首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The Leishmania major aquaglyceroporin, LmAQP1, is responsible for the transport of antimonite [Sb(III)], an activated form of Pentostam or Glucantime. Downregulation of LmAQP1 provides resistance to trivalent antimony compounds and increased expression of LmAQP1 in drug‐resistant parasites can reverse the resistance. Besides metalloid transport, LmAQP1 is also permeable to water, glycerol, methylglyoxal, dihydroxyacetone and sugar alcohols. LmAQP1 also plays a physiological role in volume regulation and osmotaxis. In this study, we examined the role of extracellular C‐loop glutamates (Glu143, Glu145 and Glu152) in LmAQP1 activity. Alteration of both Glu143 and Glu145 to alanines did not affect either the biochemical or physiological properties of the protein, suggesting that neither residue is critical for LmAQP1 activity. Alteration of Glu152 to alanine, aspartate and glutamine affected metalloid transport in the order, wild‐type > E152Q > E152D > E152A. In fact, axenic amastigotes expressing E152A LmAQP1 accumulated negligible levels of either arsenite [As(III)] or Sb(III). Alteration of Glu152 significantly affected volume regulation and osmotaxis, suggesting that Glu152 is critical for the physiological activity of the parasite. More importantly, alteration of Glu152 to alanine did not affect glycerol permeability. Although the metalloids, As(III) and Sb(III), are believed to be transported through aquaglyceroporin channels as they behave as inorganic molecular mimic of glycerol, this is the first report where metalloid and glycerol transport can be dissected by a single mutation at the extracellular pore entry of LmAQP1 channel.  相似文献   

2.
The Leishmania major aquaglyceroporin, LmAQP1, is responsible for the transport of trivalent metalloids, arsenite and antimonite. We have earlier shown that downregulation of LmAQP1 provides resistance to trivalent antimony compounds whereas increased expression of LmAQP1 in drug-resistant parasites can reverse the resistance. In this paper we describe the biochemical characterization of LmAQP1. Expression of LmAQP1 in Xenopus oocytes rendered them permeable to water, glycerol, methylglyoxal, dihydroxyacetone and sugar alcohols. The transport property of LmAQP1 was severely affected when a critical Arg230, located inside the pore of the channel, was altered to either alanine or lysine. Immunofluorescence and immuno-electron microscopy revealed LmAQP1 to be localized to the flagellum of Leishmania promastigotes and in the flagellar pocket membrane and contractile vacuole/spongiome complex of amastigotes. This is the first report of an aquaglyceroporin being localized to the flagellum of any microbe. Leishmania promastigotes and amastigotes expressing LmAQP1 could regulate their volume in response to hypoosmotic stress. Additionally, Leishmania promastigotes overexpressing LmAQP1 were found to migrate faster towards an osmotic gradient. These results taken together suggest that Leishmania LmAQP1 has multiple physiological roles, being involved in solute transport, volume regulation and osmotaxis.  相似文献   

3.
Arsenicals and antimonials are first line drugs for the treatment of trypanosomal and leishmanial diseases. To create the active form of the drug, Sb(V) must be reduced to Sb(III). Because arsenic and antimony are related metalloids, and arsenical resistant Leishmania strains are frequently cross-resistant to antimonials, we considered the possibility that Sb(V) is reduced by a leishmanial As(V) reductase. The sequence for the arsenate reductase of Saccharomyces cerevisiae, ScAcr2p, was used to clone the gene for a homologue, LmACR2, from Leishmania major. LmACR2 was able to complement the arsenate-sensitive phenotype of an arsC deletion strain of Escherichia coli or an ScACR2 deletion strain of Saccharomyces cerevisiae. Transfection of Leishmania infantum with LmACR2 augmented Pentostam sensitivity in intracellular amastigotes. LmACR2 was purified and shown to reduce both As(V) and Sb(V). This is the first report of an enzyme that confers Pentostam sensitivity in intracellular amastigotes of Leishmania. We propose that LmACR2 is responsible for reduction of the pentavalent antimony in Pentostam to the active trivalent form of the drug in Leishmania.  相似文献   

4.
The Saccharomyces cerevisiae FPS1 gene encodes a glycerol channel protein involved in osmoregulation. We present evidence that Fps1p mediates influx of the trivalent metalloids arsenite and antimonite in yeast. Deletion of FPS1 improves tolerance to arsenite and potassium antimonyl tartrate. Under high osmolarity conditions, when the Fps1p channel is closed, wild-type cells show the same degree of As(III) and Sb(III) tolerance as the fps1Delta mutant. Additional deletion of FPS1 in mutants defective in arsenite and antimonite detoxification partially suppresses their hypersensitivity to metalloid salts. Cells expressing a constitutively open form of the Fps1p channel are highly sensitive to both arsenite and antimonite. We also show by direct transport assays that arsenite uptake is mediated by Fps1p. Yeast cells appear to control the Fps1p-mediated pathway of metalloid uptake, as expression of the FPS1 gene is repressed upon As(III) and Sb(III) addition. To our knowledge, this is the first report describing a eukaryotic uptake mechanism for arsenite and antimonite and its involvement in metalloid tolerance.  相似文献   

5.
The arsRDABC operon of Escherichia coli plasmid R773 encodes the ArsAB extrusion pump for the trivalent metalloids As(III) and Sb(III). ArsA, the catalytic subunit has two homologous halves, A1 and A2. Each half has a consensus signal transduction domain that physically connects the nucleotide-binding domain to the metalloid-binding domain. The relation between metalloid binding by ArsA and transport through ArsB is unclear. In this study, direct metalloid binding to ArsA was examined. The results show that ArsA binds a single Sb(III) with high affinity only in the presence of Mg(2+)-nucleotide. Mutation of the codons for Cys-113 and Cys-422 eliminated Sb(III) binding to purified ArsA. C113A/C422A ArsA has basal ATPase activity similar to that of the wild type but lacks metalloid-stimulated activity. Accumulation of metalloid was assayed in intact cells, where reduced uptake results from active extrusion by the ArsAB pump. Cells expressing the arsA(C113A/C422A)B genes had an intermediate level of metalloid resistance and accumulation between those expressing only arsB alone and those expressing wild type arsAB genes. The results indicate that, whereas metalloid stimulation of ArsA activity enhances the ability of the pump to reduce the intracellular concentration of metalloid, high affinity binding of metalloid by ArsA is not obligatory for transport or resistance. Yet, in mixed populations of cells bearing either arsAB or arsA(C113A/C422A)B growing in subtoxic concentrations of arsenite, cells bearing wild type arsAB replaced cells with mutant arsA(C113A/C422A)B in less than 1 week, showing that the metalloid binding site confers an evolutionary advantage.  相似文献   

6.
The arsRDABC operon of Escherichia coli plasmid R773 encodes the ArsAB pump that catalyzes extrusion of the metalloids As(III) and Sb(III), conferring metalloid resistance. The catalytic subunit, ArsA, is an ATPase with two homologous halves, A1 and A2, connected by a short linker. Each half contains a nucleotide binding domain. The overall rate of ATP hydrolysis is slow in the absence of metalloid and is accelerated by metalloid binding. The results of photolabeling of ArsA with the ATP analogue 8-azidoadenosine 5'-[alpha-(32)P]-triphosphate at 4 degrees C indicate that metalloid stimulation correlates with a >10-fold increase in affinity for nucleotide. To investigate the relative contributions of the two nucleotide binding domains to catalysis, a thrombin site was introduced in the linker. This allowed discrimination between incorporation of labeled nucleotides into the two halves of ArsA. The results indicate that both the A1 and A2 nucleotide binding domains bind and hydrolyze trinucleotide, even in the absence of metalloid. Sb(III) increases the affinity of the A1 nucleotide binding domain to a greater extent than the A2 nucleotide binding domain. The ATP analogue labeled with (32)P at the gamma position was used to measure hydrolysis of trinucleotide at 37 degrees C. Under these catalytic conditions, both nucleotide binding domains hydrolyze ATP, but hydrolysis in A1 is stimulated to a greater degree by Sb(III) than A2. These results suggest that the two homologous halves of the ArsA may be functionally nonequivalent.  相似文献   

7.
The ArsAB extrusion pump encoded by the ars operon of Escherichia coli plasmid R773 confers resistance to the toxic trivalent metalloids arsenite [As(III)] and antimonite [Sb(III)]. The ArsA ATPase, the catalytic subunit of the pump, has two homologous halves, A1 and A2. At the interface of these two halves are two nucleotide-binding domains and a metalloid-binding domain. Cys-113 and Cys-422 have been shown to form a high-affinity metalloid binding site. The crystal structure of ArsA shows two other bound metalloid atoms, one liganded to Cys-172 and His-453, and the other liganded to His-148 and Ser-420. The contribution of those putative metalloid sites was examined. There was little effect of mutagenesis of residues His-148 and Ser-420 on metalloid binding. However, a C172A ArsA mutant and C172A/H453A double mutant exhibited significantly decreased affinity for Sb(III). These results suggest first that there is only a single high-affinity metalloid binding site in ArsA, and second that Cys-172 controls the affinity of this site for metalloid and hence the efficiency of metalloactivation of the ArsAB efflux pump.  相似文献   

8.
Heavy metal resistance: a new role for P-glycoproteins in Leishmania.   总被引:6,自引:0,他引:6  
P-glycoproteins are responsible for multidrug resistance in tumor cell lines and are thought to have a physiologic role in exporting cellular metabolites. We now report that a P-glycoprotein gene in the H region of the trypanosomatid protozoan Leishmania confers resistance to heavy metals when present in multiple copies. The Leishmania H region is frequently amplified in drug-resistant lines and is associated with metal resistance. Leishmania expression vectors were used to introduce multiple copies of segments of the Leishmania major H region into wild-type L. major promastigotes. Only constructs bearing a segment of L. major DNA containing the P-glycoprotein lmpgpA conferred arsenite resistance. Deletional analysis of the arsenite-resistant construct mapped resistance to the lmpgpA protein coding region. Lines expressing lmpgpA showed resistance to arsenite and trivalent antimonials, but not to pentavalent antimonials, zinc, cadmium, or the typical multidrug-resistant P-glycoprotein substrates vinblastine and puromycin. Transfection of the Leishmania tarentolae P-glycoprotein homologue ltpgpA resulted in a similar resistance profile. Thus, these pgpAs represent a functionally distinct group of P-glycoproteins which exhibit a substrate specificity similar to prokaryotic heavy metal pumps. Additionally, several arguments suggest that pgpAs may play a role in the susceptibility of Leishmania to clinically utilized antimonials.  相似文献   

9.
ArsD is a trans-acting repressor of the arsRDABC operon that confers resistance to arsenicals and antimonials in Escherichia coli. It possesses two-pairs of vicinal cysteine residues, Cys(12)-Cys(13) and Cys(112)-Cys(113), that potentially form separate binding sites for the metalloids that trigger dissociation of ArsD from the operon. However, as a homodimer it has four vicinal cysteine pairs. Titration of the steady-state fluorescence of ArsD with metalloids revealed positive cooperativity, with a Hill coefficient of 2, between these sites. Disruption of the Cys(112)-Cys(113) site by mutagenesis of arsD, but not the Cys(12)-Cys(13) site, largely abolished this cooperativity, indicative of interactions between adjacent Cys(112)-Cys(113) sites within the dimer. The kinetics of metalloid binding were determined by stopped flow spectroscopy; the rate increased in a sigmoidal manner, with a Hill coefficient of 4, indicating that the pre-steady-state measurements reported cooperativity between all four sites of the dimer rather than just the intermolecular interactions reported by the steady-state measurements. The kinetics of Sb(III) displacement by As(III) revealed that the metalloid-binding sites behave differentially, with the rapid exchange of As(III) for Sb(III) at one site retarding the release of Sb(III) from the other sites. We propose a model involving the sequential binding and release of metalloids by the four binding sites of dimeric ArsD, with only one site releasing free metalloids.  相似文献   

10.
Despite extensive use of antimonial compounds in the treatment of leishmaniasis, their mode of action remains uncertain. Here we show that trivalent antimony (Sb(III)) interferes with trypanothione metabolism in drug-sensitive Leishmania parasites by two inherently distinct mechanisms. First, Sb(III) decreases thiol buffering capacity by inducing rapid efflux of intracellular trypanothione and glutathione in approximately equimolar amounts. Second, Sb(III) inhibits trypanothione reductase in intact cells resulting in accumulation of the disulfide forms of trypanothione and glutathione. These two mechanisms combine to profoundly compromise the thiol redox potential in both amastigote and promastigote stages of the life cycle. Furthermore, we demonstrate that sodium stibogluconate, a pentavalent antimonial used clinically for the treatment for leishmaniasis, induces similar effects on thiol redox metabolism in axenically cultured amastigotes. These observations suggest ways in which current antimony therapies could be improved, overcoming the growing problem of antimony resistance.  相似文献   

11.

Background

Aquaporins (AQPs), members of a superfamily of transmembrane channel proteins, are ubiquitous in all domains of life. They fall into a number of branches that can be functionally categorized into two major sub-groups: i) orthodox aquaporins, which are water-specific channels, and ii) aquaglyceroporins, which allow the transport of water, non-polar solutes, such as urea or glycerol, the reactive oxygen species hydrogen peroxide, and gases such as ammonia, carbon dioxide and nitric oxide and, as described in this review, metalloids.

Scope of review

This review summarizes the key findings that AQP channels conduct bidirectional movement of metalloids into and out of cells.

Major conclusions

As(OH)3 and Sb(OH)3 behave as inorganic molecular mimics of glycerol, a property that allows their passage through AQP channels. Plant AQPs also allow the passage of boron and silicon as their hydroxyacids, boric acid (B(OH)3) and orthosilicic acid (Si(OH)4), respectively. Genetic analysis suggests that germanic acid (GeO2) is also a substrate. While As(III), Sb(III) and Ge(IV) are toxic metalloids, borate (B(III)) and silicate (Si(IV)) are essential elements in higher plants.

General significance

The uptake of environmental metalloids by aquaporins provides an understanding of (i) how toxic elements such as arsenic enter the food chain; (ii) the delivery of arsenic and antimony containing drugs in the treatment of certain forms of leukemia and chemotherapy of diseases caused by pathogenic protozoa; and (iii) the possibility that food plants such as rice could be made safer by genetically modifying them to exclude arsenic while still accumulating boron and silicon. This article is part of a Special Issue entitled Aquaporins.  相似文献   

12.
Antimony unresponsiveness in mucocutaneous and visceral leishmaniasis is a serious clinical problem. Information on the mechanisms and characteristics of drug resistance in parasites that suggest chemotherapeutic strategies to overcome resistance is of practical importance. We developed nine lines of Leishmania resistant to drugs, the major emphasis being on pentavalent antimony (Sb) complexed to carbohydrate in the form of sodium stibogluconate (Pentostam), one of the only two antileishmanial agents with a clearly favorable therapeutic index. Resistance to Pentostam (33- to 212-fold increase) was obtained in promastigotes of Leishmania in vitro by exposure to gradually increasing concentrations of drug over several passages. Resistance to Sb was found to be either stable or unstable. Stable resistance to Sb required (greater than 3) exposures of the initial sensitive clones to Pentostam and tended to stabilize with increased time under pressure. In general, resistance obtained in a clone after only a few (less than or equal to 3) step treatments was low and unstable. Differences in the susceptibility to Pentostam were found between strains isolated from patients with American cutaneous leishmaniasis. In addition, natural isolates of Leishmania from patients represented a heterogeneous population of parasites as demonstrated by a biphasic concentration response to Sb (typical of mixed population dynamics) and by marked differences in susceptibility to Pentostam among clones prepared from single isolates. These results suggest that the emergence of parasite resistance to antimonial treatment is a potential risk of inadequate dose therapy.  相似文献   

13.
The protozoan parasite Leishmania resists the antifolate methotrexate (MTX) by amplifying the R locus dihydrofolate reductase-thymidylate synthase ( dhfr-ts ) gene, the H locus ptr1 pterin reductase gene, and finally by mutation in a common folate/MTX transporter. Amplification of dhfr-ts has never been observed in Leishmania tarentolae MTX resistant mutants while ptr1 amplification is common. We have selected a L.tarentolae ptr1 null mutant for MTX resistance and observed dhfr-ts amplification in this mutant demonstrating that once a preferred resistance mechanism is unavailable, a second one will take over. By introducing the ptr1 gene at the R locus and the dhfr-ts gene at the H locus by gene targeting, we investigated the role of the resistance gene and the locus on the rate of gene amplification. Transfection studies indicated that ptr1 gave higher levels of MTX resistance than dhfr-ts. Consistent with this, when ptr1 was present as part of either the H locus or the R locus it was invariably amplified, while dhfr-ts was only amplified when ptr1 was inactivated. When dhfr-ts was present in a ptr1 null background on both the H locus and the R locus, amplification from the H locus was more frequent suggesting that both the gene and the locus are determining the frequency of gene amplification in Leishmania.  相似文献   

14.
In this study, we followed the genomic, lipidomic and metabolomic changes associated with the selection of miltefosine (MIL) resistance in two clinically derived Leishmania donovani strains with different inherent resistance to antimonial drugs (antimony sensitive strain Sb‐S; and antimony resistant Sb‐R). MIL‐R was easily induced in both strains using the promastigote‐stage, but a significant increase in MIL‐R in the intracellular amastigote compared to the corresponding wild‐type did not occur until promastigotes had adapted to 12.2 μM MIL. A variety of common and strain‐specific genetic changes were discovered in MIL‐adapted parasites, including deletions at the LdMT transporter gene, single‐base mutations and changes in somy. The most obvious lipid changes in MIL‐R promastigotes occurred to phosphatidylcholines and lysophosphatidylcholines and results indicate that the Kennedy pathway is involved in MIL resistance. The inherent Sb resistance of the parasite had an impact on the changes that occurred in MIL‐R parasites, with more genetic changes occurring in Sb‐R compared with Sb‐S parasites. Initial interpretation of the changes identified in this study does not support synergies with Sb‐R in the mechanisms of MIL resistance, though this requires an enhanced understanding of the parasite's biochemical pathways and how they are genetically regulated to be verified fully.  相似文献   

15.
The promastigote stage of most if not all Leishmania species possesses an abundant surface glycoprotein of 63 kDa (gp63) that has protease activity. We show that the lizard parasite Leishmania tarentolae appears to lack the surface protease activity. L. tarentolae does, however, possess an approximately 63-kDa molecule that is antigenically cross-reactive with the L. major gp63. Additionally, the genome of L. tarentolae contains sequences that hybridise at high stringency to a L. major gp63 gene probe.  相似文献   

16.
Despite the clinical use of pentavalent antimonials for more than half a century, their metabolism in mammals and mechanisms of action and toxicity remain poorly understood. It has been proposed that the more active and toxic trivalent antimony form Sb(III) plays a critical role in their antileishmanial activity and toxicity. The aim of this work was to investigate the role of residual Sb(III) both in the antileishmanial/antitumoral activities of the pentavalent meglumine antimoniate and in the MRP1 (multidrug resistance-associated protein 1)-mediated resistance to this drug. Samples of meglumine antimoniate differing in their amount of residual Sb(III) (meglumine antimoniate synthesized either from SbCl5 or from KSb(OH)6 as well as commercially-available meglumine antimoniate) were evaluated in vitro and in vivo on Leishmania amazonensis infections, as well as for their cytotoxicity to normal and MRP1-overexpressing GLC4 cell lines. Although in vitro the two most effective drugs contained the highest levels of Sb(III), no correlation was found in vivo between the antileishmanial activity of meglumine antimoniate and its residual Sb(III) content, suggesting that residual Sb(III) contributes only marginally to the drug antileishmanial activity. On the other hand, the GLC4 cells growth inhibition data strongly suggests a marked contribution of residual Sb(III). Additionally, the potassium salt of antimoniate (non-complexed form of Sb(V)) was found to be more cytotoxic than meglumine antimoniate. Although MRP1-overexpressing GLC4 cells showed a marked resistance to trivalent antimonials, cross-resistance to meglumine antimoniate was observed only for the products that contained relatively high levels of Sb(III) (at least 0.03% by weight), suggesting that MRP1 mediates resistance to Sb(III) but not to Sb(V). In conclusion, our data strongly suggest that residual Sb(III) in pentavalent antimonial drugs does not contribute significantly to their antileishmanial activity, but is responsible for their cytotoxic activity against mammalian cells and the MRP1-mediated resistance to these drugs.  相似文献   

17.
微生物氧化As(III)和Sb(III)的研究进展   总被引:3,自引:0,他引:3  
砷(Arsenic,As)和锑(Antimony,Sb)属于同族元素,具有相似的化学性质,是公认的有毒类金属(metalloid),广泛存在于自然界中。随着人类的发展,环境中砷和锑的污染日益严重,类金属污染环境的修复已经刻不容缓。现已表明,自然界中的微生物在砷和锑的生物地球化学循环中发挥着重要的作用,尤其是微生物的氧化作用,可以将毒性较强的亚砷酸盐[Arsenite,As(III)]和亚锑酸盐[Antimonite,Sb(III)]氧化为毒性较低的砷酸盐[Arsenate,As(V)]和锑酸盐[Antimonate,Sb(V)],被认为是一种潜在的类金属污染环境修复方法。本文就国内外对As(III)氧化菌和Sb(III)氧化菌的多样性、As(III)和Sb(III)微生物氧化调控机制和应用的研究进展进行总结,旨在为深入了解和探索微生物介导的砷和锑生物地球化学循环及污染环境的微生物修复提供参考。  相似文献   

18.
Yatawara L  Le TH  Wickramasinghe S  Agatsuma T 《Gene》2008,424(1-2):80-86
We report 8420 bp of DNA sequence data from the maxicircle (mitochondrial) genome of Leishmania major (MHOM/SU/73/5ASKH), a much larger portion of this genome than has been reported previously from any Leishmania species infecting humans. This region contains 10 partial and complete genes: 5 protein-encoding genes (COII, COIII, ND1, ND7 and Cyt b); two ribosomal RNA subunits (12S and 9S) and three unidentified open reading frames (MURF1, MURF4 (ATPase6) and MURF5), as in the lizard-infecting species L. tarentolae. The genes from L. major exhibit 85-87% identity with those of L. tarentolae at the nucleotide level and 71-94% identity at the amino acid level. Most differences between sequences from the two species are transversions. The gene order and arrangement within the maxicircle of L. major are similar to those in L. tarentolae, but base composition and codon usage differ between the species. Codons assigned for initiation for protein-coding genes available for comparison are similar in five genes in the two species. Pre-editing was identified in some of the protein-coding genes. Short intergenic non-coding regions are also present in L. major as they are in L. tarentolae. Intergenic regions between 9S rRNA and MURF5, MURF1 and ND1 genes are G+C rich and considered to be extensive RNA editing regions. The RNA editing process is likely to be conserved in similar pattern in L. major as in L. tarentolae.  相似文献   

19.
Major intrinsic proteins (MIPs) are a family of selective membrane channels comprising water-channelling aquaporins and glycerol-channelling aquaglyceroporins. Recently, several MIPs within all domains of life were shown to facilitate the diffusion of reduced and non-charged species of the metalloids silicon, boron, arsenic and antimony. Metalloids encompass a group of biologically important elements ranging from the essential to the highly toxic. Consequently, all organisms require efficient membrane transport systems to control the exchange of metalloids with the environment. Recent genetic evidence has demonstrated a crucial role for specific MIPs in metalloid homeostasis. We propose that specific MIPs represent an ancient and indispensable transport mechanism for metalloids, which suggests that they could be potential pharmacological targets.  相似文献   

20.
The toxicity of the metalloids arsenic and antimony is related to uptake, whereas detoxification requires efflux. In this report we show that uptake of the trivalent inorganic forms of arsenic and antimony into cells of Escherichia coli is facilitated by the aquaglyceroporin channel GlpF and that transport of Sb(III) is catalyzed by the ArsB carrier protein; everted membrane vesicles accumulated Sb(III) with energy supplied by NADH oxidation, reflecting efflux from intact cells. Dissipation of either the membrane potential or the pH gradient did not prevent Sb(III) uptake, whereas dissipation of both completely uncoupled the carrier protein, suggesting that transport is coupled to either the electrical or the chemical component of the electrochemical proton gradient. Reciprocally, Sb(III) transport via ArsB dissipated both the pH gradient and the membrane potential. These results strongly indicate that ArsB is an antiporter that catalyzes metalloid-proton exchange. Unexpectedly, As(III) inhibited ArsB-mediated Sb(III) uptake, whereas Sb(III) stimulated ArsB-mediated As(III) transport. We propose that the actual substrate of ArsB is a polymer of (AsO)(n), (SbO)(n), or a co-polymer of the two metalloids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号