首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phenology of plants reflects selection generated by seasonal climatic factors and interactions with other plants and animals, within constraints imposed by their phylogenetic history. Fig trees (Ficus) need to produce figs year-round to support their short-lived fig wasp pollinators, but this requirement is partially de-coupled in dioecious species, where female trees only develop seeds, not pollinator offspring. This allows female trees to concentrate seed production at more favorable times of the year. Ficus squamosa is a riparian species whose dispersal is mainly by water, rather than animals. Seeds can float and travel in long distances. We recorded the leaf and reproductive phenology of 174 individuals for three years in Chiang Mai, Northern Thailand. New leaves were produced throughout the year. Fig production occurred year-round, but with large seasonal variations that correlated with temperature and rainfall. Female and male trees initiated maximal fig crops at different times, with production in female trees confined mainly to the rainy season and male figs concentrating fig production in the preceding months, but also often bearing figs continually. Ficus squamosa concentrates seed production by female plants at times when water levels are high, favouring dispersal by water, and asynchronous flowering within male trees allow fig wasps to cycle there, providing them with potential benefits by maintaining pollinators for times when female figs become available to pollinate.  相似文献   

2.
In the dioecious fig/pollinator mutualism, the female wasps that pollinate figs on female trees die without reproducing, whereas wasps that pollinate figs on male trees produce offspring. Selection should strongly favour wasps that avoid female figs and enter only male figs. Consequently, fig trees would not be pollinated and fig seed production would ultimately cease, leading to extinction of both wasp and fig. We experimentally presented pollinators in the wild (southern India) with a choice between male and female figs of a dioecious fig species, Ficus hispida L. Our results show that wasps do not systematically discriminate between sexes of F. hispida. We propose four hypotheses to explain why wasp choice has not evolved, and how a mutualism is thus maintained in which all wasps that pollinate female figs have zero fitness.  相似文献   

3.
Fig trees are pollinated by wasp mutualists, whose larvae consume some of the plant's ovaries. Many fig species (350+) are gynodioecious, whereby pollinators generally develop in the figs of ‘male’ trees and seeds generally in the ‘females.’ Pollinators usually cannot reproduce in ‘female’ figs at all because their ovipositors cannot penetrate the long flower styles to gall the ovaries. Many non-pollinating fig wasp (NPFW) species also only reproduce in figs. These wasps can be either phytophagous gallers or parasites of other wasps. The lack of pollinators in female figs may thus constrain or benefit different NPFWs through host absence or relaxed competition. To determine the rates of wasp occurrence and abundance we surveyed 11 dioecious fig species on Hainan Island, China, and performed subsequent experiments with Ficus tinctoria subsp. gibbosa to identify the trophic relationships between NPFWs that enable development in female syconia. We found NPFWs naturally occurring in the females of Ficus auriculata, Ficus hainanensis and F. tinctoria subsp. gibbosa. Because pollinators occurred only in male syconia, when NPFWs also occurred in female syconia, overall there were more wasps in male than in female figs. Species occurrence concurred with experimental data, which showed that at least one phytophagous galler NPFW is essential to enable multiple wasp species to coexist within a female fig. Individuals of galler NPFW species present in both male and female figs of the same fig species were more abundant in females than in males, consistent with relaxed competition due to the absence of pollinator. However, these wasps replaced pollinators on a fewer than one-to-one basis, inferring that other unknown mechanisms prevent the widespread exploitation by wasps of female figs. Because some NPFW species may use the holes chewed by pollinator males to escape from their natal fig, we suggest that dispersal factors could be involved.  相似文献   

4.
1. Figs on male dioecious fig trees (Ficus, Moraceae) are breeding sites for pollinator fig wasps (Hymenoptera, Agaonidae), but figs on female plants are traps that produce only seeds. As the short‐lived fig wasps cannot reproduce in female figs, natural selection should favour individuals that avoid them. Several studies have failed to detect such discrimination, a result attributed to inter‐sexual mimicry and ‘selection to rush’ in the wasps, but their experiments failed to explicitly take into account fig age (how long they had been waiting to be pollinated). 2. We compared the relative attraction of male and female figs of known ages of the South East Asian Ficus montana Burm. f. to its pollina tor Liporrhopalum tentacularis Grandi and examined how the reproductive success of the plant and its pollinator change with the age of the figs. 3. Mean retention time for un‐pollinated figs on female plants was 16 days whereas in male figs it was 12 days. Female figs remained attractive for up to 2 weeks, although the wasps were less willing to enter older figs. After pollinator entry, receptivity continued for several days, lasting longer in figs entered by a single wasp. Consistent with abortion rates, attractiveness persisted longer in female figs. Older figs produced fewer fig wasp offspring, but similar numbers of seeds. 4. The sexual differences in floral longevity in F. montana may represent part of a previously un‐recognised reproductive strategy in some fig trees that allows male plants to ‘export’ pollinators while also maintaining a resident fig wasp population.  相似文献   

5.
Abstract. We studied the phenology of 198 mature trees of the dioecious fig Ficus variegata Blume (Moraceae) in a seasonally wet tropical rain forest at Cape Tribulation, Australia, from March 1988 to February 1993. Leaf production was highly seasonal and correlated with rainfall. Trees were annually deciduous, with a pronounced leaf drop and a pulse of new growth during the August-September drought. At the population level, figs were produced continually throughout the study but there were pronounced annual cycles in fig abundance. Figs were least abundant during the early dry period (June-September) and most abundant from the late dry season (October-November) through the wet season (December-April). The annual peak in reproduction actually reflected two staggered peaks arising from gender differences in fig phenology. In this dioecious species, female and male trees initiated their maximal fig crops at different times and flowering was to some extent synchronized within sexes. Fig production in the female (seed-producing) trees was typically confined to the wet season. Male (wasp-producing) trees were less synchronized than female trees but reached a peak level of fig production in the months prior to the onset of female fig production. Male trees were also more likely to produce figs continually. Asynchrony among male fig crops during the dry season could maintain the pollinator population under adverse conditions through within- and among-tree wasp transfers.  相似文献   

6.
The host-specific relationship between fig trees (Ficus) and their pollinator wasps (Agaonidae) is a classic case of obligate mutualism. Pollinators reproduce within highly specialised inflorescences (figs) of fig trees that depend on the pollinator offspring for the dispersal of their pollen. About half of all fig trees are functionally dioecious, with separate male and female plants responsible for separate sexual functions. Pollen and the fig wasps that disperse it are produced within male figs, whereas female figs produce only seeds. Figs vary greatly in size between different species, with female flower numbers varying from tens to many thousands. Within species, the number of female flowers present in each fig is potentially a major determinant of the numbers of pollinator offspring and seeds produced. We recorded variation in female flower numbers within male and female figs of the dioecious Ficus montana growing under controlled conditions, and assessed the sources and consequences of inflorescence size variation for the reproductive success of the plants and their pollinator (Kradibia tentacularis). Female flower numbers varied greatly within and between plants, as did the reproductive success of the plants, and their pollinators. The numbers of pollinator offspring in male figs and seeds in female figs were positively correlated with female flower numbers, but the numbers of male flowers and a parasitoid of the pollinator were not. The significant variation in flower number among figs produced by different individuals growing under uniform conditions indicates that there is a genetic influence on inflorescence size and that this character may be subject to selection.  相似文献   

7.
The nursery pollination system of fig trees (Ficus) results in the plants providing resources for pollinator fig wasp larvae as part of their male reproductive investment, with selection determining relative investment into pollinating wasps and the pollen they carry. The small size of Ficus pollen suggests that the quantities of pollen transported by individual wasps often limits male reproductive success. We assessed variation in fig wasp pollen loads and its influence on seed production in actively pollinated (Ficus montana) and passively pollinated (Ficus carica) dioecious fig trees.The ratios of number of male flowers on number of female flowers in a glasshouse-maintained F. montana population were highly variable. When fig wasps were introduced into receptive female figs, the resulting seed numbers were strongly linked to the numbers of pollinators that had been seeking access to pollen, relative to the number of anthers in their natal figs. In F. carica estimates of the amounts of pollen produced per fig and the quantities of pollen carried by emerging fig wasps suggest that less than 10% of the pollen is transported. Pollinators of F. carica that emerged earlier from figs carried more pollen, and also generated more seeds when introduced into receptive female figs.We show here that all pollinators are not equally valuable and producing more pollinators is not necessarily a good option in terms of Ficus male fitness. Previous results on F. montana figs showed that only around half of the flowers where pollinators lay eggs produced adult offspring. The amount of pollen collected by young female fig wasps may be a major determinant of their reproductive success.  相似文献   

8.
Flowering phenology is central to the ecology and evolution of most flowering plants. In highly-specific nursery pollination systems, such as that involving fig trees (Ficus species) and fig wasps (Agaonidae), any mismatch in timing has serious consequences because the plants must balance seed production with maintenance of their pollinator populations. Most fig trees are found in tropical or subtropical habitats, but the dioecious Chinese Ficus tikoua has a more northerly distribution. We monitored how its fruiting phenology has adapted in response to a highly seasonal environment. Male trees (where fig wasps reproduce) had one to three crops annually, whereas many seed-producing female trees produced only one fig crop. The timing of release of Ceratosolen fig wasps from male figs in late May and June was synchronized with the presence of receptive figs on female trees, at a time when there were few receptive figs on male trees, thereby ensuring seed set while allowing remnant pollinator populations to persist. F. tikoua phenology has converged with those of other (unrelated) northern Ficus species, but there are differences. Unlike F. carica in Europe, all F. tikoua male figs contain male flowers, and unlike F. pumila in China, but like F. carica, it is the second annual generation of adult wasps that pollinate female figs. The phenologies of all three temperate fig trees generate annual bottlenecks in the size of pollinator populations and for female F. tikoua also a shortage of fig wasps that results in many figs failing to be pollinated.  相似文献   

9.
While Ficus present a series of traits often associated with dioecy, the prevalence of dioecy in Ficus is atypical. In Asian floras, dioecious Ficus species generally outnumber monoecious ones. Further this is also true in relatively northerly locations for Ficus such as the island of Taiwan. Ficus are pollinated by species-specific wasps that use fig flowers as breeding sites. In dioecious fig species, pollinators develop only in the inflorescences of male fig trees. In this study, we investigated the reproductive phenology of four dioecious Ficus species with distinct ecologies in several locations in northern and southern Taiwan. The two first species (Ficus erecta and Ficus septica) were investigated in four locations. Reproductive phenology was quite different among sites, even within a single species. For example, F. erecta presented well-defined crops at the population level in its usual high-elevation habitat but continuous fig production at low elevations, especially in South Taiwan. The two other fig species (Ficus pedunculosa var. mearnsii and Ficus tinctoria subsp. swinhoei), are shrubs growing together along seashores in exposed locations on coral reef remnants. These two species presented quite different traits allowing the survival of pollinating wasp populations. Ficus pedunculosa var. mearnsii produced figs continuously so that fresh receptive figs were always available for the pollinating wasps while F. tinctoria subsp. swinhoei extended the period of receptivity of its figs, so that receptive figs that had been waiting for pollinating wasps were almost always available. In summary, dioecious figs in Taiwan showed remarkable variation in their phenology, within species among locations or among species within location. Nevertheless, despite this variation, the phenology of the trees always allowed survival of pollinating wasp populations. Dioecious figs seem to have adopted a differentiated set of strategies which result in high resilience of pollinator populations. This resilience could help explain the atypical prevalence of dioecy in Ficus.  相似文献   

10.
Fig-pollinating wasps lay their eggs in fig flowers. Some species of fig-pollinating wasps are active pollinators, while others passively transfer pollen. In dioecious fig species, the ovules of male figs produce wasps but no seeds. By observations and experiments on four dioecious Ficus species we show that (i) passive pollinators distribute pollen haphazardly within figs, but fertilization of female flowers in male figs is inhibited. Consequently, wasp larvae will develop in nonfertilized ovules: they cannot benefit from pollination; (ii) active pollinators efficiently fertilize flowers in which they oviposit. Lack of pollination increases larval mortality. Hence, fig pollinators are not obligate seed eaters but ovule gallers. Active pollination has probably evolved as a way to improve progeny nourishment.
Comparison of pollination and oviposition process in male and female figs, suggests that stigma shape and function have coevolved with pollination behaviour, in relation to constraints linked with dioecy.  相似文献   

11.
Each Ficus species depends on a specific mutualistic wasp for pollination. The wasp breeds on the fig, each larva destroying a female flower. It is, however, not known why the wasps have not evolved the ability to use all female flowers. In “dioecious” figs, the wasp can only breed in the female flowers of the “male” trees, so that pollination of a female tree is always lethal. The wasps should therefore be selected to avoid female trees. Field data is presented showing that the fruiting phenology of the dioecious fig Ficus carica is such that this selection does not occur: syconia are not receptive at the same time on “male” and female trees. Most wasps are forced to emerge from the syconia of “male” trees at a time when they will not be able to reproduce, whether they avoid female trees or not. This aspect of the life cycle of the wasp, although noticed, has been obscured in most previous studies. It is shown that the fruiting phenology of Ficus carica, which stabilizes the symbiosis, is the result of short-term selective pressures on the male function of the trees. Such selective pressures suggest a possible pathway from monoecy to dioecy in Ficus under seasonal climates.  相似文献   

12.
Sexual specialization in two tropical dioecious figs   总被引:3,自引:0,他引:3  
Aviva Patel  Doyle McKey 《Oecologia》1998,115(3):391-400
Ficus species (figs) and their species-specific pollinator wasps are involved in an intimate mutualism in which wasps lay eggs in some ovaries of the closed inflorescences (syconia), and mature, inseminated offspring carry pollen from mature syconia to fertilize receptive inflorescences. In monoecious species, each syconium produces seeds and wasps. In functionally dioecious fig species, making up approximately half the figs worldwide, male and female functions are separated; hermaphrodite (functionally male) trees produce wasps and pollen only, while female trees produce seeds only. This sexual separation allows selection to act independently on the reproductive biology of each sex. Examining sexual specialization in a tight mutualism allows us to determine aspects of the mutualism that are flexible and those that are canalized. In this study, we quantified the phenology of two species of dioecious figs, F. exasperata and F. hispida, for 2 years by following the fates of several thousand syconia over time. In studying each of these species in a dry and a wet site in south India, we tested specific predictions of how dioecious figs might optimize sexual function. On female trees of both species, more inflorescences matured during the wet (monsoon) season than in any other season; this fruiting period enabled seeds to be produced during the season most suitable for germination. In F. exasperata, functionally male trees released most wasps from mature syconia in the dry season, during peak production of receptive female syconia, and thus maximized successful pollination. In F. hispida, “male” trees produced more syconia in the dry and monsoon seasons than in the post-monsoon season. In both species, male and female trees abscised more unpollinated, young inflorescences than pollinated inflorescences, but abscission appeared to be more likely due to resource- rather than pollinator- limitation. The phenology of F. exasperata requires that male inflorescences wait in receptive phase for scarce pollinators to arrive. As expected, male inflorescences of this species had a longer receptive phase than female inflorescences. In F. hispida, where pollinators are rarely scarce, duration of receptive phase was the same for both sexes. Duration of developing phase was longer in female syconia of both species than in male syconia, most likely because they need a longer period of investment in a fleshy fruit. Variation in developing phase of female syconia in one species (F. exasperata) was also greater than that in male syconia, and enabled female trees to sample a variety of germination environments in time. The strong sexual differences in both fig species support the hypothesis that selection for sexual specialization has strongly influenced the reproductive biology of these species. Received: 28 May 1997 / Accepted: 2 February 1998  相似文献   

13.
研究了西双版纳热带雨林地区雌雄异株植物对叶榕(Ficus hispida L.)的生物学、传粉物候学以及榕小蜂(Ceratosolen solmsi marchali Mayr)的传粉和繁殖行为.研究结果表明:雌雄异株的对叶榕与其他雌雄同株的榕属植物不同,它的种子形成与传粉者有着更为复杂的相互关系.对叶榕一年结隐花果6~8次,结果高峰期4~5次,其中雄性植株仅产生花粉和孕育榕小蜂,而雌性植株(无雄蕊)则需榕小蜂带花粉进入隐花果内,进行传粉授精,使之发育成种子.对叶榕的成熟花粉不能从花药开裂处自行散发出来,必须由榕小蜂采集才能散落.榕小蜂雌蜂羽化、交配后,找到雄花区,用足、触角、口器在推动中采集花粉.雌蜂飞出熟榕果找寻雌株或雄株榕树上的幼嫩隐花果,一般需3~67 min;一部分雌蜂在雄株中寻找幼嫩的隐花果,进去产卵繁殖,另一部分雌蜂则寻找雌株雌花期嫩隐花果进去传粉.雌蜂在雌株榕树的隐花果内传粉时间为15~23 h,在雄株榕树的隐花果内产卵时间为6~9 h.对叶榕小蜂在雌株上进入单个隐花果的数量多少关系到雌花结实率;观察表明,每个隐花果最佳进蜂数为2头;榕小蜂传粉后榕树成熟种子形成率在54.1%~82.5%之间,平均为73.8%;而在雄株上雌蜂进蜂数量则关系到榕小蜂在隐花果内的产卵率,每个隐花果最佳进蜂数为3~4头,产卵率在72.3%~93.8%之间,平均为84.4%.  相似文献   

14.
西双版纳热带雨林对叶榕传粉生物学(英)   总被引:10,自引:0,他引:10  
研究了西双版纳热带雨林地区雌雄异株植物对叶榕 (FicushispidaL .)的生物学、传粉物候学以及榕小蜂(CeratosolensolmsimarchaliMayr)的传粉和繁殖行为。研究结果表明 :雌雄异株的对叶榕与其他雌雄同株的榕属植物不同 ,它的种子形成与传粉者有着更为复杂的相互关系。对叶榕一年结隐花果 6~ 8次 ,结果高峰期 4~ 5次 ,其中雄性植株仅产生花粉和孕育榕小蜂 ,而雌性植株 (无雄蕊 )则需榕小蜂带花粉进入隐花果内 ,进行传粉授精 ,使之发育成种子。对叶榕的成熟花粉不能从花药开裂处自行散发出来 ,必须由榕小蜂采集才能散落。榕小蜂雌蜂羽化、交配后 ,找到雄花区 ,用足、触角、口器在推动中采集花粉。雌蜂飞出熟榕果找寻雌株或雄株榕树上的幼嫩隐花果 ,一般需 3~ 6 7min ;一部分雌蜂在雄株中寻找幼嫩的隐花果 ,进去产卵繁殖 ,另一部分雌蜂则寻找雌株雌花期嫩隐花果进去传粉。雌蜂在雌株榕树的隐花果内传粉时间为 15~ 2 3h ,在雄株榕树的隐花果内产卵时间为 6~ 9h。对叶榕小蜂在雌株上进入单个隐花果的数量多少关系到雌花结实率 ;观察表明 ,每个隐花果最佳进蜂数为 2头 ;榕小蜂传粉后榕树成熟种子形成率在 5 4 .1%~ 82 .5 %之间 ,平均为 73.8% ;而在雄株上雌蜂进蜂数量则关系到榕小蜂在隐花果内的产卵率 ,  相似文献   

15.
The dioecious Mediterranean fig, Ficus carica, displays a unique phenology in which males sometimes bloom synchronously with females (in summer), and sometimes not (in spring). Ficus carica is engaged in an obligatory mutualism with a specific pollinating wasp, which reproduces only within figs, localising them by their specific scents. We show that scents emitted by male figs show seasonal variation within individual trees. Scents of summer male figs resemble those of the co-flowering females, and are different from those of the same male trees in spring, when female figs are absent. These differences hold even if only compounds electrophysiologically active for pollinators are considered. The similar scents of summer males and females may explain why the rewardless females are still pollinated. These results offer a tractable model for future studies of intersexual chemical mimicry in mutualistic pollination interactions.  相似文献   

16.
Phenology of a common roadside fig in Sarawak   总被引:3,自引:0,他引:3  
The phenology of a dioecious fig (Ficus fulva, Reinw. ex Bl.; 25 female, 26 male trees) was studied at Lambir Hills National Park, Sarawak. Dioecious fig phenology provides an excellent opportunity to investigate the influence of climate and sexual specialization on the obligate fig–fig pollinator/ovule parasite interaction. Leaf phenology was strongly correlated between sexes. Trees dropped leaves during drought and initiated new leaf growth after the renewal of rain. Before the production of large crops of syconia, trees shed their leaves and then new leaves and syconia were initiated together. Syconia were produced in synchronous crops with asynchrony between trees maintaining a relatively even production of syconia within the tree group. Syconia abortion on male but not female trees, was negatively correlated with the proportion of trees with male phase syconia. A severe drought in early 1998 significantly disrupted the phenology thereafter. The duration of crop development was approximately twice as long on female trees as on males, and total syconia production was much higher on male trees. Plots of syconia diameter versus dry weight suggest sexual specialization in the investment profile during crop development. Male trees also sometimes produced a small crop of syconia immediately before a large crop, probably to supply wasps for the main crop. Sexes had different growth strategies with male trees growing more as small individuals and slightly delaying reproduction. Diameter at breast height was significantly correlated with total syconia production in male trees but not in females. Syconia production was best predicted by canopy width.  相似文献   

17.
Ficus species are characterized by their unusual enclosed inflorescences (figs) and their relationship with obligate pollinator fig wasps (Agaonidae). Fig trees have a variety of growth forms, but true epiphytes are rare, and one example is Ficus deltoidea of Southeast Asia. Presumably as an adaptation to epiphytism, inflorescence design in this species is exceptional, with very few flowers in female (seed‐producing) figs and unusually large seeds. Figs on male (pollinator offspring‐generating) trees have many more flowers. Many fig wasps pollinate one fig each, but because of the low number of flowers per fig, efficient utilization by F. deltoidea''s pollinators depends on pollinators entering several female figs. We hypothesized that it is in the interest of the plants to allow pollinators to re‐emerge from figs on both male and female trees and that selection favors pollinator roaming because it increases their own reproductive success. Our manipulations of Blastophaga sp. pollinators in a Malaysian oil palm plantation confirmed that individual pollinators do routinely enter several figs of both sexes. Entering additional figs generated more seeds per pollinator on female trees and more pollinator offspring on male trees. Offspring sex ratios in subsequently entered figs were often less female‐biased than in the first figs they entered, which reduced their immediate value to male trees because only female offspring carry their pollen. Small numbers of large seeds in female figs of epiphytic F. deltoidea may reflect constraints on overall female fig size, because pollinator exploitation depends on mutual mimicry between male and female figs.  相似文献   

18.
Fig trees (Ficus: Moraceae) are pollinated by female fig wasps (Agaonidae) whose larvae develop inside galled flowers of unusual inflorescences (figs). Most fig trees also support communities of non‐pollinating fig wasps. Figs of different species display great size variation and contain tens to tens of thousands of flowers. Around one‐half the species of fig trees have the gynodioecious breeding system, where female trees have figs that produce seeds and male trees have figs that support development of pollinators. Mutual mimicry between receptive male and female figs ensures that pollinators enter female figs, even though the insects will die without reproducing, but the need to give no sex‐specific cues to the pollinators may constrain differences in size between receptive male and female figs. We compared relationships between inflorescence size and some measures of reproductive success in male and female figs of Ficus montana grown under controlled conditions in the presence of the pollinator Kradibia tentacularis and its main parasitoid Sycoscapter sp. indesc. Female figs that contained more flowers produced more seeds, but male figs did not increase the production of female pollinator K. tentacularis fig wasps in proportion of the flower number. Although more flowers were galled by the pollinators in male figs containing more female flowers, the high larval mortality caused by parasitism and nutritional limitation prevented the increase in the production of adult female offspring. Selection may favor the increase in flower numbers within figs in female plants of F. montana, but contrarily constrain this attribute in male plants.  相似文献   

19.
【目的】榕树(Ficus)依赖专性榕小蜂(Agaonidae)传粉,同时为传粉榕小蜂提供繁衍后代的场所,两者形成动植物间经典的协同进化关系。在雌花期果内,榕小蜂需在有限的存活时间内完成传粉和产卵,而传粉榕小蜂如何在传粉与产卵之间进行权衡仍然是悬而未解的问题。本研究旨在明确传粉榕小蜂——一种栉颚榕小蜂Ceratosolen sp.在雌雄同株的聚果榕Ficus racemosa雌花期果内的行为活动及繁殖模式。【方法】借助测微尺测量聚果榕榕果雌花花柱长度与传粉榕小蜂(Ceratosolen sp.)产卵器长度,通过显微视频记录传粉榕小蜂在雌花期果内搜索、传粉及产卵行为;结合单果控制性引蜂试验,测定不同阶段榕小蜂个体大小、孕卵量、携粉量,以及雄花期最终繁殖的榕小蜂后代和榕果种子数量。【结果】聚果榕雌花花柱长度存在树间变异,榕小蜂产卵器长度比绝大多数的雌花花柱长,说明该小蜂可以产卵于大部分的雌花子房里。通常个体大的榕小蜂孕卵量更多,但个体大小与携粉量之间相关性不显著。观察发现,榕小蜂进入雌花期榕果内,前6 h集中产卵,可产下孕卵量的95%,平均搜索用时27 s,产卵用时46 s,此期间传粉行为少见,花粉筐中携带花粉量亦无明显变化;榕小蜂进果后6-24 h,主要执行传粉,其行为主动,连贯高效,单次传粉用时平均为2 s,最终可传完携粉量的80%。控制引蜂试验也证实榕小蜂进入榕果内前6 h主要执行产卵繁殖后代,之后6-24 h主要执行传粉以繁殖榕树种子。【结论】在雌雄同株的聚果榕雌花期榕果内,榕小蜂先产卵、后传粉。本研究首次展示了传粉榕小蜂在聚果榕雌花期榕果内的产卵和传粉行为,并获得与行为相匹配的产卵量和传粉繁殖量,反映了具主动传粉行为的榕小蜂在传粉和产卵之间存在时间和数量上的权衡。  相似文献   

20.
Multi-species mating aggregations are crowded environments within which mate recognition must occur. Mating aggregations of fig wasps can consist of thousands of individuals of many species that attain sexual maturity simultaneously and mate in the same microenvironment, i.e, in syntopy, within the close confines of an enclosed globular inflorescence called a syconium – a system that has many signalling constraints such as darkness and crowding. All wasps develop within individual galled flowers. Since mating mostly occurs when females are still confined within their galls, male wasps have the additional burden of detecting conspecific females that are “hidden” behind barriers consisting of gall walls. In Ficus racemosa, we investigated signals used by pollinating fig wasp males to differentiate conspecific females from females of other syntopic fig wasp species. Male Ceratosolen fusciceps could detect conspecific females using cues from galls containing females, empty galls, as well as cues from gall volatiles and gall surface hydrocarbons.In many figs, syconia are pollinated by single foundress wasps, leading to high levels of wasp inbreeding due to sibmating. In F. racemosa, as most syconia contain many foundresses, we expected male pollinators to prefer non-sib females to female siblings to reduce inbreeding. We used galls containing females from non-natal figs as a proxy for non-sibs and those from natal figs as a proxy for sibling females. We found that males preferred galls of female pollinators from natal figs. However, males were undecided when given a choice between galls containing non-pollinator females from natal syconia and pollinator females from non-natal syconia, suggesting olfactory imprinting by the natal syconial environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号