90% of the eggs should have hatched. There was good agreement between these estimates and the actual hatching times. Only 10–15% of the eggs hatched between October and late February with most of the eggs hatching in March, April and May. Nymphs hatching in October and November probably did not survive the winter.  相似文献   

8.
  1. At temperature levels from 10 to 25°C animals from resting eggs produce subitaneous eggs independent on temperature. In contrast animals from subitaneous eggs produce subitaneous eggs dependent on temperature. At a high rate subitaneous eggs are only formed at temperature levels above 20°C.
  2. Below 10°C no development occurs in the juveniles. At temperatures of 30/22°C (24.7°C) the first subitaneous eggs are formed after 6–9 days, at 14/9°C (10.7°C) they are formed after 34 days. At different temperature levels the developmental rate of the young is from 10.5 to 42 days. One generation extends over 16.5 (30/22°C) to 75 days (14/9°C). The average egg production is 10–20 subitaneous eggs or 30–60 resting eggs. The maximum egg production of one individual is 50 subitaneous eggs or 84 resting eggs. 50% of the animals have just formed resting eggs, before the juveniles are hatched. Resting eggs in the first egg-batch are formed 6–20 days later than subitaneous eggs. The duration of life is between 65 (30/22°C) and 140 days (19/13°C).
  3. Young worms in resting eggs have a dormance period of at least 15–30 days.
At room temperatures (20°C) no juvenile in resting eggs hatches from water. By combining room and refrigerator (3.5°C) temperatures the hatching rate increases to a maximum of 85%. To reach a hatching rate of 50–65% the influence of low temperatures must be at least 30 days. At room temperatures 60% of the young in resting eggs hatch from mud covered with water. Combining high and low temperatures the hatching success is between 67 and 81%, where the highest percentage of the young may hatch at room temperature. Up to 90 days low temperatures cause a maximum hatching rate of 79%. It decreases to approximately 30% after 180 days. At high temperatures resting eggs preserved in 100% moist mud, survive for two months. By adding a period of low temperatures the hatching rate increases to a maximum of 52%. Low temperatures are survived for more than 6 months. Up to 30 days preservation at 3.5°C causes a maximum hatching rate of 61%, up to 12o days it decreases to 30%. At room temperature the young in resting eggs are not resistant against air-dried mud (30–40% rel. air moisture). Combining high and low temperatures air-dried mud is endured 1 month (hatching rate 5–14%). Preservation of 30–120 days at 3.5°C and 70% rel. air moisture result in a hatching rate of 43–61%. li]4. In the open air in Middle-Europe there occur 5–6 generations of M. ehrenbergii per life-cycle. The first generation hatches from resting eggs in May, where the production of subitaneous eggs is independent on temperature. All other generations up to October hatch from subitaneous eggs. The egg-production of those worms is dependent on environmental factors. In summer subitaneous egg production prevails, in autumn resting egg production. The abundance during the life-cycle is dependent on the number of animals which produce subitaneous eggs. Resting eggs are predestinated to endure periods of dryness and cold. The life-cycles of the species M. lingua and M. productum are different from those of M. ehrenbergii in length and in the number of generations. In both species 7 generations occur over 8 to 8.5 respectively 5.5 months. M. nigrirostrum only forms resting eggs. The life-cycle consists of one generation from February/March to May/June.  相似文献   

9.
The seasonal timing mechanism of egg hatching was examined in two cicadas, Cryptotympana facialis and Graptopsaltria nigrofuscata, with different but overlapping geographical distributions. These species lay eggs in summer, and nymphs hatch in the summer of the following year after egg durations of 10-12 months. When eggs were maintained at 25 °C from oviposition, both the species entered embryonic diapause within 60 days irrespective of photoperiod, but at different developmental stages between the two species. The optimal temperature for diapause development was approximately 15 °C in both the species. The development rate for postdiapause morphogenesis increased linearly with temperature in the range of 20-27.5 °C in C. facialis, and of 15-25 °C in G. nigrofuscata. The lower development threshold and the sum of effective temperatures were computed as 14.3 °C and 715.3 day-degrees in C. facialis and 12.1 °C and 566.6 day-degrees in G. nigrofuscata, respectively. The hatching dates predicted by these large thermal constants accorded with the hatching dates observed in the field, i.e., late June and mid-July in G. nigrofuscata and C. facialis, respectively. Therefore, the high thermal requirements for postdiapause development compel the cicadas to hatch in summer.  相似文献   

10.
Regulation of river flow and the amount of winter rainfall are the major factors affecting the water temperature of the spawning grounds, for green sturgeon in the Klamath River. During the primary spawning period of green sturgeon, mid-April to June, the water temperature may vary from 8 to 21°C. To estimate the potential implications of this modified thermal regime, we examined the survival and development in three progeny groups of green sturgeon embryos from zygote to hatch, at constant incubation temperatures (11–26°C). Temperatures 23–26°C affected cleavage and gastrulation and all died before hatch. Temperatures 17.5–22°C were suboptimal as an increasing number of embryos developed abnormally and hatching success decreased at 20.5–22°C, although the tolerance to these temperatures varied between progenies. The lower temperature limit was not evident from this study, although hatching rate decreased at 11°C and hatched embryos were shorter, compared to 14°C. The mean total length of hatched embryos decreased with increasing temperature, although their wet and dry weight remained relatively constant. We concluded that temperatures 17–18°C may be the upper limit of the thermal optima for green sturgeon embryos, and that the river thermal regime during dry years may affect green sturgeon reproduction.  相似文献   

11.
12.
Incubation of eggs of tuatara, Sphenodon punctatus   总被引:3,自引:0,他引:3  
Eggs of the tuatara, Sphenodon punctatus , were incubated either buried or half buried in vermiculite at constant temperatures of 15, 18, 20, 22 and 25 °C and constant water potentials between —90 and —400 kPa. Many clutches failed completely, possibly because they had been taken from females prior to proper shell development. Failed eggs were significantly smaller than successful eggs. Incubation is unsuccessful at 15 °C. Hatching success is high between 18 and 22 °C but low at 25 °C, but equally successful between 18 and 22°C. Incubation is strongly influenced by temperature, with mean incubation periods of 328 days at 18 °C, 259 days at 20 °C, 169 days at 22 °C and 150 days at 25 °C. Water potential generally has little influence on incubation time at a given temperature. Buried eggs hatch sooner than partially buried eggs at 20 °C but the large range makes significance dubious.
Eggs on the driest substrata at 18 and 20 °C lose water initially but then gain water through the rest of incubation. Eggs in all other conditions gain water throughout incubation, with the rate of i water absorption being maintained or increasing late in incubation. The suggestion that increasing rate of water absorption late in incubation facilitates explosive hatching is not supported. Egg mass at the time of hatching varies from 132 to 398% of initial values, depending on incubation conditions. Final egg mass is not affected significantly by incubation temperature. Hence, rates of absorption increase with temperature.
Water potential has no influence on hatchling size. However, hatchlings from buried eggs generally are significantly larger than those from partially buried eggs.  相似文献   

13.
Eggs of Coregonus albula were incubated at constant temperatures: 1.1, 2.0, 2.9, 4.9, 6.6, 8.4, and 9.9 °C, and the percentage of normal hatch was 20.6, 11.8, 30.4, 61.0, 51.7, 32.6, and 14.6%, respectively. The lower and upper median tolerance limit (TL 50) defined as the interpolated temperature at which embryos survival to hatch was 50% of the highest response (61% at 4.9 °C) were 2.9 and 8.5 °C, respectively. The optimum temperature range delimited by lower and upper TL 75 was encompassed by 4.0 and 7.2 °C.Eggs of C. albula incubated at variable temperature in a commercial hatchery showed a very high survival (up to 76%). Similarly low survival observed during hatching of embryos at constant temperatures of 1.1 and 2.0 °C could be hightened (to about 90%) by raising the temperature in the beginning of hatching period. This phenomenon was utilized in the technique of delaying C. albula embryos' mass hatching for the purpose of synchronization in time of stocking the lakes with the time of appearence of good thermal and food conditions for C. albula larvae.The conception of the optimal thermal conditions for Coregoninae embryogenesis was developed as the course of incubation temperature, securing the highest survival rate during embryogenesis and also during the larval period.  相似文献   

14.
It has been hypothesized that the production of diapausing eggs in Daphnia can be induced by fish kairomones. A population of Daphnia could survive severe predation using this predator avoidance strategy. However, in changing environments, diapausing eggs experience various temperature conditions, and hatchlings at emergence may be exposed to the same predation risks as their mothers. Therefore, staying in diapause or an immediate response upon hatching to available environmental information could be important for hatchling survival. For this study, we investigated the impact of water temperature (10, 15, 20, and 25°C) in the presence and absence of fish kairomones (Lepomis macrochirus) on the hatching success of resting eggs (D. galeata). Results show that no diapausing eggs hatched at the lowest temperature (10°C), and the highest hatch percentage occurred at 15°C. Although higher water temperatures reduced hatching success, diapausing eggs hatched more quickly. The number of hatchlings was significantly higher after exposure to fish kairomones, and this was more noticeable at higher temperatures (20 and 25°C). The present results suggest that the diapausing eggs were produced as a predator avoidance strategy in Daphnia; however, the presence of fish works as a positive signal to increase hatchlings when the diapausing stage is terminated.  相似文献   

15.
The effects of the duration and degree of chilling, and the temperature of incubation, on hatching of winter eggs of Panonychus ulmi (Koch) were investigated. For chilling, 0°C and 5°C were more effective than — 5° and 9°, and the limits for the reaction were close to — 10° and 15°. As the chilling period was increased from 60 to 200 days, the percentage hatch on incubation at 21° increased, and the mean incubation time and its variance decreased. Before the maximum effect of chilling was achieved, percentage hatch on incubation at 9° and 15° was higher than at 21°; 27° was lethal to most winter eggs though not to summer eggs. After chilling, the later stages of diapause development could occur at temperatures from 0° to 21°) i.e. above and below the threshold temperature for morphogenesis, 6–7° in both winter and summer eggs. Diapause development cannot, therefore, be a unitary process. The significance of the results is discussed in relation to forecasting the time of hatch in the field, and to the phenological aspects of hatching in the spring.  相似文献   

16.
Abstract
No immature stages of Culex annulirostris were found during field sampling in 1979–1980 when the average water temperature was < 17 °C; they reappeared when the average water temperature was 19 °C and reached the peak density (mean 107 immatures/cylinder) at 26.5 °C.
The effect of 6 temperatures (15–40°C) on egg hatching, development and survival of the immature stages of Cx annulirostris in the laboratory showed that at 15 and 40°C, eggs failed to hatch and larvae died in the first instars. The optimum temperatures for egg hatching and the survival of immature stages were 25 and 30°C. At these temperatures, 85 and 82% respectively of egg rafts hatched, the mean number of larvae per raft was 258 ± 9.8 and 260 ± 11.4 with immature survival of 83.5 and 79.0% respectively. Mean time to hatch at 20–35°C ranged from 1.2 d (35°C) to 2.9 d (20 °C). Developmental times from first instar to adult ranged from 7.1 d (35 °C) to 25.2 d (20 °C). The threshold for development of the immatures was 15.6 ± 2.5°C and the thermal constant was 142.9 ± 26.5 day—degrees (incubation temperatures 20–35°C). At less suitable temperatures of 20 and 35 °C, hatching (57.5 and 45%), number larvae per raft (mean 139.8 ± 9.8 and 102.6 ± 14.2) and survival were low.  相似文献   

17.
We used the slender forest skink (Scincella modesta) as a model animal to test for the hypothesis that the upper threshold of incubation temperature is relatively low in lizards using shaded (and thus, cool) habitats. Eight gravid females were collected in early May 2005 from a population in Hangzhou, Zhejiang (eastern China). All females laid a single clutch of 7–13 eggs between mid-May and early June. Eggs were incubated at 24, 28 and 30 (±0.2) °C. None of eggs incubated at 30 °C hatched. Eggs incubated at 24 and 28 °C differed in incubation length but not in hatching success. The incubation length at 24 and 28 °C averaged 22.3 and 20.3 days, respectively. Hatchlings from eggs incubated at 24 and 28 °C did not differ in all examined morphological traits, but hatchlings from eggs incubated at 28 °C performed apparently worse in the racetrack than did their counterparts from eggs incubated at 24 °C. The temperature of 28 °C is close to the upper thermal threshold for successful embryonic development in S. modesta. Compared to other oviparous lizards using open (and thus, warm) habitats, the upper thermal threshold and the range of optimal temperatures for embryonic development are both lower in S. modesta. Our study supports the previous conclusion that species living in thermally different habitats may differ in the upper thermal threshold and the range of optimal temperatures for embryonic development.  相似文献   

18.
The root-feeding flea beetle Longitarsus bethae Savini & Escalona, was introduced into South Africa as a candidate biological control agent for the noxious and invasive weed, Lantana camara L. As part of the study to predict the beetles' survival in its new range, the influence of climatic conditions on its egg development and reproductive performance were investigated in the laboratory. The threshold temperature (T degrees) and degree-days (DD) required for egg hatch were determined after exposing the eggs to various constant temperatures (12, 17, 22, 27 and 32 degrees C) in separate growth chambers. The DD required for egg hatch was 178.6, and the temperature threshold required for egg hatch was 11.3 degrees C. Survival of eggs varied from 27 to 56% at 32 and 17 degrees C, respectively, and was optimum between 17 and 25 degrees C. Oviposition was examined under high and low relative humidity (RH) regimes while egg hatch was determined at six RH levels, each maintained in a separate controlled growth chamber set at a constant temperature (25 degrees C). Whilst RH had no influence on oviposition, eggs were highly susceptible to aridity, and continuous exposure to relative humidity below 63% for more than three days was wholly lethal at 25 degrees C. Optimum egg hatch occurred at RH between 85 and 95% for up to 12 days. The effect of day length on oviposition and subsequent egg hatch was investigated under two photoperiod regimes. Neither oviposition nor subsequent egg hatch was influenced by photoperiod. The knowledge obtained will be useful for mass rearing as well as field release programmes for L. bethae.  相似文献   

19.
Temperature and photoperiod play major roles in insect ecology. Many insect species have fixed degree‐days for embryogenesis, with minimum and maximum temperature thresholds for egg and larval development and hatching. Often, photoperiodic changes trigger the transfer into the next life‐cycle stadium. However, it is not known whether this distinct pattern also exist in a species with a high level of phenotypic plasticity in life‐history traits. In the present study, eggs of the dragonfly Sympetrum striolatum Charpentier (Odonata: Libellulidae) are reared under different constant and fluctuating temperatures and photoperiodic conditions in several laboratory and field experiments. In general, and as expected, higher temperatures cause faster egg development. However, no general temperature or light‐days for eyespot development and hatching are found. The minimum temperature thresholds are distinguished for survival (2 °C), embryogenesis (6 °C) and larval hatching (above 6 °C). Low winter temperatures synchronize hatching. Above 36 °C, no eyespots are visible and no larvae hatch. In laboratory experiments, light is neither necessary for eyespot development, nor for hatching. By contrast to the laboratory experiments, the field experiment show that naturally changing temperature and photoperiod play a significant role in the seasonal regulation of embryonic development. The post‐eyespot development is more variable and influenced by temperature and photoperiod than the pre‐eyespot development. This developmental plasticity at the end of the embryogenesis might be a general pattern in the Libellulidae, helping them to cope with variation in environmental conditions.  相似文献   

20.
1. The hypothesis that a 3 °C elevation in temperature and doubled CO2 concentration would have no effect on the synchronization of winter moth egg hatch with budburst in oak was tested by comparing the separate and interactive effects of ambient and elevated (+ 3 °C) temperature and ambient and elevated (doubled to 340 p.p.m.) CO2 in eight experimental Solardomes. In addition, an outdoor control was compared with the ambient temperature/CO2 treatment combination.
2. Elevated temperature accelerated darkening (preceding egg hatch by about 5–10 days) and hatching of eggs developing off the trees; elevated CO2 had no effect. The same effects were observed in eggs developing on the trees.
3. Within treatments, date of egg hatch was the same on trees with early or late budburst.
4. Egg darkening and budburst were closely synchronized at both ambient and elevated temperatures.
5. Both eggs and trees required fewer cumulative heat units (day degrees > 4 °C), for hatching and budburst, respectively, at ambient than elevated temperatures. The requirements in the outdoor control treatment were similar to those in the ambient Solardome treatment.
6. Egg hatch between 10 and 25 °C, on a temperature gradient in the laboratory, required a constant number of heat units; fewer were required below 10 °C.
7. Elevated temperatures, in the Solardomes and the field, delayed adult emergence from the pupae.
8. The results suggest that a general increase in temperature with climatic change would not affect the closeness of the synchronization between egg hatch of winter moth and budburst of oak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号