首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
13C-nuclear magnetic resonance (NMR) spectroscopy was used to investigate the products of glycerol and acetate metabolism released by Leishmania braziliensis panamensis promastigotes and also to examine the interaction of each of these substrates with glucose or alanine. The NMR data were supplemented by measurements of the rates of oxygen consumption and substrate utilization, and of 14CO2 production from 14C-labeled substrate. Cells incubated with [2-13C]glycerol released acetate, succinate and D-lactate in addition to CO2. Cells incubated with acetate released only CO2. More succinate C-2/C-3 than C-1/C-4 was released from both [2-13C]glycerol and [2-13C]glucose, indicating that succinate was formed predominantly by CO2 fixation followed by reverse flux through part of the Krebs cycle. Some redistribution of the position of labeling was also seen in alanine and pyruvate, suggesting cycling through pyruvate/oxaloacetate/phosphoenolpyruvate. Cells incubated with combinations of 2 substrates consumed oxygen at the same rate as cells incubated with 1 or no substrate, even though the total substrate utilization had increased. When promastigotes were incubated with both glycerol and glucose, the rate of glucose consumption was unchanged but glycerol consumption decreased about 50%, and the rate of 14CO2 production from [1,(3)-14C]glycerol decreased about 60%. Alanine did not affect the rates of consumption of glucose or glycerol, but decreased 14CO2 production from these substrates by increasing flow of label into alanine. Although glucose decreased alanine consumption by 70%, it increased the rate of 14CO2 production from [U-14C]- and [l-14C]alanine by about 20%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
METABOLISM OF HEXOSES IN RAT CEREBRAL CORTEX SLICES   总被引:3,自引:0,他引:3  
Abstract—
  • 1 The metabolism of two 14C-labelled hexoses and one hexose analogue, viz. mannose, fructose and glucosamine, has been compared with that of glucose for slices of rat cerebral cortex incubated in vitro.
  • 2 The metabolism of [U-14C]mannose was essentially identical to that of glucose; oxygen consumption and CO3 production were similar and maximal at a substrate concentration of 2·75 mM. Incorporation of label into lactate, aspartate, glutamate and GABA was similar for the two substrates at 5·5 mM substrate concentration.
  • 3 With [U-14C]fructose, maximal oxygen consumption and CO3 production were obtained at a substrate concentration of 11 mM. At 5·5 mM, incorporation into lactate was 5 per cent, into glutamate and GABA 30 per cent, into alanine 63 per cent and into aspartate 152 per cent of that from glucose. Increasing substrate concentration to 27·5 mm was without effect on incorporation into amino acids from glucose and raised incorporation from fructose into glutamate, GABA and alanine to a level similar to that found with glucose; at the higher substrate concentration aspartate incorporation from fructose was 200 per cent and lactate 42 per cent of that with glucose. Unlabelled fructose was without effect on incorporation of radioactivity from [3-14C]pyruvate into CO2 or amino acids; it increased incorporation into lactate by 36 per cent. Unlabelled glucose diminished incorporation into CO2 from [U-14C]fructose to 35 per cent; incorporation into lactate was stimulated 178 per cent at 5·5 mM fructose; at 27·5 mM it was diminished to 75 per cent.
  • 4 By comparison with [1-14C]glucose, incorporation of radioactivity from [1-14C]-glucosamine into lactate, CO2, alanine, GABA and glutamine was very low; incorporation into aspartate was similar to glucose. Thus the metabolism of glucosamine resembled that of fructose. Glucosamine-1-phosphate, glucosamine-6-phosphate, and an unidentified metabolite, all accumulated.
  相似文献   

3.
1. The rate of appearance of 14CO2 from [6-14C]glucose and [3-14C]pyruvate was measured. Pyruvate is oxidized to carbon dioxide twice as fast as glucose, although the oxygen uptake is almost the same with each substrate. 2. The presence of 30μm-2,4-dinitrophenol increases the output of 14CO2 from [6-14C]glucose sixfold whereas the oxygen uptake is not quite doubled. Similar results are obtained with 0·1m-potassium chloride. The stimulating action of these two agents on the output of 14CO2 from [3-14C]pyruvate is much less than on that from [6-14C]glucose. 3. The effects of oligomycin, ouabain and triethyltin on the respiration of control and stimulated brain-cortex slices were studied. Triethyltin (1·3μm) inhibited the oxidation of [6-14C]glucose more than 70%, but did not inhibit the oxidation of[3-14C]pyruvate. [3-14C]pyruvate. 4. The production of lactic acid by brain-cortex slices incubated with glucose is twice as great as that with pyruvate. Lactic acid increases two and a half times in the presence of either triethyltin or oligomycin when the substrate is glucose, but is no different from the control when the substrate is pyruvate. 5. With kidney slices the production of lactic acid from glucose is very low. It is increased by oligomycin but not by triethyltin. 6. The results are discussed in terms of the oxidation of the extramitochondrial NADH2 produced during glycolysis.  相似文献   

4.
The effects of glucose (10 mm), glycerol (3 mm), and lactate/pyruvate (10 mm) on the incorporation of 3H from 3H2O into fatty acids were studied in isolated hepatocytes prepared from chow-fed female rats. Lactate/pyruvate markedly increased lipogenic rates, while glucose and glycerol did not significantly affect rates of lipogenesis. In cells incubated with lactate/pyruvate plus glycerol, the increase in 3H incorporation was greater than observed with lactate/pyruvate alone. In hepatocytes isolated from 24-h starved rats, lactate/pyruvate again increased de novo fatty acid synthesis to a greater extent than either glucose or glycerol. Glycerol significantly increased lipogenesis compared to the endogenous rates and when incubated with lactate/pyruvate produced an increase above lactate/pyruvate alone. (?)-Hydroxycitrate, a potent inhibitor of ATP-citrate lyase (EC 4.1.3.8), and agaric acid, an inhibitor of tricarboxylate anion translocation, were studied in hepatocytes to determine their effects on lipogenesis by measuring 3H2O, [1-14C]acetate, and [2-14C]lactate incorporation into fatty acids. 3H incorporation into fatty acids was markedly inhibited by both inhibitors with agaric acid (60 μm) producing the greater inhibition. (?)-Hydroxycitrate (2 mm) increased acetate incorporation into fatty acids from [1-14C]acetate and agaric acid produced a strong inhibitory effect. Combined effects of (?)-hydroxycitrate and agaric acid on lipogenesis from [1-14C]acetate showed an inhibitory response to a lesser extent than with agaric acid alone. With substrate concentrations of acetate present, there was no significant increase in rates of lipogenesis from [1-14C]acetate and the increase previously observed with (?)-hydroxycitrate alone was minimized. Agaric acid significantly inhibited fatty acid synthesis from acetate in the presence of exogenous substrate, but the effect was decreased in comparison to rates with only endogenous substrate present. With [2-14C]lactate as the lipogenic precursor, agaric acid and (?)-hydroxycitrate strongly inhibited fatty acid synthesis. However, agaric acid despite its lower concentration (60 μm vs 2 mm) was twice as effective as (?)-hydroxycitrate. A similar pattern was observed when substrate concentrations of lactate/pyruvate (10 mm) were added to the incubations. When (?)-hydroxycitrate and agaric acid were simultaneously incubated in the presence of endogenous substrate, there was an additive effect of the inhibitors on decreasing fatty acid synthesis. Results are discussed in relation to the origin of substrate for hepatic lipogenesis and whether specific metabolites increase lipogenic rates.  相似文献   

5.
The epimastigote or culture form of Trypanosoma cruzi oxidizes [3-14C] pyruvate and [2-14C] acetate to 14CO2 without an apparent increase in overall respiration. This oxidation takes place through the tricarboxylic acid cycle as shown by (a) the incorporation of substrate 14C into cycle intermediates; (b) the earlier liberation of acetate carboxyl carbon as CO2; and (c) the characteristic intramolecular distribution of pyruvate and acetate carbon atoms in the skeletal carbon of aspartic and glutamic acids. Upon oxidation of [3-14C] pyruvate and [2-14C] acetate, two of the products, alanine and glutamic acid, are found to account for more than 50% of incorporated 14C; labeling of alanine predominates with [3-14C] pyruvate while labeling of glutamic acid predominates with [2-14C] acetate. Using [1- or 6-14C] glucose as substrate, the pattern of 14C distribution in soluble metabolites closely resembles that obtained with [3-14C] pyruvate, in accordance with the joint operation of the Embden-Meyerhof pathway and Krebs cycle. The cycle operation depends on electron transport through the mitochondrial respiratory chain, since antimycin A, at a relatively low concentration, inhibits the oxidation of [2-14C] acetate to 14CO2, to the same extent as the parasite respiration. Though functional in T. cruzi epimastigotes, the oxidative role of the Krebs’ cycle is apparently limited by the absence of an efficient oxidative apparatus. The cycle operation does, however, constitute an important source of skeletal carbon for the biosynthesis of amino acids and can contribute to the process of glycogenesis.  相似文献   

6.
Respiration studies in vitro, in which tissue slices were incubated with [1-14C]glucose or [6-14C]glucose and 14CO2 collected, resulted in C-1/C-6 14CO2 ratios that were higher in slices of tumor and newborn brain than in slices of adult brain. In adult brain, the C-1/C-6 14CO2 ratio averaged close to unity. In slices of tumor and newborn brain however, the mean C-1/C-6 ratio was greater than three. Addition of phenazine methosulfate (PMS) increased conversion of [1-14C]glucose to 14CO2 in slices of normal adult brain 5-fold, and in slices of newborn brain and tumor, approx 12-fold. Injection of animals with 6-aminonicotinamide (6-AN) decreased conversion of [1-14C]glucose in slices of normal brain 30% but decreased conversion in tumor slices by 80%. Evidence supports the presence of an active hexose monophosphate pathway (HMP) in tumors of the nervous system regulated in part by available NADP+ levels. Inhibition by 6-AN was more effective in tumors than in normal adult brain.  相似文献   

7.
Anaerobic glycolysis inTrypanosoma brucei spp. has been studied by13C NMR at 50 and 75.5 MHz. The uptake of [U-13C]glucose by cell suspensions ofT. b. brucei was monitored by time-course spectroscopy, and while no anomeric specificity was found, the end -products of glycolysis were confirmed as glycerol and pyruvate together with alanine and dihydroxypropionat e. The intermediacy of L-glycerol-3-phosphate was also ascertained. The incorporation of C-I of [1-13C]glucose and of C-6 of [6-13C]glucose into glycerol and pyruvate inT. b. gambiense was quantified by measurement of the longitudinal relaxation times of the species involved. An incorporation to the extent of 66% of each substrate into equimolar amounts of glycerol and pyruvate indicate that Keq for the triosephosphate-isomerase-mediated reaction approaches unity.  相似文献   

8.
The metabolism of [1-14C]- and [6-14C]glucose, [1-14]ribose, [1-14C]- and [U-14C]alanine, and [1-14C]- and [5-14C]glutamate by the promastigotes of Leishmania braziliensis panamensis was investigated in cells resuspended in Hanks' balanced salt solution supplemented with ribose, alanine, or glutamate. The ratio of 14CO2 produced from [1-14C]glucose to that from [6-14C]glucose ranged from about two to six, indicating appreciable carbon flow through the pentose phosphate pathway. A functional pentose phosphate pathway was further demonstrated by the production of 14CO2 from [1-14C]ribose although the rate of ribose oxidation was much lower than the rate of glucose oxidation. The rate of 14CO2 production from [1-14C]glucose was almost linear with time of incubation, whereas that of [6-14C]glucose accelerated, consistent with an increasing rate of flux through the Embden-Meyerhof pathway during incubation. Increasing the assay temperature from 26°C to 34°C had no appreciable effect on the rates or time courses of oxidation of either [1-14C]- or [6-14C]glucose or of [1-14C]ribose. Both alanine and glutamate were oxidized by L. b. panamensis, and at rates comparable to or appreciably greater than the rate of oxidation of glucose. The ratios of 14CO2 produced from [1-14C]- to [U-14C]alanine and from [1-14C]- to [5-14C]glutamate indicated that these compounds were metabolized via a functioning tricarboxylic acid cycle and that most of the label that entered the tricarboxylic acid cycle was oxidized to carbon dioxide. Heating the cultures for 6 or 12 h at 34°C, which converts the promastigotes into an ellipsoidally shaped intermediate form, decreased the rates of oxidation of glucose, alanine, and glutamate. The oxidation of glutamate decreased by about 50% and 70% after a 6-h or 12-h heat treatment, respectively. Returning the heated cultures to 26°C initiated a reversion to the promastigote form and recovery of the rate of glucose oxidation, but glutamate oxidation did not return to control levels by 19 h at 26°C.  相似文献   

9.
Rat lung mitochondrial preparations were incubated in the presence of pyruvate and malate. The principal metabolic products measured were citrate and CO2. Citrate formation from pyruvate was found to be dependent on the presence of malate. Significant citrate was formed in the presence of isocitrate and the rate of citrate formation was increased by the addition of pyruvate. Small amounts of citrate were formed by lung mitochondrial preparations in the presence of 2-oxoglutarate and succinate only after the addition of pyruvate. The level of acetyl-CoA was significantly greater in the presence of pyruvate than in the presence of pyruvate plus malate. The addition of malate to lung mitochondrial preparations increased 14CO2 production from [U-14C]- and [1-14C] pyruvate but decreased its production from [2-14C]- and [3-14C]-pyruvate. However, malate increased the incorporation of [2-14C] pyruvate into malate and citrate. A low level of pyruvate-dependent H14CO8-incorporation into acid-stable products was observed, principally citrate and malate, but this rate did not exceed 5% of the rate of net citrate formation in the presence of malate and pyruvate. The capacity of rat lung mitochondria to form oxaloacetate from pyruvate alone in vitro is very limited, and would appear to cast doubt on a major role of pyruvate carboxylase in citrate formation. It is concluded that the rate of citrate formation from pyruvate is limited by the availability of intramitochondrial oxaloacetate and the rate of citrate efflux across the mitochondrial membrane.  相似文献   

10.
Isolated rat adrenal cells were used to study the possible pathways of intramitochondrial NADPH generation for 11β-hydroxylation of 11-deoxycorticosterone. Pyruvate was efficiently utilized by the mitochondria as shown by evolution of 14CO2 from [1-14C]- and [2-14C]pyruvate. Citrate, isocitrate, succinate, and malate were not utilized by intact cells due to their inability to permeate the plasma membrane. For every mole of corticosterone formed, 1.9 and 0.8 moles of 14CO2 were formed from [1-14C]- and [2-14C]pyruvate, respectively, indicating that pyruvate dehydrogenase was quite active and supplied acetyl C?oA to the Krebs cycle. Fluorocitrate and 2,4-dinitrophenol inhibited 11β-hydroxylation of 11-deoxycorticosterone as well as the production of 14CO2 from [2-14C]pyruvate. Comparison of data with the two inhibitors showed that for the same percentage of inhibition of 14CO2 production, the inhibition of 11β-hydroxylation was greater with 2,4-dinitrophenol than with fluorocitrate. It is concluded that operation of the Krebs cycle may be essential for 11β-hydroxylation to occur primarily because NADH generated by the cycle provides ATP, via the respiratory chain, as well as the substrate for the energy-linked transhydrogenase that forms NADPH. The NADPH required for 11β-hydroxylation seems to be derived to a large extent via the energy-linked transhydrogenase.  相似文献   

11.
Tolbutamide partially inhibited the growth but increased the glycogen content of Tetrahymena pyriformis in logarithmically growing cultures. Tolbutamide slightly increased 14CO2 production from [1-14C] and [6-14HC] glucose and [2-14C] pyruvate, but had little effect on the oxidation of [1-14C] acetate when any of these substrates were added to the proteose-peptone medium in which the cells had been grown. Measurement of 14CO2 production from [1-14C] and [2-I4C]-glyoxylate showed that this substrate was primarily oxidized via the glyoxylate cycle, with little if any oxidation occurring via the peroxisomal glyoxylate oxidase. Addition of tolbutamide inhibited the glyoxylate cycle as indicated by a marked reduction in label appearing in CO2 and in glycogen from labeled acetate. In control cells, addition of acetate strongly inhibited the oxidation of [2-14C]-pyruvate whereas addition of pyruvate had little effect on the oxidation of [1-14C]-acetate. Acetate was more effective than pyruvate in preventing the growth inhibitory and glycogen-increasing effects of tolbutamide. The data suggest that one effect of tolbutamide may be to interfere with the transfer of isocitrate and acetyl CoA across mitochondrial membranes.  相似文献   

12.
Kreb's tricarboxylic (TCA) cycle was studied in Halobacterium salinarum cells grown in the presence of glucose or alanine. The cells were incubated with 13C-labeled substrate and the labeling pattern of various carbon positions in glutamate was monitored by 13C-NMR spectroscopy. [2-13C]pyruvate, when used as a substrate, led mainly to signals for C-1 and C-5 glutamate, with some C-3 glutamate. [3-13C]pyruvate as a substrate produced signals, mainly C-2, C-3, and C-4 glutamate, with some C-1 and C-5 glutamate. The multiplicity of the signals and observation of a C-1 signal in this case indicates extensive cycling of the label in the TCA cycle. Isotopomer analysis of glutamate labeling suggested that of the total pyruvate entering the TCA cycle, the flux through pyruvate:ferredoxin oxidoreductase was 90% while that through pyruvate caboxylase was 10%. Only 53% of the total acetyl-CoA was produced from the added labeled pyruvate, the rest being generated endogenously. In the presence of nitrogen, mainly transamination reaction products were formed in the case of both these substrates. Received: November 26, 1997 / Accepted: May 11, 1998  相似文献   

13.
Isolated hepatocytes from 24-h-starved rats were used to assess the possible effect of Ahe hypoglycaemic agent 3-mercaptopicolinate on flux through the hepatic pyruvate dehydrogenase complex. Increasing the extraceIIular pyruvate concentration from 1 mM to 2 mM or 5 mM resulted in an increase in flux through pyruvate dehydrogenase and the tricarboxylic acid cycle as measured by14CO2 evolution from [1-14C]pyruvate and [3-14C]pyruvate. Gluconeogenesis was inhibited by 3-mercaptopicolinate from both 1 mM and 2 mM pyruvate, but significant increases in malate and citrate concentrations only occurred in cells incubated with 1 mM pyruvate. Flux through pyruvate dehydrogenase was stimulated by 3-mercaptopicolinate with 1 mM pyruvate but was unaltered with 2 mM pyruvate. Dichloroacetate stimulated flux through pyruvate dehydrogenase with no effect on gluconeogenesis in the presence of I mM pyruvate. There was no effect of 3-mercaptopicolinate, administered in vivo, to 24-h-starved rats on the activity of pyruvate dehydrogenase in freeze-clamped heart or liver tissue, although the drug did decrease blood glucose concentration and increase the blood concentrations of lactate and alanine. Dichloroacetate, administered in vivo to 24-h-starved rats, increased the activity of pyruvate dehydrogenase in freeze-clamped heart and liver, and caused decreases in the blood concentrations of glucose, lactate , and alanine. The results suggest that 3-mercaptopicolinate increases flux through hepatocyte pyruvate dehydrogenase by an indirect mechanism.  相似文献   

14.
SYNOPSIS. The growth of Tetrahymena pyriformis strain HSM was strongly inhibited by 4-pentenoic acid. Supplementing the medium with acetate reversed the growth inhibition, but pyruvate was ineffective. Glycogen content was much lower in cells grown with 4-pentenoic acid than in controls; this effect was not reversed by acetate or by pyruvate. There was little effect of 4-pentenoic acid on the incorporation of label from [1-14C]acetate, [2-14C]glycerol, [1-34]ribose, [U-14C]fructose, or [1-14C]glucose into CO2, but incorporation of label into glycogen was inhibited, the strongest inhibition being on acetate and the weakest (~ 20%) on ribose, fructose, and glucose. A 3-compartment model for quantitation of labeled acetyl CoA fluxes was shown to be applicable to Tetrahymena grown in the presence of 4-pentenoic acid, and experiments were performed to establish the flux of [1-14C]acetyl CoA into glycogen, lipids, CO2, glutamate, and alanine. It was evident from the results of these experiments that 4-pentenoic acid did not appreciably inhibit β-oxidation or lipogenesis, but markedly decreased the glyconeogenic flux of labeled acetyl-CoA from the peroxismal and outer mitochondrial compartments. At least 2 mechanisms have been proposed for the action of 4-pentenoic acid: (a) reduction of the levels of acetyl CoA or free CoA and (b) direct inhibition of enzymes by 4-pentenoyl CoA or its metabolites. Although 4-pentenoic acid has little effect on acetyl-CoA metabolism in the inner mitochondrial compartment, the present data suggest that the flux through the outer mitochondrial compartment of acetyl-CoA derived from pyruvate is inhibited largely by the first, and that the glyconeogenic flux of acetyl-CoA is inhibited largely by the 2nd mechanism.  相似文献   

15.
A quantitative triterpene analysis was made of latex stem tissue of Euphorbia lathyris. Young plants seedlings of E. lathyris were incubated with various labelled precursors. Incorporation into triterpenes was obtained from [2-14C]mevalonic acid, [1-14C]acetate, [3-14C]pyruvate, [U-14C]sucrose, [U-14C]glucose, [U-14C]xylose, [U-14C]glyoxylate, [2,3-14C]succinic acid, [1-14C]glycerol [U-14C]serine. Both sugars tyrosine appeared to be effective precursors in DOPA synthesis inside the laticifers. Exogenously supplied mevalonic acid was only involved in triterpene synthesis outside the laticifers. GC-RC of triterpenes synthesized from [U-14C]glucose revealed the origin of these compounds in the latex. The labelled triterpenes obtained after incorporation of the other mentioned labelled precursors were only partly synthesized in the laticifers. For quantitative data on latex triterpene synthesis seedlings were incubated with [U-14C]sucrose, [U-14C]glucose, [U-14C]xylose [1-14C]acetate in the presence of increasing amounts of unlabelled substrate. From the amount of 14C incorporated into the triterpenes the amount of substrate directly involved in triterpene synthesis was calculated, as was the absolute triterpene yield. Sucrose showed the highest triterpene yield, equivalent to the daily increase of the triterpene content of growing seedlings. The possible significance of the other precursors in triterpene synthesis in the laticifers is discussed.  相似文献   

16.
—Data comparing tricarboxylic acid cycle dynamics in mitochondria from rabbit brain using [2- or 3-14C]pyruvate with and without cosubstrates (malate, α-ketoglutarate, glutamate) are reported. With a physiological concentration of an unlabelled cosubstrate, from 90-99% of the isotope remained in cycle intermediates. However, the liberation of 14CO2 and the presence of 14C in the C-1 position of α-ketoglutarate indicated that multiple turns of the cycle occurred. Entry of pyruvate into the cycle was greater with malate than with either α-ketoglutarate or glutamate as cosubstrate. With malate as cosubstrate for [14C]pyruvate the amount of [14C]citrate which accumulated averaged 30nmol/ml or 23% of the pyruvate utilized while α-ketoglutarate averaged 45 nmol/ml or 35% of the pyruvate utilized. With α-ketoglutarate as cosubstrate for [14C]pyruvate, the average amount of [14C]citrate which accumulated decreased to 8 nmol/ml or 10% of the pyruvate utilized while [14C]α-ketoglutarate increased slightly to 52 nmol/ml or an increase to 62%, largely due to a decrease in pyruvate utilization. The percentage of 14C found in α-ketoglutarate was always greater than that found in malate, irrespective of whether α-ketoglutarate or malate was the cosubstrate for either [2- or 3-14C]pyruvate. The fraction of 14CO2 produced was slightly greater with α-ketoglutarate as cosubstrate than with malate. This observation and the fact that malate had a higher specific activity than did α-ketoglutarate when α-ketoglutarate was the cosubstrate, indicated a preferential utilization of α-ketoglutarate formed within the mitochondria. When l -glutamate was a cosubstrate for [14C]pyruvate the principal radioactive product was glutamate, formed by isotopic exchange of glutamate with [14C] α-ketoglutarate. If malate was also added, [14C]citrate accumulated although pyruvate entry did not increase. Due to retention of isotope in glutamate, little [14C]succinate, malate or aspartate accumulated. When [U-14C]l -glutamate was used in conjunction with unlabelled pyruvate more 14C entered the cycle than when unlabelled glutamate was used with [14C]pyruvate and led to α-ketoglutarate, succinate and aspartate as the major isotopic products. When in addition, unlabelled malate was added, total and isotopic α-ketoglutarate increased while [14C]aspartate decreased. The increase in [14C]succinate when [14C] glutamate was used indicated an increase in the flux through α-ketoglutarate dehydrogenase and was accompanied by a decrease of pyruvate utilization as compared to experiments when either α-ketoglutarate or glutamate were present at low concentration. It is concluded that the tricarboxylic acid cycle in brain mitochondria operates in at least three open segments, (1) pyruvate plus malate (oxaloacetate) to citrate; (2) citrate to α-ketoglutarate and; (3) α-ketoglutarate to malate, and that at any given time, the relative rates of these segments depend upon the substrate composition of the environment of the mitochondria. These data suggest an approach to a steady state consistent with the kinetic properties of the tricarboxylic acid cycle within the mitochondria.  相似文献   

17.
In the absence of any other oxidizable substrate, the perfused rat heart oxidizes [1-14C]leucine to 14CO2 at a rapid rate and releases only small amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such perfused hearts, is very active. Under such perfusion conditions, dichloroacetate has almost no effect on [1-14C]leucine oxidation, α-[1-14C]ketoisocaproate release, or branched-chain α-keto acid dehydrogenase activity. Perfusion of the heart with some other oxidizable substrate, e.g., glucose, pyruvate, ketone bodies, or palmitate, results in an inhibition of [1-14C]leucine oxidation to 14CO2 and the release of large amounts of α-[1-14C]ketoisocaproate into the perfusion medium. The branched-chain α-keto acid dehydrogenase complex, assayed in extracts of mitochondria prepared from such hearts, is almost completely inactivated. The enzyme can be reactivated, however, by incubating the mitochondria at 30 °C without an oxidizable substrate. With hearts perfused with glucose or ketone bodies, dichloroacetate greatly increases [1-14C]leucine oxidation, decreases α-[1-14C]ketoisocaproate release into the perfusion medium, and activates the branched-chain α-keto acid dehydrogenase complex. Pyruvate may block dichloroacetate uptake because dichloroacetate neither stimulates [1-14C]leucine oxidation nor activates the branched-chain α-keto acid dehydrogenase complex of pyruvate-perfused hearts. It is suggested that leucine oxidation by heart is regulated by the activity of the branched-chain α-keto acid dehydrogenase complex which is subject to interconversion between active and inactive forms. Oxidizable substrates establish conditions which inactivate the enzyme. Dichloroacetate, known to activate the pyruvate dehydrogenase complex by inhibition of pyruvate dehydrogenase kinase, causes activation of the branched-chain α-keto acid dehydrogenase complex, suggesting the existence of a kinase for this complex.  相似文献   

18.
Carbon-13 nuclear magnetic resonance (NMR) spectroscopy has been applied to the direct observation of acetate and pyruvate metabolism in suspension cultures of Zea mays (var Black Mexican Sweet). Growth of the corn cells in the presence of 2 millimolar [2-13C]acetate resulted in a rapid uptake of the substrate from the medium and initial labeling (0-4 hours) of primarily the intracellular glutamate and malate pools. Further metabolism of these intermediates resulted in labeling of glutamine, aspartate, and alanine. With [1-13C]acetate as the substrate very little incorporation into intermediary metabolites was observed in the 13C NMR spectra due to loss of the label as 13CO2. Uptake of [3-13C]pyruvate by the cells was considerably slower than with [2-13C]acetate; however, the labelling patterns were similar with the exception of increased [3-13C] alanine generation with pyruvate as the substrate. Growth of the cells for up to 96 hours with 2 millimolar [3-13C]pyruvate ultimately resulted in labeling of valine, leucine, isoleucine, threonine, and the polyamine putrescine.  相似文献   

19.
The morphology, the general physiological characteristics, and the energy-yielding metabolism of an obligately anaerobic spirochete isolated from the colon of a swine were studied. Electron microscopy showed that the helical spirochetal cells possessed an outer sheath, a protoplasmic cylinder, and 4 periplasmic fibrils in a 2-4-2 arrangement. The spirochete grew in an atmosphere of N2 in prereduced media containing a carbohydrate, NaHCO3, rumen fluid, yeast extract, peptone, l-cysteine, and inorganic salts. The spirochete fermented carbohydrates and required substrate amounts of CO2 (HCO 3 - ) for growth. Amino acids were not fermented. Major fermentation products of cells growing with glucose as the substrate and in the presence of CO2 were acetate, formate, succinate, and lactate. Small amounts of 2,3-butanediol, pyruvate, and acetoin were also formed. Determinations of enzymatic activities in cell extracts, and of radioactivity in products formed by growing cells from [1-14C]glucose, indicated that this sugar was dissimilated to pyruvate via the Embden-Meyerhof pathway. The spirochetes used a coliform-type clastic reaction to metabolize pyruvate. Determinations of radioactivity in products formed from [14C]NaHCO3 indicated that CO2 was assimilated and used in succinate production. The guanine+cytosine content of the DNA was 36 mol%. This study indicates that this intestinal spirochete represents a new species of Treponema. It is proposed that the new species be named Treponema succinifaciens.Abbreviations cpm counts per minute - DTT dithiothreitol - EM Embden-Meyerhof - GC guanine plus cytosine - IgG immunoglobulin G - PC protoplasmic cylinder - PF periplasmic fibrils (axial fibrils) - OS outer sheath  相似文献   

20.
      Pectinatus frisingensis, a recently described species of anaerobic mesophilic beer-spoilage bacteria, grows by fermenting various organic compounds, and produces mainly propionate, acetate, and succinate. Although acrylate and succinate were both dismutated by dense resting-cell suspensions, propionate production proceeded through the succinate pathway: [3-13C]pyruvate consumption led to equal 13C-labeling of propionate on methyl and methylene groups. Growth on glucose or glycerol led to a similar propionate to acetate ratio, suggesting dihydroxyacetone phosphate as being a common metabolic intermediate. Diacetyl, 1,3-propanediol, and 2,3-butanediol were not growth substrates or fermentation products, but they were all dismutated by dense resting-cell suspensions to acetate and propionate. Acetoin was a minor fermentation product. The consumption of [2-13C] or [3-13C]pyruvate by dense resting-cell suspensions demonstrated the involvement of two equivalent pyruvate molecules during acetoin production. Key enzymes involved in this metabolism were measured in anoxic cell-free extracts. A tentative metabolic pathway to the main fermentation products was proposed from the above results. Received: 17 February 1994 / Accepted: 30 August 1994  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号