首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
B. Liedvogel  R. Bäuerle 《Planta》1986,169(4):481-489
Chloroplasts from the cotyledons of mustard (Sinapis alba L.) seedlings were isolated on Percoll gradients, and showed a high degree of intactness (92%) and purity as judged by electron microscopy and marker-enzyme analysis (cytoplasmic contamination lower than 0.4% on a protein basis). The chloroplasts synthesized longchain fatty acids from both precursors [1-14C] acetate and [2-14C]pyruvate; maximum incorporation rates were 96 nmol·(mg Chl)-1·h-1 for acetate and 213 nmol·(mg Chl)-1·h-1 for pyruvate. Acetyl-CoA-producing enzymatic activities, namely acetyl-CoA synthetase (EC 6.2.1.1.) and a pyruvate dehydrogenase complex, showed specific activities of 14.8 nmol·(mg protein)-1·min-1 and 18.2 nmol·(mg protein)-1·min-1, respectively. The glycolytic enzymes phosphoglyceromutase (EC 2.7.5.3) phosphopyruvate hydratase (EC 4.2.1.11) and pyruvate kinase (EC 2.7.1.40) were all found to be components of these chloroplasts, thus indicating a possible pathway for intraplastid acetyl-CoA formation.Abbreviations ACS acetyl coenzyme A synthetase - Chl chlorophyll - DTE 1,4-dithioerythritol - PDHC pyruvate dehydrogenase complex - 3-PGA 3-phosphoglyceric acid  相似文献   

2.
SYNOPSIS. The growth of Tetrahymena pyriformis strain HSM was strongly inhibited by 4-pentenoic acid. Supplementing the medium with acetate reversed the growth inhibition, but pyruvate was ineffective. Glycogen content was much lower in cells grown with 4-pentenoic acid than in controls; this effect was not reversed by acetate or by pyruvate. There was little effect of 4-pentenoic acid on the incorporation of label from [1-14C]acetate, [2-14C]glycerol, [1-34]ribose, [U-14C]fructose, or [1-14C]glucose into CO2, but incorporation of label into glycogen was inhibited, the strongest inhibition being on acetate and the weakest (~ 20%) on ribose, fructose, and glucose. A 3-compartment model for quantitation of labeled acetyl CoA fluxes was shown to be applicable to Tetrahymena grown in the presence of 4-pentenoic acid, and experiments were performed to establish the flux of [1-14C]acetyl CoA into glycogen, lipids, CO2, glutamate, and alanine. It was evident from the results of these experiments that 4-pentenoic acid did not appreciably inhibit β-oxidation or lipogenesis, but markedly decreased the glyconeogenic flux of labeled acetyl-CoA from the peroxismal and outer mitochondrial compartments. At least 2 mechanisms have been proposed for the action of 4-pentenoic acid: (a) reduction of the levels of acetyl CoA or free CoA and (b) direct inhibition of enzymes by 4-pentenoyl CoA or its metabolites. Although 4-pentenoic acid has little effect on acetyl-CoA metabolism in the inner mitochondrial compartment, the present data suggest that the flux through the outer mitochondrial compartment of acetyl-CoA derived from pyruvate is inhibited largely by the first, and that the glyconeogenic flux of acetyl-CoA is inhibited largely by the 2nd mechanism.  相似文献   

3.
—The origin of the acetyl group in acetyl-CoA which is used for the synthesis of ACh in the brain and the relationship of the cholinergic nerve endings to the biochemically defined cerebral compartments of the Krebs cycle intermediates and amino acids were studied by comparing the transfer of radioactivity from intracisternally injected labelled precursors into the acetyl moiety of ACh, glutamate, glutamine, ‘citrate’(= citrate +cis-aconitate + isocitrate), and lipids in the brain of rats. The substrates used for injections were [1-14C]acetate, [2-14C]acetate, [4-14C]acetoacetate, [1-14C]butyrate, [1, 5-14C]citrate, [2-14C]glucose, [5-14C]glutamate, 3-hydroxy[3-14C]butyrate, [2-14C]lactate, [U-14C]leucine, [2-14C]pyruvate and [3H]acetylaspartate. The highest specific radioactivity of the acetyl group of ACh was observed 4 min after the injection of [2-14C]pyruvate. The contribution of pyruvate, lactate and glucose to the biosynthesis of ACh is considerably higher than the contribution of acetoacetate, 3-hydroxybutyrate and acetate; that of citrate and leucine is very low. No incorporation of label from [5-14C]glutamate into ACh was observed. Pyruvate appears to be the most important precursor of the acetyl group of ACh. The incorporation of label from [1, 5-14C]citrate into ACh was very low although citrate did enter the cells, was metabolized rapidly, did not interfere with the metabolism of ACh and the distribution of radioactivity from it in subcellular fractions of the brain was exactly the same as from [2-14C]pyruvate. It appears unlikely that citrate, glutamate or acetate act as transporters of intramitochondrially generated acetyl groups for the biosynthesis of ACh. Carnitine increased the incorporation of label from [1-14C]acetate into brain lipids and lowered its incorporation into ACh. Differences in the degree of labelling which various radioactive precursors produce in brain glutamine as compared to glutamate, previously described after intravenous, intra-arterial, or intraperitoneal administration, were confirmed using direct administration into the cerebrospinal fluid. Specific radioactivities of brain glutamine were higher than those of glutamate after injections of [1-14C]acetate, [2-14C]acetate, [1-14C]butyrate, [1,5-14C]citrate, [3H]acetylaspartate, [U-14C]leucine, and also after [2-14C]pyruvate and [4-14C]acetoacetate. The intracisternal route possibly favours the entry of substrates into the glutamine-synthesizing (‘small’) compartment. Increasing the amount of injected [2-14C]pyruvate lowered the glutamine/glutamate specific radioactivity ratio. The incorporation of 14C from [1-14C]acetate into brain lipids was several times higher than that from other compounds. By the extent of incorporation into brain lipids the substrates formed four groups: acetate > butyrate, acetoacetate, 3-hydroxybutyrate, citrate > pyruvate, lactate, acetylaspartate > glucose, glutamate. The ratios of specific radioactivity of ‘citrate’ over that of ACh and of glutamine over that of ACh were significantly higher after the administration of [1-14C]acetate than after [2-14C]pyruvate. The results indicate that the [1-14C]acetyl-CoA arising from [1-14C]acetate does not enter the same pool as the [1-14C]acetyl-CoA arising from [2-14C]pyruvate, and that the cholinergic nerve endings do not form a part of the acetate-utilizing and glutamine-synthesizing (‘small’) metabolic compartment in the brain. The distribution of radioactivity in subcellular fractions of the brain after the injection of [1-14C]acetate was different from that after [1, 5-14C]citrate. This suggests that [1-14C]acetate and [1, 5-14C]citrate are utilized in different subdivisions of the ‘;small’ compartment.  相似文献   

4.
Ken'ichi Ichihara 《Planta》1991,183(3):353-358
The microsomal phosphatidate phosphatase (EC 3.1.3.4) in maturing seeds of safflower (Carthamus tinctorius L.) was specific and selective for unsaturated phosphatidates. The relative order of specificity for phosphatidate molecular species was 1,2-dilinoleoyl = 1,2-dioleoyl > 1-palmitoyl-2-oleoyl > 1,2-dilauroyl = 1,2-dimyristoyl > 1,2-dipalmitoyl. The order of selectivity was similar to that of the specificity. The broad selectivity for unsaturated phosphatidate species (1,2-di-unsaturated-acyl and 1-saturated-acyl-2-unsaturatedacyl) led us to conclude that the phosphatidate-phosphatase reaction does not, or only very little, affect the fatty-acid composition of the diacylglycerol product and in turn the fatty-acid composition of triacylglycerol in safflower oil. As compared with the safflower microsomal enzyme, the chloroplast phosphatidate phosphatase of spinach (Spinacia oleracea L.) leaves showed a broader specificity. This agreed with the selectivity profile indicated by labelling patterns of phosphatidate and diacylglycerol synthesized from [14C]acetate in spinach chloroplasts (S.E. Gardiner et al. 1984, Biochem. J. 224, 637–643).Abbreviations BSA bovine serum albumin - FA fatty acid I thank Nippon Oil & Fats Co., Amagasaki, Japan, for providing pure oleic acid.  相似文献   

5.
The epimastigote or culture form of Trypanosoma cruzi oxidizes [3-14C] pyruvate and [2-14C] acetate to 14CO2 without an apparent increase in overall respiration. This oxidation takes place through the tricarboxylic acid cycle as shown by (a) the incorporation of substrate 14C into cycle intermediates; (b) the earlier liberation of acetate carboxyl carbon as CO2; and (c) the characteristic intramolecular distribution of pyruvate and acetate carbon atoms in the skeletal carbon of aspartic and glutamic acids. Upon oxidation of [3-14C] pyruvate and [2-14C] acetate, two of the products, alanine and glutamic acid, are found to account for more than 50% of incorporated 14C; labeling of alanine predominates with [3-14C] pyruvate while labeling of glutamic acid predominates with [2-14C] acetate. Using [1- or 6-14C] glucose as substrate, the pattern of 14C distribution in soluble metabolites closely resembles that obtained with [3-14C] pyruvate, in accordance with the joint operation of the Embden-Meyerhof pathway and Krebs cycle. The cycle operation depends on electron transport through the mitochondrial respiratory chain, since antimycin A, at a relatively low concentration, inhibits the oxidation of [2-14C] acetate to 14CO2, to the same extent as the parasite respiration. Though functional in T. cruzi epimastigotes, the oxidative role of the Krebs’ cycle is apparently limited by the absence of an efficient oxidative apparatus. The cycle operation does, however, constitute an important source of skeletal carbon for the biosynthesis of amino acids and can contribute to the process of glycogenesis.  相似文献   

6.
J. Browse  C. R. Slack 《Planta》1985,166(1):74-80
Plastids isolated from maturing, nongreen safflower (Carthamus tinctorius L.) cotyledons yielded unesterified fatty acids as the predominant product of fatty-acid synthesis from [1-14C]acetate. Exogenous reduced pyridine nucleotides were not required for this synthesis, but [1-14C]acetate incorporation was absolutely dependent on addition of ATP. Linseed (Linum usitatissimum L.) cotyledons are green during development and plastids isolated from them resembled leaf chloroplasts with developed grana. In contrast to the safflower plastids, those from linseed were able to carry out fatty-acid synthesis at low irradiances without the addition of either pyridine nucleotides or ATP. Intact linseed cotyledons were capable of net photosynthesis at rates up to 95 mol·mg-1 chlorophyll·h-1. However, the low-light environment inside the linseed capsule (approx. 15% of external) means that photosynthesis will not contribute appreciably to the carbon economy of the developing seed and its main role may be to supply cofactors for fatty-acid synthesis.Abbreviations ACP acyl carrier protein - DHAP dihydroxyacetone phosphate - PC phosphatidylcholine - PEP phosphoenolpyruvate - UFA unesterified fatty acids  相似文献   

7.
Changes in fatty-acid metabolism were studied in soybean (Glycine max Merr.) cotyledons during senescence as well as in cotyledons which had been caused to regreen by removal of the epicotyl from the seedling. The activities of the enzymes acetyl-CoA synthetase (EC 6.2.1.1) and fatty-acid synthetase in plastids isolated from the cotyledons decreased during senescence but increased in response to regreening. These changes in enzyme activities followed the same pattern as changes in the quantities of chlorophyll and polyunsaturated fatty acids in this tissue. The in-vivo incorporation of [14C]acetate into total fatty acids in the senescing and regreening cotyledons did not vary markedly with age. In addition, the quantity of label in fatty acids did not decrease for as much as 60 h after the removal of the substrate. During this 60-h period however, there was substantial redistribution of the label among the individual fatty acids. While the labelling pattern of the individual fatty acids did not vary significantly with respect to age in the senescing cotyledons, there was a substantial increase in the synthesis of labelled polyunsaturated fatty acids in the regreening tissue. Thus, the incorporation of [14C]acetate into fatty acids did not reflect the changes in the quantities of the individual fatty acids in senescing tissue as well as they did in regreening tissue.  相似文献   

8.
The hyperthermophilic anaerobe Pyrococcus furiosus was found to grow on pyruvate as energy and carbon source. Growth was dependent on yeast extract (0.1%). The organism grew with doublings times of about 1 h up to cell densities of 1–2×108 cells/ml. During growth 0.6–0.8 mol acetate and 1.2–1.5 mol CO2 and 0.8 mol H2 were formed per mol of pyruvate consumed. The molar growth yield was 10–11 g cells(dry weight)/mol pyruvate. Cell suspensions catalyzed the conversion of 1 mol of pyruvate to 0.6–0.8 mol acetate, 1.2–1.5 mol CO2, 1.2 mol H2 and 0.03 mol acetoin. After fermentation of [3-14C]pyruvate the specific radioactivities of pyruvate, CO2 and acetate were equal to 1:0.01:1. Cellfree extracts contained the following enzymatic activities: pyruvate: ferredoxin (methyl viologen) oxidoreductase (0.2 U mg-1, T=60°C, with Clostridium pasteurianum ferredoxin as electron acceptor; 1.4 U mg-1 at 90°C, with methyl viologen as electron acceptor); acetyl-CoA synthetase (ADP forming) [acetyl-CoA+ADP+Piacetate+ATP+CoA] (0.34 U mg-1, T=90°C), and hydrogen: methyl viologen oxidoreductase (1.75 U mg-1). Phosphate acetyl-transferase activity, acetate kinase activity, and carbon monoxide:methyl viologen oxidoreductase activity could not be detected. These findings indicate that the archaebacterium P. furiosus ferments pyruvate to acetate, CO2 and H2 involving only three enzymes, a pyruvate:ferredoxin oxidoreductase, a hydrogenase and an acetyl-CoA synthetase (ADP forming).Non-standard abbreviations DTE dithioerythritol - MV methyl viologen - MOPS morpholinopropane sulfonic acid - Tricine N-tris(hydroxymethyl)-methylglycine Part of the work was performed at the Laboratorium für Mikrobiologie, Fachbereich Biologie, Philipps-Universität, Karlvon-Frisch-Strasse, W-3550 Marburg/Lahn, Federal Republic of Germany  相似文献   

9.
The activities of the pyruvate dehydrogenase complex in extracts of the gutted body, head, foregut/midgut and hindgut (hindgut epithelium and microorganisms) tissues of the lower termite Coptotermes formosanus (Shiraki) were determined by measuring the [14C]-acetyl-CoA produced from [2-14C]-pyruvate and the 14CO2 produced from [1-14C]-pyruvate. The activities of pyruvate dehydrogenase, l-lactate dehydrogenase, acetyl-CoA synthetase, malate dehydrogenase (decarboxylating), and acetate kinase in the termite tissues and the hindgut also were determined. The sum (7.1 nmol/termite/h) of the pyruvate dehydrogenase complex activities in the termite tissues other than the hindgut was five times higher than the activity in the hindgut. Significant amounts of l-lactate dehydrogenase activity were found in all of the tissues. All of the tissues other than the hindgut had significant amounts of acetyl-CoA synthetase activity. Malate dehydrogenase (decarboxylating) activity was about ten times higher in the hindgut extract than in the gutted body and head extracts and the activity in the foregut/midgut extract was very low. These results indicate that acetyl-CoA for the TCA cycle is produced effectively in the tissues of the termite itself, both from pyruvate by the pyruvate dehydrogenase complex and from acetate by acetyl-CoA synthetase.  相似文献   

10.
—Slices of tissue of the electric organ of Torpedo marmorata were incubated in vitro in a salineurea-sucrose solution containing a labelled precursor of the acetyl moiety of ACh ([1-14C]glucose, [2-14C]pyruvate, or [1-14C]acetate) either alone or in the presence of another unlabelled precursor. The incorporation of 14C from [1-14C]acetate into ACh was considerably higher than from the other two substrates. The specific radioactivities (SRA) of the‘total',‘bound’and‘free’ACh were compared in experiments with [2-14C]pyruvate and [1-14C]acetate. With both precursors, the SRA of the‘bound’ACh were lower than those of‘total’ACh; consequently, the‘free’ACh pool was more labelled than the‘bound’pool. After short incubations with [2-14C]pyruvate the SRA of'bound’ACh were closer to the SRA of‘total’ACh than with [1-14C]acetate. A simple method is described for the labelling of ACh and its separation from other labelled compounds in experiments with the electric organ using [14C]acetate as the labelled precursor.  相似文献   

11.
The effects of glucose (10 mm), glycerol (3 mm), and lactate/pyruvate (10 mm) on the incorporation of 3H from 3H2O into fatty acids were studied in isolated hepatocytes prepared from chow-fed female rats. Lactate/pyruvate markedly increased lipogenic rates, while glucose and glycerol did not significantly affect rates of lipogenesis. In cells incubated with lactate/pyruvate plus glycerol, the increase in 3H incorporation was greater than observed with lactate/pyruvate alone. In hepatocytes isolated from 24-h starved rats, lactate/pyruvate again increased de novo fatty acid synthesis to a greater extent than either glucose or glycerol. Glycerol significantly increased lipogenesis compared to the endogenous rates and when incubated with lactate/pyruvate produced an increase above lactate/pyruvate alone. (?)-Hydroxycitrate, a potent inhibitor of ATP-citrate lyase (EC 4.1.3.8), and agaric acid, an inhibitor of tricarboxylate anion translocation, were studied in hepatocytes to determine their effects on lipogenesis by measuring 3H2O, [1-14C]acetate, and [2-14C]lactate incorporation into fatty acids. 3H incorporation into fatty acids was markedly inhibited by both inhibitors with agaric acid (60 μm) producing the greater inhibition. (?)-Hydroxycitrate (2 mm) increased acetate incorporation into fatty acids from [1-14C]acetate and agaric acid produced a strong inhibitory effect. Combined effects of (?)-hydroxycitrate and agaric acid on lipogenesis from [1-14C]acetate showed an inhibitory response to a lesser extent than with agaric acid alone. With substrate concentrations of acetate present, there was no significant increase in rates of lipogenesis from [1-14C]acetate and the increase previously observed with (?)-hydroxycitrate alone was minimized. Agaric acid significantly inhibited fatty acid synthesis from acetate in the presence of exogenous substrate, but the effect was decreased in comparison to rates with only endogenous substrate present. With [2-14C]lactate as the lipogenic precursor, agaric acid and (?)-hydroxycitrate strongly inhibited fatty acid synthesis. However, agaric acid despite its lower concentration (60 μm vs 2 mm) was twice as effective as (?)-hydroxycitrate. A similar pattern was observed when substrate concentrations of lactate/pyruvate (10 mm) were added to the incubations. When (?)-hydroxycitrate and agaric acid were simultaneously incubated in the presence of endogenous substrate, there was an additive effect of the inhibitors on decreasing fatty acid synthesis. Results are discussed in relation to the origin of substrate for hepatic lipogenesis and whether specific metabolites increase lipogenic rates.  相似文献   

12.
13C-nuciear magnetic resonance (NMR) spectroscopy was used to investigate the products of glycerol and acetate metabolism released by Leishmania braziliensis panamensis promastigotes and also to examine the interaction of each of these substrates with glucose or alanine. The NMR data were supplemented by measurements of the rates of oxygen consumption and substrate utilization, and of 14CO2 production from 14C-labeIed substrate. Cells incubated with [2-13C]glycerol released acetate, succinate and D-lactate in addition to CO2. Cells incubated with acetate released only CO2. More succinate C-2/C-3 than C-l/C-4 was released from both [2-13C]glycerol and [2-13C]glucose, indicating that succinate was formed predominantly by CO2 fixation followed by reverse flux through part of the Krebs cycle. Some redistribution of the position of labeling was also seen in alanine and pyruvate, suggesting cycling through pyruvate/oxaloacetate/phosphoenolpyruvate. Cells incubated with combinations of 2 substrates consumed oxygen at the same rate as cells incubated with 1 or no substrate, even though the total substrate utilization had increased. When promastigotes were incubated with both glycerol and glucose, the rate of glucose consumption was unchanged but glycerol consumption decreased about 50%, and the rate of 14CO2 production from [l,(3)-14C]glycerol decreased about 60%. Alanine did not affect the rates of consumption of glucose or glycerol, but decreased 14CO2 production from these substrates by increasing flow of label into alanine. Although glucose decreased alanine consumption by 70%, it increased the rate of 14CO2 production from [U-14C]- and [l-14C]alanine by about 20%. This is consistent with rapid equilibration of alanine with pyruvate derived from glucose and yet little decrease in the specific activity of the large alanine pool.  相似文献   

13.
Tolbutamide partially inhibited the growth but increased the glycogen content of Tetrahymena pyriformis in logarithmically growing cultures. Tolbutamide slightly increased 14CO2 production from [1-14C] and [6-14HC] glucose and [2-14C] pyruvate, but had little effect on the oxidation of [1-14C] acetate when any of these substrates were added to the proteose-peptone medium in which the cells had been grown. Measurement of 14CO2 production from [1-14C] and [2-I4C]-glyoxylate showed that this substrate was primarily oxidized via the glyoxylate cycle, with little if any oxidation occurring via the peroxisomal glyoxylate oxidase. Addition of tolbutamide inhibited the glyoxylate cycle as indicated by a marked reduction in label appearing in CO2 and in glycogen from labeled acetate. In control cells, addition of acetate strongly inhibited the oxidation of [2-14C]-pyruvate whereas addition of pyruvate had little effect on the oxidation of [1-14C]-acetate. Acetate was more effective than pyruvate in preventing the growth inhibitory and glycogen-increasing effects of tolbutamide. The data suggest that one effect of tolbutamide may be to interfere with the transfer of isocitrate and acetyl CoA across mitochondrial membranes.  相似文献   

14.
Rat lung mitochondrial preparations were incubated in the presence of pyruvate and malate. The principal metabolic products measured were citrate and CO2. Citrate formation from pyruvate was found to be dependent on the presence of malate. Significant citrate was formed in the presence of isocitrate and the rate of citrate formation was increased by the addition of pyruvate. Small amounts of citrate were formed by lung mitochondrial preparations in the presence of 2-oxoglutarate and succinate only after the addition of pyruvate. The level of acetyl-CoA was significantly greater in the presence of pyruvate than in the presence of pyruvate plus malate. The addition of malate to lung mitochondrial preparations increased 14CO2 production from [U-14C]- and [1-14C] pyruvate but decreased its production from [2-14C]- and [3-14C]-pyruvate. However, malate increased the incorporation of [2-14C] pyruvate into malate and citrate. A low level of pyruvate-dependent H14CO8-incorporation into acid-stable products was observed, principally citrate and malate, but this rate did not exceed 5% of the rate of net citrate formation in the presence of malate and pyruvate. The capacity of rat lung mitochondria to form oxaloacetate from pyruvate alone in vitro is very limited, and would appear to cast doubt on a major role of pyruvate carboxylase in citrate formation. It is concluded that the rate of citrate formation from pyruvate is limited by the availability of intramitochondrial oxaloacetate and the rate of citrate efflux across the mitochondrial membrane.  相似文献   

15.
The metabolism of succinate was examined in the housefly Musca domestica L. The labeled carbons from [2,3-14C]succinate were readily incorporated into cuticular hydrocarbon and internal lipid, whereas radioactivity from [1,4-14C]succinate was not incorporated into either fraction. Examination of the incorporation of [2,3-14C]succinate, [1-14C]acetate, and [U-14C]proline into hydrocarbon by radio-gas-liquid chromatography showed that each substrate gave a similar labeling pattern, which suggested that succinate and proline were converted to acetyl-CoA prior to incorporation into hydrocarbons. Carbon-13 nuclear magnetic resonance showed that the labeled carbons from [2,3-13C]succinate enriched carbons 1, 2, and 3 of hydrocarbons with carbon-carbon coupling showing that carbons 2 and 3 of succinate were incorporated as an intact unit. Radio-high-performance liquid chromatographic analysis of [2,3-14C]succinate metabolism by mitochondrial preparations showed that in addition to labeling fumarate, malate, and citrate, considerable radioactivity was also present in the acetate fraction. The data show that succinate was not converted to methylmalonate and did not label hydrocarbon via a methylmalonyl derivative. Malic enzyme was assayed in sonicated mitochondria prepared from the abdomens and thoraces of 1- and 4-day-old insects; higher activity was obtained with NAD+ in mitochondria prepared from thoraces, whereas NADP+ gave higher activity with abdomen preparations. These data document the metabolism of succinate to acetyl-CoA and not to a methylmalonyl unit prior to incorporation into lipid in the housefly and establish the role of the malic enzyme in this process.  相似文献   

16.
During their rapid maturation period, seeds of Cuphea wrightii A. Gray mainly accumulate medium-chain fatty acids (C8 to C14) in their storage lipids. The rate of lipid deposition (40–50 mg·d–1·(g fresh weight)–1) is fourfold higher than in seeds of Cuphea racemosa (L. f.) Spreng, which accumulate long-chain fatty acids (C16 to C18). Measurements of the key enzymes of fatty-acid synthesis in cell-free extracts of seeds of different maturities from Cuphea wrightii show that malonyl-CoA synthesis may be a triggering factor for the observed high capacity for fatty-acid synthesis. Experiments on the incorporation of [1-14C]acetate into fatty acids by purified plastid preparations from embryos of Cuphea wrightii have demonstrated that the biosynthesis of medium-chain fatty acids (C8 to C14) is localized in the plastid. Thus, in the presence of cofactors for lipid synthesis (ATP, NADPH, NADH, acyl carrier protein, and sn-glycerol-3-phosphate), purified plastid fractions predominantly synthesized free fatty acids, 30% of which were of medium chain length. Transesterification of the freshly synthesized fatty acids to coenzyme A and recombination with the microsomal fraction of the embryo homogenate induced triacylglycerol synthesis. It also stimulated fatty-acid synthesis by a factor 2–3 and increased the relative amount of medium-chain fatty acids bound to triacylglycerols, which corresponded to about 60–80% in this lipid fraction.Abbreviations ACP acyl carrier protein - FW fresh weight This work was supported by the Bundesminister für Forschung und Technologie. The authors thank S. Borchert for her suggestions for plastid preparation.  相似文献   

17.
Hans Kleinig  Bodo Liedvogel 《Planta》1980,150(2):166-169
1. Fatty acid synthesis in isolated intact chromoplasts from [1-14C]acetate was made possible by using ATP, ADP (via adenylate kinase), and, with decreasing efficiency, UTP, CTP, and GTP as energy sources. 2. The glycolytic path from dihydroxyacetone phosphate to acetyl-CoA operates within the chromoplasts. The glycolytic intermediates, especially 2-phosphoglycerate and phosphoenolpyruvate, served as very effective energy donors for fatty acid synthesis by phosphorylating the endogenous adenine nucleotide pool. 3. In the presence of exogenous ATP or ADP, appreciable amounts of in vitro formed fatty acids were found as acyl-CoA and subsequent products, mainly phosphatidylcholine. When other energy sources were used most of the acids formed were in the free form, and to a minor extent, in the phosphatidic acid and diacylglycerol fractions. Similar results have recently been reported for spinach chloroplasts (Kleinig and Liedvogel 1979, FEBS Lett.101, 339–342).Abbreviations ATP adenosine triphosphate - ADP adenosine diphosphate - UTP uridine triphosphate - CTP cytidine triphosphate - GTP gnanosine triphosphate  相似文献   

18.
Rat brain contains substantial concentrations of free malonate (192 nmol/g wet weight) but origin and biological importance of the dicarboxylic acid are poorly understood. A dietary source has been excluded. A recently described malonyl-CoA decarboxylase deficiency is associated with malonic aciduria and clinical manifestations, including mental retardation. In an effort to study the metabolic origin of free malonate, several labeled acetyl-CoA precursors were administered by intracerebral injection. [2-14C]pyruvate or [1,5-14C]citrate produced radioactive glutamate but failed to label malonate. In contrast, [1-14C]acetate, [2-14C]acetate, and [1-14C]butyrate were converted to labeled glutamateand malonate after the same route of administration. The intracerebral injection of [1-14C]--alanine as a precursor of malonic semialdehyde and possibly free malonate did not give rise to radioactivity in the dicarboxylate. The labeling pattern of malonic acid is compatible with the reaction sequence: acetyl-CoAmalonyl-CoAmalonate. The final step is thought to occur by transfer of the CoA-group from malonyl-CoA to succinate and/or acetoacetate. Labeling of malonate from acetate is most effective at the age of 7 days when the net concentration of the dicarboxylic acid in rat brain is still very low. At this age, butyrate was a better precursor of malonate than acetate. It is proposed that fatty acid oxidation provides the acetyl-CoA which functions as the precursor of free brain malonate. Compartmentation of malonate biosynthesis is likely because the acetyl-CoA precursors citrate and pyruvate are ineffective.Presented before the 12th Biennial Meeting of the International Society for Neurochemistry, Algarve, Portugal, April 24, 1989.  相似文献   

19.
1. [14C]Malonyl-CoA was incorporated into isoprenoids by cell-free yeast preparations, by preparations from pigeon and rat liver, and by Hevea brasiliensis latex. 2. In agreement with previous reports the incorporation of acetyl-CoA into isoprenoids was not inhibited by avidin and was not stimulated by HCO3. In a cell-free yeast preparation addition of HCO3 stimulated the formation of fatty acids from acetyl-CoA and decreased the incorporation into unsaponifiable lipids. 3. The labelling patterns of β-hydroxy-β-methylglutaryl-CoA formed from [2-14C]- and [1,3-14C]-malonyl-CoA in rat and pigeon liver preparations were those that would be expected if malonyl-CoA underwent decarboxylation to acetyl-CoA before incorporation. 4. The labelling pattern of ergosterol formed by cell-free yeast preparations from [2-14C]malonyl-CoA was also consistent with decarboxylation of malonyl-CoA before incorporation. 5. The incorporation of [2-14C]malonyl-CoA into mevalonate by rat liver preparations was related to the malonyl-CoA decarboxylase activity present in the preparation.  相似文献   

20.
J. J. MacCarthy  P. K. Stumpf 《Planta》1980,147(5):389-395
Cell suspension cultures of Catharanthus roseus G. Don, Glycine max (L.) Merr. and Nicotiana tabacum L. were incubated with [14C]acetate, [14C]oleic acid and [14C]linoleic acid at five different temperatures ranging from 15 to 35° C. When the incubation temperature was increased, [14C]acetate was incorporated preferentially into [14C]palmitate, with a concomitant drop in [14C]oleate formation. Between 15 and 20° C, [14C]oleic acid accumulated in C. roseus cells. In all cultures, optimum desaturation of [14C]oleic acid to [14C]linoleic acid occurred between 20 and 25° C, and in G. max this was also the optimal range for desaturation of [14C]linoleic acid to [14C]linolenic acid. Elongation of [14C]palmitic acid was inhibited when cultures grown at 15° C for 25 h were subsequently incubated with [14C]acetate at 25° C. [14C]oleic acid accumulated in G. max and C. roseus cultures grown at 35° C for 25 h and subsequently incubated at 25° C. Desaturation of [14C]oleic acid increased up to 25° C, but then decreased or leveled off depending on the cell line and on the temperature prior to incubation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号