首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

Type III secretion systems (T3SS) are essential virulence factors of most Gram-negative bacterial pathogens. T3SS deliver effector proteins directly into the cytoplasm of eukaryotic target cells and for this function, the insertion of a subset of T3SS proteins into the target cell membrane is important. These proteins form hetero-oligomeric pores acting as translocon for the delivery of effector proteins. Salmonella enterica is a facultative intracellular pathogen that uses the Salmonella Pathogenicity Island 2 (SPI2)-encoded T3SS to manipulate host cells in order to survive and proliferate within the Salmonella-containing vacuole of host cells. Previous work showed that SPI2-encoded SseB, SseC and SseD act to form the translocon of the SPI2-T3SS.  相似文献   

2.
The type III secretion system (TTSS) encoded by Salmonella Pathogenicity Island 2 (SPI-2) is required for systemic infection and intracellular replication of Salmonella enterica serovar Typhimurium. The SPI-2 TTSS is activated after internalization of bacteria by host cells, and translocates effector proteins into and across the vacuolar membrane, where they interfere with several host cell functions. Here, we investigated the function of SsaM, a small protein encoded within SPI-2. An ssaM deletion mutant had virulence and intracellular replication defects comparable to those of a SPI-2 TTSS null mutant. Although the ssaM mutant was able to secrete the effector protein SseJ in vitro, it failed to translocate SseJ into host cells, and to secrete the translocon proteins SseB, SseC and SseD in vitro. This phenotype is similar to that of a strain carrying a mutation in the SPI-2 gene spiC, whose product is reported to be an effector involved in trafficking of the Salmonella vacuole in macrophages. Both ssaM and spiC mutants were found to oversecrete the SPI-2 effector proteins SseJ and PipB in vitro. Fractionation assays and immunofluorescence microscopy were used to investigate the localization of SsaM and SpiC in macrophages. No evidence for translocation of these proteins was obtained. The similar phenotypes of the ssaM and spiC mutants suggested that they might be involved in the same function. Pull-down and co-immune precipitation experiments showed that SpiC and SsaM interact within the bacterial cell. We propose that a complex involving SsaM and SpiC distinguishes between translocators and effector proteins, and controls their ordered secretion through the SPI-2 TTSS.  相似文献   

3.
Replication of Salmonella typhimurium in host cells depends in part on the action of the Salmonella Pathogenicity Island 2 (SPI-2) type III secretion system (TTSS), which translocates bacterial effector proteins across the membrane of the Salmonella-containing vacuole (SCV). We have shown previously that one activity of the SPI-2 TTSS is the assembly of a coat of F-actin in the vicinity of bacterial microcolonies. To identify proteins involved in SPI-2 dependent actin polymerization, we tested strains carrying mutations in each of several genes whose products are proposed to be secreted through the SPI-2 TTSS, for their ability to assemble F-actin around intracellular bacteria. We found that strains carrying mutations in either sseB, sseC, sseD or spiC were deficient in actin assembly. The phenotypes of the sseB-, sseC- and sseD- mutants can be attributed to their requirement for translocation of SPI-2 effectors. SpiC was investigated further in view of its proposed role as an effector. Transient expression of a myc::SpiC fusion protein in Hela cells did not induce any significant alterations to the host cell cytoskeleton, and failed to restore actin polymerization around intracellular spiC- mutant bacteria. However, the same protein did complement the mutant phenotype when expressed from a plasmid within bacteria. Furthermore, spiC was found to be required for SPI-2 mediated secretion of SseB, SseC and SseD in vitro. An antibody against SpiC detected the protein on immunoblots from total cell lysates of S. typhimurium expressing SpiC from a plasmid, but it was not detected in secreted fractions after exposure of cells to conditions that result in secretion of other SPI-2 effector proteins. Investigation of the trafficking of SCVs containing a spiC- mutant in macrophages revealed only a low level of association with the lysosomal marker cathepsin D, similar to that of wild-type bacteria. Together, these results show that SpiC is involved in the process of SPI-2 secretion and indicate that phenotypes associated with a spiC- mutant are caused by the inability of this strain to translocate effector proteins, thus calling for further investigation into the function(s) of this protein.  相似文献   

4.
5.
The Salmonella pathogenicity island 2 (SPI2) type III secretion system (TTSS) promotes Salmonella enterica serovar Typhimurium virulence for mice and increased survival and replication within eukaryotic cells. After phagocytosis, Salmonella serovar Typhimurium assembles the SPI2 TTSS to translocate over a dozen effector proteins across the phagosome membrane. SpiC has been previously shown to be a translocated effector with a large contribution to virulence (K. Uchiya, M. A. Barbieri, K. Funato, A. H. Shah, P. D. Stahl, and E. A. Groisman, EMBO J. 18:3924-3933, 1999). This report demonstrates by competitive index that the virulence phenotype of a spiC mutant is equivalent to that of a secretion component mutant. In addition, translocation of SPI2 effector proteins was shown to require SpiC. Thus, the severe virulence phenotype resulting from deletion of spiC is likely due to the inability to translocate all SPI2 effectors. SpiC was also required to secrete translocon proteins SseB and SseC but not translocated effector SseJ, indicating that lack of assembly of the translocon explains the spiC mutant phenotype.  相似文献   

6.
The type III secretion system of Salmonella pathogenicity island 2 (SPI-2) is required for bacterial replication inside macrophages. SseB has been considered a putative target of the secretion system on the basis of its similarity with EspA, a protein secreted by the type III secretion system of enteropathogenic Escherichia coli (EPEC). EspA forms a filamentous structure on the bacterial cell surface and is involved in translocation of proteins into the eukaryotic cytosol. In this paper, we show that SseB is a secreted protein that associates with the surface of the bacterial cell and might, therefore, also be required for delivery of SPI-2 effector proteins to the eukaryotic cell cytosol. SseB begins to accumulate inside the bacterial cell when the culture enters early stationary phase. However, SseB is only secreted if the bacteria are grown at low pH or if the pH is shifted after growth from 7.0 to below pH 5.0. The secretion occurs within minutes of acidification and is totally dependent on a functional SPI-2 type III secretion system. As the pH of the Salmonella-containing vacuole inside host cells has been shown to acidify to between pH 4.0 and 5.0, and as SPI-2 gene expression occurs inside host cells, low pH might be a physiological stimulus for SPI-2-mediated secretion in vivo.  相似文献   

7.
8.
Taking possession: biogenesis of the Salmonella-containing vacuole   总被引:7,自引:1,他引:6  
The Gram-negative pathogen Salmonella enterica can survive and replicate within a variety of mammalian cells. Regardless of the cell type, internalized bacteria survive and replicate within the Salmonella -containing vacuole, the biogenesis of which is dependent on bacterially encoded virulence factors. In particular, Type III secretion systems translocate bacterial effector proteins into the eukaryotic cell where they can specifically interact with a variety of targets. Salmonella has two distinct Type III secretion systems that are believed to have completely different functions. The SPI2 system is induced intracellularly and is required for intracellular survival in macrophages; it plays no role in invasion but is categorized as being required for Salmonella -containing vacuole biogenesis. In contrast, the SPI1 Type III secretion system is induced extracellularly and is essential for invasion of nonphagocytic cells. Its role in post-invasion processes has not been well studied. Recent studies indicate that Salmonella -containing vacuole biogenesis may be more dependent on SPI1 than previously believed. Other non-SPI2 virulence factors and the host cell itself may play critical roles in determining the intracellular environment of this facultative intracellular pathogen. In this review we discuss the recent advances in determining the mechanisms by which Salmonella regulate Salmonella -containing vacuole biogenesis and the implications of these findings.  相似文献   

9.
The Salmonella pathogenicity island-2 (SPI2) is a virulence locus on the bacterial chromosome required for intracellular proliferation and systemic infection in mice. Cell culture models and a murine model of systemic infection were used to address the role of an uncharacterized SPI2 open reading frame, designated as sseA, in Salmonella virulence. A Salmonella strain with an unmarked internal deletion of sseA displayed a phenotype that was similar to an SPI2-encoded type III secretion system apparatus mutant. Moreover, SseA was required for survival and replication within epithelial cells and macrophages. Murine infection studies confirmed that the DeltasseA strain was severely attenuated for virulence. Using immunofluorescence microscopy, the virulence defect in the DeltasseA strain was attributed to an inability to translocate SPI2 effector proteins into host cells. These data demonstrate that SseA is essential for SPI2-mediated translocation of effector proteins.  相似文献   

10.
The facultative intracellular pathogen Salmonella enterica has evolved strategies to modify its fate inside host cells. One key virulence factor for the intracellular pathogenesis is the type III secretion system encoded by Salmonella Pathogenicity Island 2 (SPI2). We have previously described SPI2-encoded SseF and SseG as effector proteins that are translocated by intracellular Salmonella . Detailed analysis of the subcellular localization of SseF and SseG within the host cell indicated that these effector proteins are associated with endosomal membranes as well as with microtubules. Specific association with microtubules was observed after translocation by intracellular Salmonella as well as after expression by transfection vectors. In epithelial cells infected with Salmonella , both SseF and SseG are required for the aggregation of endosomal compartments along microtubules and to induce the formation of massive bundles of microtubules. These observations demonstrate that SPI2 effectors interfere with the microtubule cytoskeleton and suggest that microtubule-dependent host cell functions such as vesicle transport or organelle positioning are altered by intracellular Salmonella .  相似文献   

11.
The type III secretion system encoded by Salmonella pathogenicity island 2 (SPI 2) is important for intracellular proliferation in infected host cells. Intracellular Salmonella use this system to translocate a set of effector proteins into the host cell. We studied the role of SseF and SseG, two SPI 2-encoded proteins. SseF and SseG are not required for translocation of effector proteins such as SseJ, encoded by genes outside of SPI 2. Rather, both proteins are translocated and interact with phagosomal membranes after translocation. In infected epithelial cells the formation of Salmonella-induced filaments, endosomal aggregates rich in lysosomal glycoproteins, is dependent on the function of SPI 2. We observed that, in mutant strains deficient for sseF or sseG, the formation of aggregated endosomes can take place, but the composition of the structures is different from those observed in cells infected with Salmonella wild type. These observations indicate that SseF and SseG modulate the aggregation of host endosomes.  相似文献   

12.
Salmonella spp. possess a conserved type III secretion system encoded within the pathogenicity island 1 (SPI1; centisome 63), which mediates translocation of effector proteins into the host cell cytosol to trigger responses such as bacterial internalization. Several translocated effector proteins are encoded in other regions of the Salmonella chromosome. It remains unclear how this complex chromosomal arrangement of genes for the type III apparatus and the effector proteins emerged and how the different effector proteins cooperate to mediate virulence. By Southern blotting, PCR, and phylogenetic analyses of highly diverse Salmonella spp., we show here that effector protein genes located in the core of SPI1 are present in all Salmonella lineages. Surprisingly, the same holds true for several effector protein genes located in distant regions of the Salmonella chromosome, namely, sopB (SPI5, centisome 20), sopD (centisome 64), and sopE2 (centisomes 40 to 42). Our data demonstrate that sopB, sopD, and sopE2, along with SPI1, were already present in the last common ancestor of all contemporary Salmonella spp. Analysis of Salmonella mutants revealed that host cell invasion is mediated by SopB, SopE2, and, in the case of Salmonella enterica serovar Typhimurium SL1344, by SopE: a sopB sopE sopE2-deficient triple mutant was incapable of inducing membrane ruffling and was >100-fold attenuated in host cell invasion. We conclude that host cell invasion emerged early during evolution by acquisition of a mosaic of genetic elements (SPI1 itself, SPI5 [sopB], and sopE2) and that the last common ancestor of all contemporary Salmonella spp. was probably already invasive.  相似文献   

13.
Expansion into new host niches requires bacterial pathogens to adapt to changes in nutrient availability and to evade an arsenal of host defenses. Horizontal acquisition of Salmonella Pathogenicity Island (SPI)-2 permitted the expansion of Salmonella enterica serovar Typhimurium into the intracellular environment of host cells by allowing it to deliver bacterial effector proteins across the phagosome membrane. This is facilitated by the SsrA-SsrB two-component regulatory system and a type III secretion system encoded within SPI-2. SPI-2 acquisition was followed by evolution of existing regulatory DNA, creating an expanded SsrB regulon involved in intracellular fitness and host infection. Here, we identified an SsrB-regulated operon comprising an ABC transporter in Salmonella. Biochemical and structural studies determined that the periplasmic solute-binding component, STM1633/DalS, transports D-alanine and that DalS is required for intracellular survival of the bacteria and for fitness in an animal host. This work exemplifies the role of nutrient exchange at the host-pathogen interface as a critical determinant of disease outcome.  相似文献   

14.
Salmonella enterica has two pathogenicity islands encoding separate type three secretion systems (T3SS). Proteins secreted through these systems facilitate invasion and survival. After entry, Salmonella reside within a membrane bound vacuole, the Salmonella containing vacuole (SCV), where translocation of a second set of effectors by the Salmonella pathogenicity island 2 (SPI-2) T3SS is initiated. SPI-2 secretion in vitro can be induced by conditions that mimic the Salmonella containing vacuole. Utilising high-throughput mass spectrometry, we mapped the surface-attached proteome of S. Typhimurium SL1344 grown in vitro under SPI-2-inducing conditions and identified 108 proteins; using secretion signal prediction software, 43% of proteins identified contained a signal sequence. Of these proteins, 13 were known secreted effector proteins including SPI-2 effector proteins SseB, SseC, SseD, SseL, PipB2 and SteC, although surprisingly five were SPI-1 proteins, SipA, SipB, SipC, SipD and SopD, while 2 proteins SteA and SlrP are secreted by both T3SSs. This is the first in vitro study to demonstrate dual secretion of SPI-1 and SPI-2 proteins by S. Typhimurium and demonstrates the potential of high-throughput LC-ESI/MS/MS sequencing for the identification of novel proteins, providing a platform for subsequent comparative proteomic analysis, which should greatly assist understanding of the pathogenesis and inherent variation between serovars of Salmonella and ultimately help towards development of novel control strategies.  相似文献   

15.
Maturation and maintenance of the intracellular vacuole in which Salmonella replicates is controlled by virulence proteins including the type III secretion system encoded by Salmonella pathogenicity island 2 (SPI-2). Here, we show that, several hours after bacterial uptake into different host cell types, Salmonella induces the formation of an F-actin meshwork around bacterial vacuoles. This structure is assembled de novo from the cellular G-actin pool in close proximity to the Salmonella vacuolar membrane. We demonstrate that the phenomenon does not require the Inv/Spa type III secretion system or cognate effector proteins, which induce actin polymerization during bacterial invasion, but does require a functional SPI-2 type III secretion system, which plays an important role in intracellular replication and systemic infection in mice. Treatment with actin-depolymerizing agents significantly inhibited intramacrophage replication of wild-type Salmonella typhimurium . Furthermore, after this treatment, wild-type bacteria were released into the host cell cytoplasm, whereas SPI-2 mutant bacteria remained within vacuoles. We conclude that actin assembly plays an important role in the establishment of an intracellular niche that sustains bacterial growth.  相似文献   

16.
The type III secretion system (T3SS) encoded by Salmonella Pathogenicity Island 2 (SPI2) is essential for virulence and intracellular proliferation of Salmonella enterica. We have previously identified SPI2-encoded proteins that are secreted and function as a translocon for the injection of effector proteins. Here, we describe the formation of a novel SPI2-dependent appendage structure in vitro as well as on the surface of bacteria that reside inside a vacuole of infected host cells. In contrast to the T3SS of other pathogens, the translocon encoded by SPI2 is only present singly or in few copies at one pole of the bacterial cell. Under in vitro conditions, appendages are composed of a filamentous needle-like structure with a diameter of 10 nm that was sheathed with secreted protein. The formation of the appendage in vitro is dependent on acidic media conditions. We analyzed SPI2-encoded appendages in infected cells and observed that acidic vacuolar pH was not required for induction of SPI2 gene expression, but was essential for the assembly of these structures and their function as translocon for delivery of effector proteins.  相似文献   

17.
Essential to salmonellae pathogenesis is an export device called the type III secretion system (TTSS), which mediates the transfer of bacterial effector proteins from the bacterial cell into the host cell cytoplasm. Once inside the host cell, these effectors are then capable of altering a variety of host cellular functions in order to promote bacterial survival and colonization. SspH1 is a Salmonella enterica serovar Typhimurium TTSS effector that localizes to the mammalian nucleus and down-modulates production of proinflammatory cytokines by inhibiting nuclear factor (NF)-kappaB-dependent gene expression. To identify mammalian binding partners of SspH1 a yeast two-hybrid screen against a human spleen cDNA library was performed. It yielded a serine/threonine protein kinase called protein kinase N 1 (PKN1). The leucine-rich repeat domain of SspH1 was demonstrated to mediate this interaction and also inhibition of NF-kappaB-dependent gene expression. This suggested that PKN1 may play a role in modulation of the NF-kappaB signalling pathway. Indeed, we found that expression of constitutively active PKN1 in mammalian cells results in a decrease, while depletion of PKN1 by RNA interference causes an increase in NF-kappaB-dependent reporter gene expression. These data indicate that SspH1 may inhibit the host's inflammatory response by interacting with PKN1.  相似文献   

18.
19.
Edwardsiella tarda is an important cause of haemorrhagic septicaemia in fish and also of gastro- and extraintestinal infections in humans. Using a combination of comparative proteomics and TnphoA mutagenesis, we have identified five proteins that may contribute to E. tarda PPD130/91 pathogenesis. Lowered protein secretion, impaired autoaggregation and the absence of six proteins were observed only in three highly attenuated mutants when cultured in Dulbecco's modified eagle medium (DMEM). Five out of six proteins could be identified by their mass spectra. Three proteins were identified as putative effector proteins (EseB, EseC and EseD) that are homologous to SseB, SseC and SseD of a type III secretion system (TTSS) in Salmonella species. The other two were EvpA and EvpC, homologous to Eip20 and Eip18 in Edwardsiella ictaluri. The complete sequencing and homology studies of evpA-H indicate that similar gene clusters are widely distributed in other pathogens such as Escherichia, Salmonella, Vibrio and Yersinia species with unknown functions. Insertional inactivation and deletion of evpB or evpC led to lower replication rates in gourami phagocytes, and reduced protein secretion and virulence in blue gourami. Complementation of these deletion mutants showed partial recovery in the above three phenotypes, indicating that these genes are vital for E. tarda pathogenesis. The transport of the EvpC protein may not use the TTSS in E. tarda. The expression of EvpA and EvpC as well as EseB, EseC and EseD was temperature dependent (suppressed at 37 degrees C), and disruption of esrB affected their expression. The present study identifies two possible secretion systems (TTSS and Evp) that are vital for E. tarda pathogenesis.  相似文献   

20.
The bacterial pathogen Salmonella triggers its own uptake into non-phagocytic mammalian cells. Entry is induced by the delivery of bacterial effector pro-teins that subvert signalling and promote cytoskeletal rearrangement, although the molecular mechanisms that co-ordinate initial pathogen-host cell recognition remain poorly characterized. Here we show that cholesterol is essential for Salmonella uptake. Depletion and chelation of plasma membrane cholesterol specifically inhibited bacterial internalization but not adherence. Cholesterol accumulated at bacterial entry sites in cultured cells, and was retained by Salmonella -containing vacuoles following pathogen internalization. Cellular cholesterol redistribution required bacterial effector protein delivery mediated by the Salmonella pathogenicity island (SPI) 1 type III secretion system, but was independent of the SPI2-encoded system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号