首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Water deficits consistently promote higher concentrations of anthocyanins in red winegrapes and their wines. However, controversy remains as to whether there is any direct effect on berry metabolism other than inhibition of growth. Early (ED) and late (LD) season water deficits, applied before or after the onset of ripening (veraison), were imposed on field grown Vitis vinifera “Cabernet Sauvignon”, and the responses of gene expression in the flavonoid pathway and their corresponding metabolites were determined. ED accelerated sugar accumulation and the onset of anthocyanin synthesis. Both ED and LD increased anthocyanin accumulation after veraison. Expression profiling revealed that the increased anthocyanin accumulation resulted from earlier and greater expression of the genes controlling flux through the anthocyanin biosynthetic pathway, including F3H, DFR, UFGT and GST. Increases in total anthocyanins resulted predominantly from an increase of 3′4′5′-hydroxylated forms through the differential regulation of F3′H and F3′5′H. There were limited effects on proanthocyanidin, other flavonols, and on expression of genes committed to their synthesis. These results demonstrate that manipulation of abiotic stress through applied water deficits not only modulates compositional changes during berry ripening, but also alters the timing of particular aspects of the ripening process.  相似文献   

2.
Theflavonoid 3′,5′-hydroxylase (F3′,5′H) gene, derived from petunia, was introduced into chrysanthemum tissues by Agrobacterium-mediated genetic transformation. Cotyledon expiants were co-cultured withA. tumefaciens LBA 4404 harboring the vector pMBP that carriesF3′,5′H under the control of the CaMV 35S promoter andnptll as a selectable marker gene. After 72 h of co-cultivation, the expiants were placed on an MS medium supplemented with 4 mg L-1 BA, 0.1 mg L-1 NAA, 400 mg L-1 carbenicillin, and 100 mg L-1; kanamycin. After 4 weeks, kanamycin-resistant adventitious shoots had developed at a frequency of 6.3%. These shoots were then rooted and acclimatized in potting soil. Integration ofF3′,5′H into the plant genome was confirmed by Southern blot analysis. Flower buds that had red petals did not differ between the transgenic and the wild-type plants. However, petal color did change from red to bright orange to yellow when the buds developed into fully opened flowers on the transgenics. Spectrometric analysis revealed that the content of flavonoid compounds was more rapidly reduced in the transgenic petals as floral development proceeded. RT-PCR analysis showed thatF3′,5′H andflavonoid 3′hydroxylase (F3′H) were expressed simultaneously in the transgenic plants. Therefore, we suggest that this more rapid change in petal color results from 1) competition between levels of transgenicF3′,5′H and endogenousF3′H, each of which uses the same substrate in the flavonoid biosynthetic pathway and 2) the intrinsic substrate specificity of chrysanthemumDFR (dihydroflavonol 4-reductase).  相似文献   

3.
Genes up-regulated during red coloration in UV-B irradiated lettuce leaves   总被引:4,自引:0,他引:4  
Molecular analysis of gene expression differences between green and red lettuce leaves was performed using the SSH method. BlastX comparisons of subtractive expressed sequence tags (ESTs) indicated that 7.6% of clones encoded enzymes involved in secondary metabolism. Such clones had a particularly high abundance of flavonoid-metabolism proteins (6.5%). Following SSH, 566 clones were rescreened for differential gene expression using dot-blot hybridization. Of these, 53 were found to overexpressed during red coloration. The up-regulated expression of six genes was confirmed by Northern blot analyses. The expression of chalcone synthase (CHS), flavanone 3-hydroxylase (F3H), and dihydroflavonol 4-reductase (DFR) genes showed a positive correlation with anthocyanin accumulation in UV-B-irradiated lettuce leaves; flavonoid 3′,5′-hydroxylase (F3′,5′H) and anthocyanidin synthase (ANS) were expressed continuously in both samples. These results indicated that the genes CHS, F3H, and DFR coincided with increases in anthocyanin accumulation during the red coloration of lettuce leaves. This study show a relationship between red coloration and the expression of up-regulated genes in lettuce. The subtractive cDNA library and EST database described in this study represent a valuable resource for further research for secondary metabolism in the vegetable crops.  相似文献   

4.
Flower colour and cytochromes P450   总被引:8,自引:0,他引:8  
Flavonoids are major constituents of flower colour. Plants accumulate specific flavonoids and thus every species often exhibits a limited flower colour range. Three cytochromes P450 play critical roles in the flavonoid biosynthetic pathway. Flavonoid 3′-hydroxylase (F3′H, CYP75B) and flavonoid 3′,5′-hydroxylase (F3′5′H, CYP75A) catalyze the hydroxylation of the B-ring of flavonoids and are necessary to biosynthesize cyanidin-(red to magenta) and delphinidin-(violet to blue) based anthocyanins, respectively. Pelargonidin-based anthocyanins (orange to red) are synthesized in their absence. Some species such as roses, carnations and chrysanthemums do not have violet/blue flower colour due to deficiency of F3′5′H. Successful expression of heterologous F3′5′H genes in roses and carnations results in delphinidin production, causing a novel blue/violet flower colour. Down-regulation of F3′H and F3′5′H genes has yielded orange petunia and pink torenia colour that accumulate pelargonidin-based anthocyanins. Flavone synthase II (CYP93B) catalyzes the synthesis of flavones that contribute to the bluing of flower colour, and modulation of FNSII gene expression in petunia and tobacco changes their flower colour. Extensive engineering of the anthocyanin pathway is therefore now possible, and can be expected to enhance the range of flower colours.  相似文献   

5.
The enzymes flavonoid 3′-hydroxylase (F3′H) and flavonoid 3′,5′-hydroxylase (F3′5′H) play an important role in flower color by determining the B-ring hydroxylation pattern of anthocyanins, the major floral pigments. F3′5′H is necessary for biosynthesis of the delphinidin-based anthocyanins that confer a violet or blue color to most plants. Antirrhinum majus does not produce delphinidin and lacks violet flower colour while A. kelloggii produces violet flowers containing delphinidin. To understand the cause of this inter-specific difference in the Antirrhinum genus, we isolated one F3′H and two F3′5′H homologues from the A. kelloggii petal cDNA library. Their amino acid sequences showed high identities to F3′Hs and F3′5′Hs of closely related species. Transgenic petunia expressing these genes had elevated amounts of cyanidin and delphinidin respectively, and flower color changes in the transgenics reflected the type of accumulated anthocyanidins. The results indicate that the homologs encode F3′H and F3′5′H, respectively, and that the ancestor of A. majus lost F3′5′H activity after its speciation from the ancestor of A. kelloggii.  相似文献   

6.
Shih CH  Chu H  Tang LK  Sakamoto W  Maekawa M  Chu IK  Wang M  Lo C 《Planta》2008,228(6):1043-1054
Rice is a model system for monocot but the molecular features of rice flavonoid biosynthesis have not been extensively characterized. Rice structural gene homologs encoding chalcone synthase (CHS), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3′-hydroxylase (F3′H), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS) were identified by homology searches. Unique differential expression of OsF3H, OsDFR, and OsANS1 controlled by the Pl w locus, which contains the R/B-type regulatory genes OSB1 and OSB2, was demonstrated during light-induced anthocyanin accumulation in T65-Plw seedlings. Previously, F3H genes were often considered as early genes co-regulated with CHS and CHI genes in other plants. In selected non-pigmented rice lines, OSB2 is not expressed following illumination while their expressed OSB1sequences all contain the same nucleotide change leading to the T64 M substitution within the conserved N-terminal interacting domain. Furthermore, the biochemical roles of the expressed rice structural genes (OsCHS1, OsCHI, OsF3H, and OsF3′H) were established in planta for the first time by complementation in the appropriate Arabidopsis transparent testa mutants. Using yeast two-hybrid analysis, OsCHS1 was demonstrated to interact physically with OsF3H, OsF3′H, OsDFR, and OsANS1, suggesting the existence of a macromolecular complex for anthocyanin biosynthesis in rice. Finally, flavones were identified as the major flavonoid class in the non-pigmented T65 seedlings in which the single-copy OsF3H gene was not expressed. Competition between flavone and anthocyanin pathways was evidenced by the significant reduction of tricin accumulation in the T65-Plw seedlings. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
8.
Pollination-constant non-astringent (PCNA) trait is desirable in persimmon production because it confers natural astringency loss in mature persimmon fruit. Expression of the PCNA trait requires six homozygous recessive PCNA (ast) alleles at the single ASTRINGENCY (AST) locus in hexaploid persimmon. When crossing non-PCNA accessions to breed PCNA offspring, knowledge of ast and non-PCNA (AST) allele dosage in the parental accessions is important, because more PCNA offspring can segregate from a non-PCNA parent with more ast and fewer AST alleles. Previously, we have demonstrated that a region linked to the AST locus has numerous fragment size polymorphisms with varying numbers of simple sequence repeats. Here, we reveal the polymorphisms in this region in a broad collection of persimmon germplasms. Among 237 accessions, we distinguished 21 AST- and 5 ast-linked fragments with different sizes. Based on the number of fragments detected per individual, we identified 21 non-PCNA accessions with three different ast alleles; by crossing these with a PCNA parent, we obtain PCNA offspring under autohexaploid inheritance. Furthermore, AST and ast allelic combination patterns in hexaploid persimmon were shown to be applicable to cultivar identification of non-PCNA accessions. We directly sequenced ast-linked fragments from 48 accessions with one-size peak of ast-linked fragment and found two distinctive groups of fragments based on single nucleotide polymorphisms. This result suggests that a bottleneck event occurred during ast allele development. We conclude that our fragment size profile can be used to accelerate PCNA breeding that uses non-PCNA parents and to study ast allele accumulation in persimmon.  相似文献   

9.
10.
11.
12.
Two different heterologous expression systems, microsomal fractions of Saccharomyces cerevisiae and transgenic tobacco plants, were used to investigate the enzymatic activities of flavonoid 3′-hydroxylase (GtF3′H) and flavone synthase II (GtFSII) homologues isolated from gentian petals. Recombinant GtF3′H expressed in yeast showed hydroxylation activities in the 3′ position with several flavonoid substrates, while recombinant GtFSII was able to produce flavone from flavanone. GtF3′ H-expressing transgenic tobacco plants showed a slight increase in anthocyanin content and flower color intensity, and conversion of the flavonol quercetin from kaempferol. On the other hand, GtFSII-expressing plants showed a remarkable reduction in anthocyanin content and flower color intensity, and additional accumulation of flavone, especially luteolin derivatives. We demonstrated that two cytochrome P450s from gentian petals have F3′H and FSII enzymatic activities both in vitro and in vivo, and might therefore be useful in modification of flower color using genetic engineering.  相似文献   

13.
The pollination-constant, non-astringent (PCNA) type of persimmon is ideal for production because its fruits lose astringency at harvest regardless of seed formation. The PCNA trait in Japanese persimmons is controlled by a single locus, AST, and is recessive to the non-PCNA trait. Because cultivated persimmon is hexaploid, only the homozygous genotype with six recessive alleles is PCNA. A region tightly linked to AST has been used as a DNA marker for breeding. Three non-PCNA (A) alleles have been reported. Here, we show that the region linked to AST is highly polymorphic and includes microsatellites. By analyzing the size of PCR-amplified fragments, we distinguished 12 different A alleles from 14 non-PCNA cultivars and a Chinese PCNA ‘Luotian-tianshi.’ Then, using A fragment size, we assessed A allele inheritance in six non-PCNA × PCNA populations by analyzing segregation of each A allele in a population and segregation of progeny genotypes. By using A allele segregation analysis, we were able to estimate the copy number of each A allele in five non-PCNA parents but not in ‘Amahyakume.’ By analyzing progeny genotype segregation, we were able to estimate the ‘Amahyakume’ genotype. Our approach can be used not only for the selection of PCNA individuals in populations, but also for estimation of the copy number of A alleles in a possible non-PCNA parent. This would enable us to select non-PCNA parents with fewer A alleles, which would segregate more PCNA individuals in crosses with PCNA cultivars.  相似文献   

14.
Flavonoid 3′-hydroxylase (F3′H: EC 1.14.13.21) is an important enzyme which determines the hydroxylation pattern of anthocyanins. In this study, the full-length cDNA and genomic DNA of F3H were isolated and characterized from the purple-fleshed sweet potato (Ipomoea batatas). IbF3’′H was 1,789 bp containing a 1,554 bp open reading frame (ORF) encoding 518 amino acids. Comparative and bioinformatic analysis revealed that IbF3′H was highly homologous with F3′Hs from other plant species. Conserved domain search revealed that IbF3′H was a cytochrome P450 dependent enzyme. Three F3′H-specific motifs (V75VVAAS80, G427GEK430 and V433DVKG437) were conserved in IbF3′H. Phylogenetic analysis revealed that IbF3H was clustered into the same subgroup with the homologues from I. purpurea, I. tricolor and I. nil. There were multiple copies of the IbF3H gene in the genome of I. batatas. IbF3H was constitutively expressed in all tested tissues including fibrous roots, thick roots, storage roots, stems and leaves. During storage root formation, IbF3H was expressed most abundantly in the storage roots, suggesting that the anthocyanin biosynthesis is also active in the under-ground organs. IbF3H expression was associated with anthocyanin accumulation in five different sweet potato cultivars tested. Complementative analysis implied that the full-length cDNA of IbF3H could encode a functional protein and had a special catalytic activity of flavonoid 3′-hydroxylase.  相似文献   

15.
Chinese pollination-constant and non-astringent persimmon (C-PCNA) has important application values in the genetic improvement of PCNA for its trait of natural deastringency controlled by a single dominant gene. However, the key genes and the regulatory networks are still not fully understood. The process of C-PCNA natural deastringency may be associated with the acetaldehyde-mediated coagulation of soluble tannins, but the functions of ALDH2 genes related to the metabolism of acetaldehyde are not clear. In this work, three types of persimmon cultivars, ‘Eshi 1’ and ‘Luotian Tianshi’ (C-PCNA type), ‘Youhou’ (J-PCNA type), and ‘Mopanshi’ (non-PCNA type), were sampled. Two members of ALDH2 family genes, DkALDH2a and DkALDH2b, were isolated from ‘Eshi 1’ persimmon fruit. Gene expression patterns indicated that they may be involved in “coagulation effect”, which leads to natural deastringency in C-PCNA persimmon fruit. Transient expression in ‘Eshi 1’ leaves further demonstrated that their expression can reduce the consumption of soluble tannins and inhibit the astringency removal process. Therefore, DkALDH2a and DkALDH2b are negatively correlated with natural deastringency in C-PCNA persimmon.  相似文献   

16.
High resolution volatile profiling (67 compounds identified) of fruits from 12 persimmon cultivars was established and used to characterize the different astringency types of persimmon fruit before and after deastringency treatment. Analysis of the volatile profile of fruit enables us to differentiate between cultivars that at the moment of harvest produced non-astringent fruit (Pollination Constant Non Astringent—PCNA-type) from astringent ones (non-PCNA-type). Fruit failing to accumulate astringent compounds naturally (PCNA fruit) showed high levels of 3(2H)-benzofuranone, while this compound was not detected in any astringent type fruit (non-PCNA). In addition to this, PCNA cultivars also showed at harvest higher accumulation of benzeneacetaldehyde and lipid-derived aldehydes (hexanal, heptanal, octanal and decanal) than non-PCNA fruit. The application of postharvest deastringency treatment to all non-PCNA cultivars resulted on an important insolubilization of tannins. In general the CO2-treatment enhanced the levels of acetaldehyde, however those cultivars showing high levels of dihydrobenzofuran at harvest did not present an increment of acetaldehyde. In contrast, all non-PCNA cultivars exhibited an important accumulation of lipid-derived aldehydes due to CO2-treatment. Therefore, we propose that lipid-derived aldehydes (mainly decanal, octanal and heptanal) may be playing a role in the astringency loss. Our results suggest that 3(2H)-benzofuranone, benzeneacetaldehyde and lipid-derived aldehydes could be used as markers for both natural and artificial loss of astringency.  相似文献   

17.
18.
Persimmon (Diospyros kaki L.), belonging to the Ebenaceae family, has been used not only as a fresh fruit, but also for many medicinal uses. Carotenoids are the main pigment in persimmon fruit, which contribute significantly to fruit color and nutritional quality due to their composition and content. In this study, fruit quality indices, carotenoid contents and expression of carotenogenic genes were analyzed in two types of persimmon fruit. The results demonstrated that there was a positive correlation between fruit color and the contents of main composition and total carotenoids. Carotenoid accumulation in persimmon fruit resulted from the interaction of carotenogenic genes, but the molecular mechanisms responsible for accumulation of carotenoids in two types of persimmon fruit had a few differences. As a complete unit, the relatively low expression level of phytoene synthase gene (DkPSY) in “Niuxinshi” resulted in low carotenoid contents or even under the detection limit at the early fruit developmental stages; but low carotenoid contents in “Nishimurawase” were due to the relatively low expression level of carotenogenic genes other than DkPSY. At the late fruit developmental stages, increased expression levels of DkPSY, phytoene desaturase gene and beta-carotene hydroxylase gene (DkBCH) induced elevated carotenoid contents; because all carotenogenic genes strongly expressed in “Nishimurawase”, a large amount of carotenoids were accumulated. In addition, β-cryptoxanthin was the main composition whose content increased with the fruit maturity changes, which was mainly because of DkBCH which might lead more conversion of β-carotene to β-cryptoxanthin.  相似文献   

19.
Anthocyanins and tannins are two of the most abundant flavonoids found in grapevine, and their synthesis is derived from the phenylpropanoid pathway. As described for model species such as Arabidopsis thaliana, maize and petunia, the end-point branches of this pathway are tightly regulated by the combinatorial interaction of three families of regulatory factors; MYB, bHLH (also known as MYC) and WDR proteins. Among these, only MYB genes have been previously identified in grapes. Here, we report the isolation of the first members from the WDR and bHLH families found in Vitis vinifera, named WDR1, WDR2 and MYCA1. WDR1 contributed positively to the accumulation of anthocyanins when it was overexpressed in A. thaliana, although it was not possible to determine the function of WDR2 by ectopic expression. The sub-cellular localizations of WDR1 and MYCA1 were observed by means of GFP-fusion proteins, indicating both cytoplasm and nuclear localization, in contrast to the localization of a MYB factor exclusively in the nucleus. The expression patterns of these genes were quantified in coloured reproductive organs throughout development, and correlated with anthocyanin accumulation and the expression profiles of the flavonoid-related MYBA1-2, UFGT, and ANR genes. In vitro grapevine plantlets grown under high salt concentrations showed a cultivar-dependent response for anthocyanin accumulation, which correlated with the expression of MYBA1-2, MYCA1 and WDR1 genes. These results suggest that MYCA1 may regulate ANR and UFGT and that this last control is easier to distinguish whenever MYBA genes are absent or in low abundance. Future studies should address the specific interactions of these proteins and their quantitative contribution to flavonoid synthesis in grape berries.  相似文献   

20.
Flavonoid 3′ (F3′OH) and 3′5′ hydroxylase (F3′5′OH) play a major role in the synthesis of flavonoids. They are involved in the flavonoid modification and the B-ring hydroxylation produces quercetin and myricetin, respectively. We introduced the petunia F3′OH and F3′5′OH genes in potato and expression of these enzyme was confirmed by Southern and Northern blot analyses in these transgenic plants. In the flavonoid, staining experiment, all transgenic plants with petunia F3′OH and F3′5′OH genes were successfully changed with their green color to orange, confirming that quercetin was synthesized in those plants. Especially, the F3′5′OH transgenic potatoes showed the strongest orange color, and it was revealed by capillary electrophoresis that they produce quercetin one and a half times as much as the untransformed potatoes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号