首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
羽叶薰衣草表皮毛的发育解剖学研究   总被引:1,自引:0,他引:1  
对羽叶薰衣草(LavandulapinnataL.)茎和叶上两种表皮毛(腺毛和非腺毛)发育的解剖学观察表明,两者的发生都源于茎或叶的原表皮细胞,但外部形态、发育过程及功能明显不同。腺毛有头状腺毛和盾状腺毛两种类型,均由1个基细胞、1个柄细胞和头部细胞构成。头状腺毛的头部只有1个或2个分泌细胞,盾状腺毛由8个分泌细胞构成头部。非腺毛由3-20个细胞组成,可分为三种类型:单列不分枝、二叉分枝和三叉及三叉以上多分枝的树状分枝。非腺毛的顶部细胞由基部到顶部逐渐变细,先端成尖形。腺毛发育由原表皮细胞经两次平周分裂形成,由于柄细胞和头部细胞所处的分化状态不同而发育成两类腺毛。非腺毛由非腺毛原始细胞经二次或多次平周分裂和不均等分裂,再发育成数个至二十多个子细胞。  相似文献   

2.
Scanning electron microscopy was used to examine stem, leaf, staminal and stylar hairs on species belonging to Solanum L. section Solanum. The surface morphology of these hairs is illustrated. Simple, uniseriate hairs characterize the section Solanum , and these may have eglandular or glandular heads; they are usually multicellular, but in some species the stylar hairs appear to be unicellular. In addition, stalked glands, described here as spherical, four-celled glands, are universally present in species belonging to the section Solanum.  相似文献   

3.
The course of development of the glandular and non-glandular hairs of Avicennia marina was found to be the same up to the three-celled stage. The further cell divisions of the two types of developing hairs differed in their orientation. In the non-glandular hair the cells continued to divide transversely, whereas in the glandular hair the uppermost of the three cells divided longitudinally.
In the mature hairs of both types, the peripheral wall of the cell just above the basal cell was heavily cutinized. The existence of narrow canals in the cuticle of the secretory cells of the glandular hairs was confirmed. The homology of the glandular and non-glandular hairs is discussed and it is concluded that the two types are phylogenetically related.  相似文献   

4.
Scanning electron microscopy was used to examine stem, leaf, staminal and stylar hairs on species belonging to Solanum L. section Solanum. The surface morphology of these hairs is illustrated. Simple, uniseriate hairs characterize the section Solanum, and these may have eglandular or glandular heads; they are usually multicellular, but in some species the stylar hairs appear to be unicellular. In addition, stalked glands, described here as spherical, four-celled glands, are universally present in species belonging to the section Solanum.  相似文献   

5.
紫苏腺毛的形态发生研究   总被引:4,自引:0,他引:4  
紫苏叶上有两种腺毛:质状腺毛和头状腺毛。两者都具1个基细胞、1个柄细胞和头部。前者的头部可由1、2、4或8个分泌细胞组成,扩展成质状;后者的头部由1、2或4个分泌细胞组成,聚成圆球状。两种腺毛的原始细胞都来源于原表皮细胞,经两次平周分裂产生基细胞、柄细胞和顶细胞。在腺毛后期的形态发生中,柄细胞的分化状态决定腺毛的类型。若柄细胞保持扁平关且处于分生状态时,其顶细胞将发育成质状腺毛的头部;若柄细胞纵向  相似文献   

6.
The types of glandular hairs and their pattern of distributionon leaves of Ocimum basilicum L. at different stages, were investigated.Their essential oil at the various stages was chemically analysed.The density of the glandular hairs appears to be very high onyoung meristematic leaves and on meristematic regions of olderleaves. When the leaf regions start to expand no new glandularhairs are produced and their density decreases. The essentialoil differs in the percentage of some of its components betweenyoung and mature leaf regions.Copyright 1993, 1999 AcademicPress Ocimum basilicum, sweet basil, glandular hairs, leaf development, essential oil, cugenol, methyl chavicol, 1,8-cineole  相似文献   

7.
紫苏叶上有两种腺毛:盾状腺毛和头状腺毛。两者都具1个基细胞、1个柄细胞和头部。前者的头部可由1、2、4或8个分泌细胞组成,扩展成盾状;后者的头部由1、2或4个分泌细胞组成,聚成圆球状。两种腺毛的原始细胞都来源于原表皮细胞,经两次平周分裂产生基细胞、柄细胞和顶细胞。在腺毛后期的形态发生中,柄细胞的分化状态决定腺毛的类型。若柄细胞保持扁平状且处于分生状态时,其顶细胞将发育成盾状腺毛的头部;若柄细胞纵向引长并迅速液泡化时,其顶细胞将发育成头状腺毛的头部。  相似文献   

8.
对萍蓬草〔Nupharpumilum(Thimm.)DC.〕根、茎、叶的形态结构和腺毛的发育进行形态解剖观察分析。茎中维管束散生、无形成层。茎端周围及幼叶、叶柄部位着生能分泌粘液的腺毛。不定根为多元型,有髓;侧根对着原生木质部脊着生,根表面具短缩的根毛;根顶端原始细胞具有分层特征,属封闭型。  相似文献   

9.
Leaves and flowers of four chemotypes of Origanum vulgare L.were examined for the main components of their essential oiland for the types and distribution of their glandular hairs.Two varieties have high phenol content, one thymol and the othercarvacrol, in their essential oils; one has a moderate thymolcontent and the fourth has a low phenol content and a high alcoholcontent. The percentage of essential oil and the number of peltatehairs were higher in the flowers than in the leaves, the highestbeing in the flowers of a chemotype with a high phenol (thymol)concentration. While there were no differences in structureof the peltate and two types of capitate hairs between chemotypes,the density of the peltate hairs varied and appeared to be correlatedwith the total essential oil content. Origanum vulgare L., essential oils, glandular hairs  相似文献   

10.
The types, structure and distribution of glandular hairs on the calyx of Rosmarinus officinalis at different stages of development were studied by light (UV and conventional) and scanning electron microscopy. Two morphologically distinct types of glandular hairs (peltate and capitate) are described. Histochemical characterization of the secretions was performed to obtain an indication of their functional roles.  相似文献   

11.
Ficus carica L., a typical plant of the Mediterranean environment, presents leaves covered by an extensive indumentum, and a mesophyll full of solid inclusions. The morphology and ultrastructure of the trichomes, calcium carbonate cystoliths and silicified structures of leaves of F. carica cv Dottato were investigated with light, confocal, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. At the same time, histochemical reactions were also employed to analyse the indumentum composed by glandular and non-glandular trichomes by applying chemical reagents and fluorescence microscopy. Non-glandular and glandular trichomes, capitate, are described. Non-glandular trichomes are unicellular simple, spine-like and present different morphology and sizes. The capitate glandular trichomes are present on leaf adaxial and abaxial surface and consist of one-celled stalk and 3/4 cells spherical head. Histochemical characterisation of leaf hairs revealed the presence of flavonoids, while glandular trichome head cells showed a complex mixture of alkaloids, essential oil and flavonoids. Cu and Al were found in the constitutive structures, spike and dome, of the cystoliths. Several epidermal cells and non-glandular trichomes were silicified. Leaf hairs, trichomes secretions, solid inclusions and silicification of F. carica leaf have significant roles to play in relation to leaf protection from external factors, including high-intensity radiation, herbivores or pathogens.  相似文献   

12.
Background and Aims: Recent studies have shown that small structures on plant surfacesserve ecological functions such as resistance against herbivores.The morphology, distribution, chemical composition and changesduring shoot and leaf development of such small structures wereexamined on Paulownia tomentosa. Methods: The morphology and distribution of the structures were studiedunder light microscopy, and their chemical composition was analysedusing thin-layer chromatography and high-performance liquidchromatography. To further investigate the function of thesestructures, several simple field experiments and observationswere also conducted. Key Results: Three types of small structures on P. tomentosa were investigated:bowl-shaped organs, glandular hairs and dendritic trichomes.The bowl-shaped organs were densely aggregated on the leavesnear flower buds and were determined to be extrafloral nectarines(EFNs) that secrete sugar and attract ants. Nectar productionof these organs was increased by artificial damage to the leaves,suggesting an anti-herbivore function through symbiosis withants. Glandular hairs were found on the surfaces of young and/orreproductive organs. Glandular hairs on leaves, stems and flowerssecreted mucilage containing glycerides and trapped small insects.Secretions from glandular hairs on flowers and immature fruitscontained flavonoids, which may provide protection against someherbivores. Yellow dendritic trichomes on the adaxial side ofleaves also contained flavonoids identical to those secretedby the glandular hairs on fruits and flowers. Three specialtypes of leaves, which differed from the standard leaves inshape, size and identity of small structures, developed nearyoung shoot tips or young flower buds. The density of smallstructures on these leaf types was higher than on standard leaves,suggesting that these leaf types may be specialized to protectyoung leaves or reproductive organs. Changes in the small structuresduring leaf development suggested that leaves of P. tomentosaare primarily protected by glandular hairs and dendritic trichomesat young stages and by the EFNs at mature stages. Conclusions: The results indicate that P. tomentosa protects young and/orreproductive organs from herbivores through the distributionand allocation of small structures, the nature of which dependson the developmental stage of leaves and shoots.  相似文献   

13.
棉属茎,叶表皮毛的研究   总被引:4,自引:0,他引:4  
棉属植物茎、叶表皮毛的多少及其形态是识别种或品种的主要特征之一,并且与种或品种的抗虫或抗逆性有密切联系。Ramey(1962)研究指出,多毛性状是受 H_1和H_2两个主效基因和一些修饰基因的控制,H_2具有多效性。较系统地研究棉属茎、叶表皮毛的性状报道较少。本文报道利用扫描电镜对棉属植物的茎、叶表皮毛性状观察的结果。  相似文献   

14.
本文研究了分布在细叶益母草(Leonurussibiricus) 叶表面三种腺毛的发育过程,在此基础上,对2细胞头状腺毛、4细胞头状腺毛和8细胞盾状腺毛的多样性特征进行了讨论  相似文献   

15.
3种龙葵表皮毛类型及发育过程观察研究   总被引:6,自引:0,他引:6  
通过观察发现龙葵(Solanum nigrum L.)、少花龙葵(S.photeinocarpum Nakam,etO-dshi)和黄果龙葵(S.nigum L.var.suaveolens G.L.Guo)的表皮毛均为腺毛,主要有单细胞头腺毛和多细胞头腺毛2种。腺毛的原始细胞都来源于原表皮细胞,经2次平周分裂产生基细胞、柄细胞和顶端细胞、在腺毛后期的形态发生中,柄细胞和顶细胞的分裂状态决定腺毛的  相似文献   

16.
本文研究了分布在细叶益母草(Leonurus sibiricus)叶表面三种腺毛的发育过程,在此基础上,对2-细胞头状腺毛、4-细胞头状腺毛和8-细胞盾状腺毛的多样性特征进行了讨论。  相似文献   

17.
Nepeta cataria L, the catnip plant, is important in the pet industry for cats and as an herbal medicinal treatment for the fevers, diarrhea, insomnia, and lacking menstruation of humans. A natural mutation of N. cataria produced a novel morphology that warranted investigation to determine how the mutation affected the microscopic features, including catnip’s ethnobotanical storehouse of glandular hairs. The morphology, anatomy, and physiology of this mutant are compared to that of the wild type of catnip to document the major differences. The secondary plant metabolites which facilitate catnip’s ethnobotanical uses are stored in microscopic glandular hairs (trichomes). The trichomes on the mutant and wild type catnip leaves were not shown to differ (scanning and transmission electron microscopy). The feliobotany (use by cats) of N. cataria is discussed in relation to catnip trichomes.  相似文献   

18.
Houttuynia cordata Thunb., traditionally used as a therapeutic plant in folk medicine, has shown antioxidant and anticancer activities. The species, as a core component of paleoherbs, is normally characterized based on the presence of different types of secretory tissue: oil cells, three types of secretory cells and glandular hairs. The aim of this work was to study the structural, componential, and the functional characteristics of the secretory tissues in both the floral and vegetative parts. The results indicate that oil cells and secretory cells are distributed in all organs of the plant, while glandular hairs are situated on the aerial stems and leaves. Both oil cells and glandular hairs initiate from the protoderm, but their developmental processes are different. Although three types of secretory cells initiate from different primary meristems, the developmental patterns of different secretory cells are the same. Also, although the origins of secretory cells are different from oil cells, their early developmental processes are the same. Histochemical results show that oil cells, secretory cells and glandular hairs produce flavonoids, phenolic compounds, tannins, lipids, aldehyde and ketone-compounds. In addition, there are terpenoids and pectic-like substances in oil cells, alkaloids in secretory cells of aerial stems, and terpenoids and alkaloids in glandular hairs. These compounds play very important roles in protecting plants from being eaten by herbivores (herbivory) and infected by microbial pathogens. The oil cell and secretory cell, as unicellular secretory tissues, are intermediates between the primitive surface glandular and secretory cavity and canal during the evolution of secretory structures.  相似文献   

19.
唇形科植物腺毛及其分泌研究进展   总被引:6,自引:1,他引:5  
唇形科植物的茎和叶通常着生腺毛,能分泌芳香油,腺毛的分布密度越大其分泌能力越强。对近年来该科植物腺毛及其分泌的研究进展作一综述,对腺毛的结构类型、发生发育和分泌物及其分泌过程作了介绍,指出了该研究领域中存在的问题。  相似文献   

20.
Glandular trichomes from the leaf surface of Nepeta cataria and N. cataria vai.citriodora have been examined using transmission and scanning electron microscopy. Peltate glands and capitate hairs type I were found on leaves of N. cataria. Both types had single stalk cells. Leaves of N. cataria var. citriodora bore peltate glands with unicellular or bicellular stalk, capitate hairs type I (with unicellular stalk) and capitate hairs type II (with unicellular or bicellular stalk). Peltate glands of N. cataria and of N. cataria var. citriodora were characterized by numerous leucoplasts sheathed by smooth reticular tubules and smooth endoplasmic reticulum; they are proposed to synthesize terpenes. The secretory cells of capitate hairs type I of N. cataria and those of N. cataria var. citriodora had well developed rough endoplasmic reticulum and dictyosomes. They had plastids with protein inclusions. These glands are supposed to produce slime. Capitate hairs type II of N. cataria var. citriodora had no analogs in N. cataria. Their secretory cells exhibited abundance of tubular endoplasmic reticulum and had unsheathed plastids with starch grains. Probably, these glands synthesize terpenes. The results of the study indicate that there is an obvious difference both in morphology and in ultrastructure of glandular trichomes in different chemotypes of N. cataria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号