首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
【目的】榕树(Ficus)依赖专性榕小蜂(Agaonidae)传粉,同时为传粉榕小蜂提供繁衍后代的场所,两者形成动植物间经典的协同进化关系。在雌花期果内,榕小蜂需在有限的存活时间内完成传粉和产卵,而传粉榕小蜂如何在传粉与产卵之间进行权衡仍然是悬而未解的问题。本研究旨在明确传粉榕小蜂——一种栉颚榕小蜂Ceratosolen sp.在雌雄同株的聚果榕Ficus racemosa雌花期果内的行为活动及繁殖模式。【方法】借助测微尺测量聚果榕榕果雌花花柱长度与传粉榕小蜂(Ceratosolen sp.)产卵器长度,通过显微视频记录传粉榕小蜂在雌花期果内搜索、传粉及产卵行为;结合单果控制性引蜂试验,测定不同阶段榕小蜂个体大小、孕卵量、携粉量,以及雄花期最终繁殖的榕小蜂后代和榕果种子数量。【结果】聚果榕雌花花柱长度存在树间变异,榕小蜂产卵器长度比绝大多数的雌花花柱长,说明该小蜂可以产卵于大部分的雌花子房里。通常个体大的榕小蜂孕卵量更多,但个体大小与携粉量之间相关性不显著。观察发现,榕小蜂进入雌花期榕果内,前6 h集中产卵,可产下孕卵量的95%,平均搜索用时27 s,产卵用时46 s,此期间传粉行为少见,花粉筐中携带花粉量亦无明显变化;榕小蜂进果后6-24 h,主要执行传粉,其行为主动,连贯高效,单次传粉用时平均为2 s,最终可传完携粉量的80%。控制引蜂试验也证实榕小蜂进入榕果内前6 h主要执行产卵繁殖后代,之后6-24 h主要执行传粉以繁殖榕树种子。【结论】在雌雄同株的聚果榕雌花期榕果内,榕小蜂先产卵、后传粉。本研究首次展示了传粉榕小蜂在聚果榕雌花期榕果内的产卵和传粉行为,并获得与行为相匹配的产卵量和传粉繁殖量,反映了具主动传粉行为的榕小蜂在传粉和产卵之间存在时间和数量上的权衡。  相似文献   

2.
The nursery pollination system of fig trees (Ficus) results in the plants providing resources for pollinator fig wasp larvae as part of their male reproductive investment, with selection determining relative investment into pollinating wasps and the pollen they carry. The small size of Ficus pollen suggests that the quantities of pollen transported by individual wasps often limits male reproductive success. We assessed variation in fig wasp pollen loads and its influence on seed production in actively pollinated (Ficus montana) and passively pollinated (Ficus carica) dioecious fig trees.The ratios of number of male flowers on number of female flowers in a glasshouse-maintained F. montana population were highly variable. When fig wasps were introduced into receptive female figs, the resulting seed numbers were strongly linked to the numbers of pollinators that had been seeking access to pollen, relative to the number of anthers in their natal figs. In F. carica estimates of the amounts of pollen produced per fig and the quantities of pollen carried by emerging fig wasps suggest that less than 10% of the pollen is transported. Pollinators of F. carica that emerged earlier from figs carried more pollen, and also generated more seeds when introduced into receptive female figs.We show here that all pollinators are not equally valuable and producing more pollinators is not necessarily a good option in terms of Ficus male fitness. Previous results on F. montana figs showed that only around half of the flowers where pollinators lay eggs produced adult offspring. The amount of pollen collected by young female fig wasps may be a major determinant of their reproductive success.  相似文献   

3.
Why do fig wasps actively pollinate monoecious figs?   总被引:8,自引:0,他引:8  
Active pollination, although rare, has been documented in a few pollination mutualisms. Such behaviour can only evolve if it benefits the pollinator in some way. The wasps that pollinate Ficus inflorescences can be active or passive pollinators. They lay their eggs in fig flowers, so that a proportion of flowers will host a wasp larva instead of a seed. We show in an actively pollinated monoecious fig that lack of pollination does not induce fig abortion or affect wasp offspring size but results in smaller numbers of offspring. Hence, conversely to other active pollination systems, seed formation is not obligatory to sustain developing pollinator larvae; however there is a direct fitness cost to active pollinators not to pollinate. We then compared the locations of eggs and fertilised flowers of three actively pollinated Ficus species and one passively pollinated species. We found that more flowers containing wasp eggs were fertilised in the actively pollinated species relative to those of the passively pollinated one. These results along with comparison with similar studies on dioecious figs, support the hypothesis that active pollination has evolved in fig wasps to ensure that more flowers containing wasp eggs are fertilised as this may increase the chances of successful gall development. The stigmatic platform characterising actively pollinated figs is probably an adaptation to increase pollen dispersion within the fig.  相似文献   

4.
Ficus species are characterized by their unusual enclosed inflorescences (figs) and their relationship with obligate pollinator fig wasps (Agaonidae). Fig trees have a variety of growth forms, but true epiphytes are rare, and one example is Ficus deltoidea of Southeast Asia. Presumably as an adaptation to epiphytism, inflorescence design in this species is exceptional, with very few flowers in female (seed‐producing) figs and unusually large seeds. Figs on male (pollinator offspring‐generating) trees have many more flowers. Many fig wasps pollinate one fig each, but because of the low number of flowers per fig, efficient utilization by F. deltoidea''s pollinators depends on pollinators entering several female figs. We hypothesized that it is in the interest of the plants to allow pollinators to re‐emerge from figs on both male and female trees and that selection favors pollinator roaming because it increases their own reproductive success. Our manipulations of Blastophaga sp. pollinators in a Malaysian oil palm plantation confirmed that individual pollinators do routinely enter several figs of both sexes. Entering additional figs generated more seeds per pollinator on female trees and more pollinator offspring on male trees. Offspring sex ratios in subsequently entered figs were often less female‐biased than in the first figs they entered, which reduced their immediate value to male trees because only female offspring carry their pollen. Small numbers of large seeds in female figs of epiphytic F. deltoidea may reflect constraints on overall female fig size, because pollinator exploitation depends on mutual mimicry between male and female figs.  相似文献   

5.
研究了西双版纳热带雨林地区雌雄异株植物对叶榕(Ficus hispida L.)的生物学、传粉物候学以及榕小蜂(Ceratosolen solmsi marchali Mayr)的传粉和繁殖行为.研究结果表明:雌雄异株的对叶榕与其他雌雄同株的榕属植物不同,它的种子形成与传粉者有着更为复杂的相互关系.对叶榕一年结隐花果6~8次,结果高峰期4~5次,其中雄性植株仅产生花粉和孕育榕小蜂,而雌性植株(无雄蕊)则需榕小蜂带花粉进入隐花果内,进行传粉授精,使之发育成种子.对叶榕的成熟花粉不能从花药开裂处自行散发出来,必须由榕小蜂采集才能散落.榕小蜂雌蜂羽化、交配后,找到雄花区,用足、触角、口器在推动中采集花粉.雌蜂飞出熟榕果找寻雌株或雄株榕树上的幼嫩隐花果,一般需3~67 min;一部分雌蜂在雄株中寻找幼嫩的隐花果,进去产卵繁殖,另一部分雌蜂则寻找雌株雌花期嫩隐花果进去传粉.雌蜂在雌株榕树的隐花果内传粉时间为15~23 h,在雄株榕树的隐花果内产卵时间为6~9 h.对叶榕小蜂在雌株上进入单个隐花果的数量多少关系到雌花结实率;观察表明,每个隐花果最佳进蜂数为2头;榕小蜂传粉后榕树成熟种子形成率在54.1%~82.5%之间,平均为73.8%;而在雄株上雌蜂进蜂数量则关系到榕小蜂在隐花果内的产卵率,每个隐花果最佳进蜂数为3~4头,产卵率在72.3%~93.8%之间,平均为84.4%.  相似文献   

6.
Yu H  Compton SG 《PloS one》2012,7(1):e30833
Figs are the inflorescences of fig trees (Ficus spp., Moraceae). They are shaped like a hollow ball, lined on their inner surface by numerous tiny female flowers. Pollination is carried out by host-specific fig wasps (Agaonidae). Female pollinators enter the figs through a narrow entrance gate and once inside can walk around on a platform generated by the stigmas of the flowers. They lay their eggs into the ovules, via the stigmas and styles, and also gall the flowers, causing the ovules to expand and their pedicels to elongate. A single pollinator larva develops in each galled ovule. Numerous species of non-pollinating fig wasps (NPFW, belonging to other families of Chalcidoidea) also make use of galled ovules in the figs. Some initiate galls, others make use of pollinator-generated galls, killing pollinator larvae. Most NPFW oviposit from the outside of figs, making peripherally-located pollinator larvae more prone to attack. Style length variation is high among monoecious Ficus spp. and pollinators mainly oviposit into more centrally-located ovules, with shorter styles. Style length variation is lower in male (wasp-producing) figs of dioecious Ficus spp., making ovules equally vulnerable to attack by NPFW at the time that pollinators oviposit. We recorded the spatial distributions of galled ovules in mature male figs of the dioecious Ficus hirta in Southern China. The galls contained pollinators and three NPFW that kill them. Pollinators were concentrated in galls located towards the centre of the figs, NPFW towards the periphery. Due to greater pedicel elongation by male galls, male pollinators became located in more central galls than their females, and so were less likely to be attacked. This helps ensure that sufficient males survive, despite strongly female-biased sex ratios, and may be a consequence of the pollinator females laying mostly male eggs at the start of oviposition sequences.  相似文献   

7.
In the dioecious fig/pollinator mutualism, the female wasps that pollinate figs on female trees die without reproducing, whereas wasps that pollinate figs on male trees produce offspring. Selection should strongly favour wasps that avoid female figs and enter only male figs. Consequently, fig trees would not be pollinated and fig seed production would ultimately cease, leading to extinction of both wasp and fig. We experimentally presented pollinators in the wild (southern India) with a choice between male and female figs of a dioecious fig species, Ficus hispida L. Our results show that wasps do not systematically discriminate between sexes of F. hispida. We propose four hypotheses to explain why wasp choice has not evolved, and how a mutualism is thus maintained in which all wasps that pollinate female figs have zero fitness.  相似文献   

8.
西双版纳热带雨林对叶榕传粉生物学(英)   总被引:10,自引:0,他引:10  
研究了西双版纳热带雨林地区雌雄异株植物对叶榕 (FicushispidaL .)的生物学、传粉物候学以及榕小蜂(CeratosolensolmsimarchaliMayr)的传粉和繁殖行为。研究结果表明 :雌雄异株的对叶榕与其他雌雄同株的榕属植物不同 ,它的种子形成与传粉者有着更为复杂的相互关系。对叶榕一年结隐花果 6~ 8次 ,结果高峰期 4~ 5次 ,其中雄性植株仅产生花粉和孕育榕小蜂 ,而雌性植株 (无雄蕊 )则需榕小蜂带花粉进入隐花果内 ,进行传粉授精 ,使之发育成种子。对叶榕的成熟花粉不能从花药开裂处自行散发出来 ,必须由榕小蜂采集才能散落。榕小蜂雌蜂羽化、交配后 ,找到雄花区 ,用足、触角、口器在推动中采集花粉。雌蜂飞出熟榕果找寻雌株或雄株榕树上的幼嫩隐花果 ,一般需 3~ 6 7min ;一部分雌蜂在雄株中寻找幼嫩的隐花果 ,进去产卵繁殖 ,另一部分雌蜂则寻找雌株雌花期嫩隐花果进去传粉。雌蜂在雌株榕树的隐花果内传粉时间为 15~ 2 3h ,在雄株榕树的隐花果内产卵时间为 6~ 9h。对叶榕小蜂在雌株上进入单个隐花果的数量多少关系到雌花结实率 ;观察表明 ,每个隐花果最佳进蜂数为 2头 ;榕小蜂传粉后榕树成熟种子形成率在 5 4 .1%~ 82 .5 %之间 ,平均为 73.8% ;而在雄株上雌蜂进蜂数量则关系到榕小蜂在隐花果内的产卵率 ,  相似文献   

9.
Dioecy allows separation of female and male functions and therefore facilitates separate co‐evolutionary pathways with pollinators and seed dispersers. In monoecious figs, pollinators' offspring develop inside the syconium by consuming some of the seeds. Flower‐stage syconia must attract pollinators, then ripen and attract seed dispersers. In dioecious figs, male (“gall”) figs produce pollen but not viable seeds, as the pollinators' larvae eat all seeds, while female (“seed”) figs produce mostly viable seeds, as pollinators cannot oviposit in the ovules. Hence, gall and seed figs are under selection to attract pollinators, but only seed figs must attract seed dispersers. We test the hypothesis that seed and gall syconia at the flower stage will be similar, while at the fruiting stage they will differ. Likewise, monoecious syconia will be more similar to seed than gall figs because they must attract both pollinators and seed dispersers. We quantified syconium characteristics for 24 dioecious and 11 monoecious fig species and recorded frugivore visits. We show that seed and gall syconia are similar at the flower stage but differ at the fruit stage; monoecious syconia are more similar to seed syconia than they are to gall syconia; seed and gall syconia differentiate through their ontogeny from flower to fruit stages; and frugivores visit more monoecious and seed syconia than gall syconia. We suggest that similarity at the flower stage likely enhances pollination in both seed and gall figs and that differentiation after pollination likely enhances attractiveness to seed dispersers of syconia containing viable seeds. These ontogenetic differences between monoecious and dioecious species provide evidence of divergent responses to selection by pollinators and seed dispersers.  相似文献   

10.
Most plants are pollinated passively, but active pollination has evolved among insects that depend on ovule fertilization for larval development. Anther‐to‐ovule ratios (A/O ratios, a coarse indicator of pollen‐to‐ovule ratios) are strong indicators of pollination mode in fig trees and are consistent within most species. However, unusually high values and high variation of A/O ratios (0.096–10.0) were detected among male plants from 41 natural populations of Ficus tikoua in China. Higher proportions of male (staminate) flowers were associated with a change in their distribution within the figs, from circum‐ostiolar to scattered. Plants bearing figs with ostiolar or scattered male flowers were geographically separated, with scattered male flowers found mainly on the Yungui Plateau in the southwest of our sample area. The A/O ratios of most F. tikoua figs were indicative of passive pollination, but its Ceratosolen fig wasp pollinator actively loads pollen into its pollen pockets. Additional pollen was also carried on their body surface and pollinators emerging from scattered‐flower figs had more surface pollen. Large amounts of pollen grains on the insects' body surface are usually indicative of a passive pollinator. This is the first recorded case of an actively pollinated Ficus species producing large amounts of pollen. Overall high A/O ratios, particularly in some populations, in combination with actively pollinating pollinators, may reflect a response by the plant to insufficient quantities of pollen transported in the wasps’ pollen pockets, together with geographic variation in this pollen limitation. This suggests an unstable scenario that could lead to eventual loss of wasp active pollination behavior.  相似文献   

11.
The host-specific relationship between fig trees (Ficus) and their pollinator wasps (Agaonidae) is a classic case of obligate mutualism. Pollinators reproduce within highly specialised inflorescences (figs) of fig trees that depend on the pollinator offspring for the dispersal of their pollen. About half of all fig trees are functionally dioecious, with separate male and female plants responsible for separate sexual functions. Pollen and the fig wasps that disperse it are produced within male figs, whereas female figs produce only seeds. Figs vary greatly in size between different species, with female flower numbers varying from tens to many thousands. Within species, the number of female flowers present in each fig is potentially a major determinant of the numbers of pollinator offspring and seeds produced. We recorded variation in female flower numbers within male and female figs of the dioecious Ficus montana growing under controlled conditions, and assessed the sources and consequences of inflorescence size variation for the reproductive success of the plants and their pollinator (Kradibia tentacularis). Female flower numbers varied greatly within and between plants, as did the reproductive success of the plants, and their pollinators. The numbers of pollinator offspring in male figs and seeds in female figs were positively correlated with female flower numbers, but the numbers of male flowers and a parasitoid of the pollinator were not. The significant variation in flower number among figs produced by different individuals growing under uniform conditions indicates that there is a genetic influence on inflorescence size and that this character may be subject to selection.  相似文献   

12.
Fig trees ( Ficus ) and their obligate pollinating wasps (Hymenoptera, Chalcidoidea, Agaonidae) are a classic example of a coevolved mutualism. Pollinating wasps are attracted to figs only when figs are receptive. It has been shown that figs will lose their attraction to pollinators sooner in monoecious and male dioecious figs when multiple pollinators have entered the enclosed inflorescence. However, little is known about the nature of the stimulus inducing the loss of attraction. By conducting experiments on the functionally dioecious fig, Ficus hispida , we show that (1) different stimuli induce the loss of attraction in each sex, pollination in female figs, and oviposition in male figs; and (2) foundress number affects the loss of attraction in both sexes only when the prerequisites ( i.e ., pollination in female figs and oviposition in male figs) have been satisfied. In general, the more foundresses that enter, the earlier the fig will lose its receptivity. We argue that the stimuli in male and female figs are adaptations to the fulfillment of its respective reproduction.  相似文献   

13.
在西双版纳,分别统计了对叶榕(Ficus hispida)雌花期雌雄果的进蜂量和花后期雌雄果繁殖的多个特征值,以此来探讨自然条件下,影响对叶榕及其传粉榕小蜂(Ceratosolen solmsi marchali)繁殖的因素。结果表明:单果内有效进蜂数量是影响种子生产和传粉榕小蜂繁殖的首要因素,而雌花期进果的传粉榕小蜂并不是都能全部进入果腔传粉或产卵,大部分蜂还未进到果腔就被夹死在顶生苞片层的通道里,能进入雌果内传粉的榕小蜂为(2.72±2.04)只·果-1,约占总进蜂量的52%;而在雄果里,能进入果腔的蜂量只有(2.08±1.65)只·果-1,占35%左右。由于雌果内的雌花显著比雄果内的雌花多,结合单果进蜂量雌多雄少的格局,最终单果生产的种子数量 (1 891.63 ± 471.53)比传粉榕小蜂的数量 (367.20 ± 208.02) 多5倍有余。在雌果里,供给传粉的雌花数量与所生产的种子数量之间呈显著的正相关,而没有接受到花粉或不能正常受精的雌花数量与种子数量呈显著的负相关。雄果不仅生产花粉,也是传粉榕小蜂繁殖的场所,在相关于传粉榕小蜂自身繁殖力的因子中,传粉榕小蜂产卵制造的瘿花数量对其种群数量有最大的影响;影响次之的是发育过程中死亡的个体数量,它可降低30%左右的传粉榕小蜂数量;影响排在第三位的是寄主的雌花数量。此外,3类非传粉者的存在,单果内平均可减少30多只传粉小蜂。  相似文献   

14.
Fig trees (Ficus: Moraceae) are pollinated by female fig wasps (Agaonidae) whose larvae develop inside galled flowers of unusual inflorescences (figs). Most fig trees also support communities of non‐pollinating fig wasps. Figs of different species display great size variation and contain tens to tens of thousands of flowers. Around one‐half the species of fig trees have the gynodioecious breeding system, where female trees have figs that produce seeds and male trees have figs that support development of pollinators. Mutual mimicry between receptive male and female figs ensures that pollinators enter female figs, even though the insects will die without reproducing, but the need to give no sex‐specific cues to the pollinators may constrain differences in size between receptive male and female figs. We compared relationships between inflorescence size and some measures of reproductive success in male and female figs of Ficus montana grown under controlled conditions in the presence of the pollinator Kradibia tentacularis and its main parasitoid Sycoscapter sp. indesc. Female figs that contained more flowers produced more seeds, but male figs did not increase the production of female pollinator K. tentacularis fig wasps in proportion of the flower number. Although more flowers were galled by the pollinators in male figs containing more female flowers, the high larval mortality caused by parasitism and nutritional limitation prevented the increase in the production of adult female offspring. Selection may favor the increase in flower numbers within figs in female plants of F. montana, but contrarily constrain this attribute in male plants.  相似文献   

15.
Pollination and parasitism in functionally dioecious figs   总被引:17,自引:0,他引:17  
Fig wasps (Agaonidae: Hymenoptera) are seed predators and their interactions with Ficus species (Moraceae) range from mutualism to parasitism. Recently considerable attention has been paid to conflicts of interest between the mutualists and how they are resolved in monoecious fig species. However, despite the fact that different conflicts can arise, little is known about the factors that influence the persistence of the mutualism in functionally dioecious Ficus. We studied the fig pollinator mutualism in 14 functionally dioecious fig species and one monoecious species from tropical lowland rainforests near Madang, Papua New Guinea. Observations and experiments suggest that (i) pollinating wasps are monophagous and attracted to a particular host species; (ii) pollinating and non-pollinating wasps are equally attracted to gall (male) figs and seed (female) figs in functionally dioecious species; (iii) differing style lengths between gall figs and seed figs may explain why pollinators do not develop in the latter; (iv) negative density dependence may stabilize the interaction between pollinating wasps and their parasitoids; and (v) seed figs may reduce the search efficiency of non-pollinators. This increased pollinator production without a corresponding decrease in seed production could provide an advantage for dioecy in conditions where pollinators are limiting.  相似文献   

16.
2004年8月至2005年8月在西双版纳热带植物园内,通过广泛收集歪叶榕榕小蜂标本、非传粉小蜂产卵行为学观察和阻止传粉者入果等实验方法,研究了我国西双版纳热带雨林下的一种榕树——歪叶榕Ficus cyrtophylla的榕小蜂群落组成结构、非传粉小蜂的繁殖策略以及它们对榕-蜂共生系统的影响。结果表明,歪叶榕中除了具有唯一传粉榕小蜂Blastophag sp.以外,还具有3种非传粉小蜂Platyneura sp.、Philotrypesis sp.和Sycoscapter sp.。在歪叶榕榕小蜂群落中,传粉榕小蜂占整个群落总数的92.21%,是群落的最主要组成者;主要的非传粉小蜂是Sycoscaptersp.,占5.78%; 其次是Philotrypesissp.,占1.84%,而Platyneurasp.仅占群落总数的0.17%。歪叶榕中的非传粉小蜂通过各自产卵时间和食性分化的策略来利用榕果中的资源繁殖后代。非传粉小蜂寄生使传粉榕小蜂的总数和其雌蜂数量都显著地降低,但是对传粉小蜂雄蜂数量没有显著影响,从而导致传粉榕小蜂的雄性性比显著地增加。这说明非传粉小蜂在选择寄居宿主时具有明显的倾向性,而且更多地将卵产于含有雌性传粉小蜂的瘿花之中。因此,非传粉小蜂通过减少雌性传粉小蜂的数量而降低了榕树的雄性适合度,从而在一定程度上对榕 蜂共生系统的稳定存在和发展产生了负面影响。  相似文献   

17.
Monoecious figs reward their pollinators—agaonid wasps—by allocating a proportion of the flowers for egg laying, and retain the rest for seed production. It has been suggested that these proportions could be regulated by producing short-styled and long-styled flowers such that pollinator wasps could only use the former as their ovipositor does not reach the ovules of the latter. Thus the wasps can lay eggs only in the short-styled flowers and raise their offspring, and the ovules of uninfested, long-styled flowers can develop into seeds. This implied that figs bear dimorphic female flowers, with a bimodal distribution of style length. However, recent studies have shown that style length is distributed normally, with no evidence of bimodality. Therefore the regulation of allocation of flowers to the wasps does not seem to be through the production of two distinct kinds of female flowers. In this article we suggest that two factors govern the proportion of flowers rewarded to the wasps: (i) passive regulation, which is a consequence of the optimization of wasp ovipositor length, and (ii) active regulation, where figs are selected to enhance the variance of style length. We show that these arguments lead to certain predictions about the optimum ovipositor length, the proportion of the flowers available to the wasps, and the coefficient of variation of style length. We also show that data for 18 fig-wasp associations conform well with these predictions. We finally suggest that the regulatory process outlined here can be extended to evolution of style length in dioecious fig species also.  相似文献   

18.
薜荔和爱玉子均属雌雄异株桑科榕属植物,两者互为原变种与变种的关系,分别与薜荔传粉小蜂和爱玉子传粉小蜂(二者互为隐存种)建立了专性共生关系,榕树榕果挥发物在维系传粉小蜂与其寄主的共生关系上起着重要作用。利用Y型嗅觉仪测定薜荔榕小蜂(薜荔和爱玉子的传粉小蜂)对薜荔和爱玉子雌花期榕果挥发物的行为反应。结果表明:(1)雌花期果型的大小对薜荔榕小蜂行为反应无显著影响,薜荔大、小果型雌花期雌(雄)榕果挥发物对其传粉小蜂均具有强烈的吸引作用;(2)榕果挥发物浓度影响薜荔榕小蜂行为反应,薜荔、爱玉子雌花期雌(雄)榕果挥发物对其传粉小蜂的吸引作用均可能存在阈值反应,即榕果挥发物浓度未超过阈值时,雌花期榕果挥发物对传粉小蜂的吸引作用与挥发物浓度成正相关关系,而一旦超过阈值,榕果挥发物对传粉蜂的吸引作用显著下降,表明寄主榕果挥发物浓度影响传粉小蜂的寄主定位;(3)薜荔传粉小蜂对低浓度爱玉子雌花期雌(雄)榕果挥发物、爱玉子传粉小蜂对低浓度薜荔雌花期雌(雄)榕果挥发物均既无趋向也无驱避行为;薜荔传粉小蜂对高浓度的爱玉子雌花期雌(雄)榕果挥发物表现为显著的驱避行为,而爱玉子传粉小蜂对高浓度薜荔雌(雄)雌花期榕果挥发物表现为显著的趋向行为,因此,薜荔传粉小蜂与爱玉子传粉小蜂存在寄主专一性不对称现象,爱玉子传粉小蜂进入薜荔雌(雄)果内传粉或产卵的可能性较大,而福州地区的薜荔传粉小蜂可能难以进入爱玉子雌(雄)果内传粉或产卵。本研究结果将为榕-蜂共生体系的化学生态学理论研究以及爱玉子栽培提供科学依据。  相似文献   

19.
Dioecy is frequent in tropical forests. It has been suggested that small, unspecialized pollinators are among the factors responsible for gender separation in this habitat. The underlying assumption is that poor fliers and/or communal foragers frequently effect selfing which in turn, given sufficiently severe inbreeding depression, should favor the establishment of dioecy. At least 10% of the genera of the angiosperms includes dioecious species; in tropical flowering plants, however, pollinators are reliably known only in a few species. Whereas temperate dioecious species commonly are wind- or water-pollinated, anemophily is less important in tropical forests, but occurs in at least 30 dioecious genera. Our survey of tropical dioecious zoophilous species in 29 genera (in 21 families) for which detailed pollination information is available shows that these species have specialized flowers adapted to specific pollinators rather than generalized flowers suitable for diverse insects. Known pollinators include solitary and eusocial bees, beetles, moths, flies, wasps (including fig wasps), and rarely bats and birds, and cover a wide range in animal size and locomotive capabilities. Floral rewards comprise pollen, nectar, stylar mucilage, nutritious tissues, brood-places, and resins. About a third of the species offer no reward in the female morph, pollination by deceit apparently being common. Our data thus do not support the hypothesis that there is a broad correlation between a dioecious breeding system and unspecialized pollination, although such a correlation may be found in certain taxa. Specialized plant-pollinator relationships seem as critical in dioecious plants in tropical forests, where individuals often grow far apart, as they are in tropical plants with other breeding systems.  相似文献   

20.
1. Figs on male dioecious fig trees (Ficus, Moraceae) are breeding sites for pollinator fig wasps (Hymenoptera, Agaonidae), but figs on female plants are traps that produce only seeds. As the short‐lived fig wasps cannot reproduce in female figs, natural selection should favour individuals that avoid them. Several studies have failed to detect such discrimination, a result attributed to inter‐sexual mimicry and ‘selection to rush’ in the wasps, but their experiments failed to explicitly take into account fig age (how long they had been waiting to be pollinated). 2. We compared the relative attraction of male and female figs of known ages of the South East Asian Ficus montana Burm. f. to its pollina tor Liporrhopalum tentacularis Grandi and examined how the reproductive success of the plant and its pollinator change with the age of the figs. 3. Mean retention time for un‐pollinated figs on female plants was 16 days whereas in male figs it was 12 days. Female figs remained attractive for up to 2 weeks, although the wasps were less willing to enter older figs. After pollinator entry, receptivity continued for several days, lasting longer in figs entered by a single wasp. Consistent with abortion rates, attractiveness persisted longer in female figs. Older figs produced fewer fig wasp offspring, but similar numbers of seeds. 4. The sexual differences in floral longevity in F. montana may represent part of a previously un‐recognised reproductive strategy in some fig trees that allows male plants to ‘export’ pollinators while also maintaining a resident fig wasp population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号