首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 241 毫秒
1.
Transgenic Bacillus thuringiensis Berliner (Bt) crops receive particular attention because they carry genes encoding insecticidal proteins that might negatively affect non‐target arthropods. Here, laboratory experiments were conducted to evaluate the impact of Cry1Ab‐expressing transgenic maize [5422Bt1 (event Bt11) and 5422CBCL (MON810)] on the biological parameters of two non‐target arthropods, the aphid Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae) and its predator the ladybeetle Propylea japonica (Thunberg) (Coleoptera: Coccinellidae). In a long‐term assay (three generations), no significant differences were found between R. maidis fed Bt maize and those fed a near‐isogenic line (5422) when individual parameters were compared, including nymph development time, adult longevity, aphid spawning period, and fecundity. No negative effects were detected throughout the life cycle of Pjaponica in aphids’ feeding amount, development (nymphs, pupae, adults, and progeny eggs), fecundity, or egg hatching when they preyed on Bt maize‐fed aphids compared with non‐Bt maize treatments. A tritrophic assay revealed that Cry1Ab was highly diluted through the food chain (Bt maize leaves, R. maidis, and P. japonica), as detected by an enzyme‐linked immunosorbent assay (ELISA). In conclusion, although Cry1Ab concentrations in maize leaves increased as the plants developed, Cry1Ab levels were significantly reduced in the aphid R. maidis, and no traces of Cry1Ab were detected in P. japonica preying on Bt maize‐fed aphids. The two hybrids of Bt maize expressing Cry1Ab had no negative effects on the measured biological parameters of the aphid R. maidis or its predator, the ladybeetle P. japonica.  相似文献   

2.
1 Auchenorrhyncha (Planthoppers and Leafhoppers) are not only pests of many crops, but they are also nontarget organisms with respect to Bt‐protein expressing genetically modified plants. As herbivorous arthropods, planthoppers and leafhoppers ingest Cry proteins depending on their feeding behaviour. Consequently, they are directly exposed to these entomotoxic proteins and can also serve as a source of Cry protein exposure to predatory arthropods. Therefore, it is reasonable to use Auchenorrhyncha in the risk assessment of genetically modified crops. 2 During a 2‐year field study, we evaluated four different methods in terms of their feasibility to assess the impacts of plant‐incorporated protectants from Bt‐maize and of insecticide use on this group of arthropods. Visual assessment of plants, sweep netting, yellow traps and custom made sticky traps were utilized in field plots of Bt‐maize MON810, untreated near‐isogenic maize and insecticide‐treated near‐isogenic maize and were compared with respect to their capability to reflect the diversity and abundance of Auchenorrhyncha species. 3 Zyginidia scutellaris (Herrich‐Schäffer) (Cicadomorpha: Cicadellidae) represented more than 94% of all captured individuals in both years. The analysis of Z. scutellaris data showed no consistent differences between Bt‐maize MON810 and the untreated near isogenic hybrid, demonstrating no negative impact of MON810 on this species. Insecticide treatment, on the other hand, was not equivalent to the isogenic maize in terms of Z. scutellaris densities. Based on the collected data and on practical considerations, we recommend the combined use of transect‐wise sweep netting and sticky traps for the sampling of Auchenorrhyncha in maize.  相似文献   

3.
The transgenic maize (Zea mays L.) event MON 88017 produces the Bacillus thuringiensis Berliner (Bt) toxin Cry3Bb1 to provide protection from western corn rootworm (Diabrotica virgifera virgifera LeConte) larval feeding. In response to reports of reduced performance of Cry3Bb1‐expressing maize at two locations in Illinois, we conducted a two‐year experiment at these sites to characterize suspected resistance, as well as to evaluate root injury and adult emergence. Single‐plant bioassays were performed on larvae from each population that was suspected to be resistant. Results indicate that these populations had reduced mortality on Cry3Bb1‐expressing maize relative to susceptible control populations. No evidence of cross‐resistance between Cry3Bb1 and Cry34/35Ab1 was documented for the Cry3Bb1‐resistant populations. Field studies were conducted that included treatments with commercially available rootworm Bt hybrids and their corresponding non‐Bt near‐isolines. When compared with their near‐isolines, larval root injury and adult emergence were typically reduced for hybrids expressing Cry34/35Ab1 either alone or in a pyramid. In many instances, larval root injury and adult emergence were not significantly different for hybrids expressing mCry3A or Cry3Bb1 alone when compared with their non‐Bt near‐isolines. These findings suggest that Cry34/35Ab1‐expressing Bt maize may represent a valuable option for maize growers where Cry3Bb1 resistance is either confirmed or suspected. Consistent trends in adult size (head capsule width and dry mass) for individuals recovered from emergence cages were not detected during either year of this experiment. Because of the global importance of transgenic crops for managing insect pests, these results suggest that improved decision‐making for insect resistance management is needed to ensure the durability of Bt maize.  相似文献   

4.
The sensitivity of the cereal leaf beetle, Oulema melanopus (Coleoptera: Chrysomelidae), to maize-expressed Bacillus thuringiensis (Bt) proteins was investigated in the present study. Neonate larvae of O. melanopus were caged on leaves of Cry3Bb1-expressing (MON88017) or Cry1Ab-expressing (MON810) Bt maize, the corresponding near-isolines, or two non-related, conventional maize varieties. Larval survival was reduced on Cry3Bb1-expressing, but not on Cry1Ab-expressing maize compared with conventional varieties. Differences among conventional varieties were also present. The amount of eaten leaf material, developmental time to prepupal stage, and prepupal weight did not differ between Bt maize varieties and their corresponding near-isolines. In an additional feeding study with newly emerged adults, survival and beetle weight did not differ when leaves of Cry3Bb1-expressing maize or the near-isoline were offered as food over 3 weeks. ELISA measurements revealed that larvae feeding on Bt maize contained rather high Cry3Bb1 or Cry1Ab levels, which were in the same order of magnitude as the leaves. In contrast, concentrations in feces were one order, and concentrations in prepupae and adults two orders of magnitude lower.  相似文献   

5.
Abstract Sugarcane borer, Diatraea saccharalis (F.), is a major target of transgenic maize expressing Bacillus thuringiensis (Bt) proteins in South America and the US mid‐south region. Resistance development in target pest populations is a major threat to the sustainable use of Bt crops. In our field trials in 2009, a significant number of live borers and plant injury from D. saccharalis were observed in an experimental SmartStax? maize line. The objective of this study was to assess the relative susceptibility of two field populations of D. saccharalis collected from non‐Bt and Bt maize plants containing SmartStax? traits to five individual Cry proteins. The five Bt proteins included two proteins (Cry1A.105 and Cry2Ab2) that were expressed in SmartStax? maize plants and three other common Bt proteins (Cry1Aa, Cry1Ab and Cry1Ac) that were not produced in SmartStax?. Larval mortality and growth inhibition on Bt diet of the fourth generation after field collections were evaluated 7 days after release of neonates on the diet surface. The laboratory bioassays showed that 50% lethal concentration (LC50) values for Cry1A.105 and Cry2Ab2 for the population originated from Bt plants were 3.55‐ and 1.34‐fold greater, respectively, than those of the population collected from non‐Bt plants. In contrast, relative to the population from non‐Bt plants, the LC50 of the population sampled from Bt plants were 3.85‐, 2.5‐ and 1.64‐fold more sensitive to Cry1Aa, Cry1Ab and Cry1Ac, respectively. The results did not provide clear evidence to conclude that the observed field survival of D. saccharalis on Bt plants was associated with increased levels of resistance.  相似文献   

6.
Transgenic corn (MON 810), expressing the Bacillus thuringiensis (Bt) protein, Cry1Ab, was evaluated under greenhouse conditions for its tolerance to the maize stem borer, Chilo partellus. Bt corn (MON 810) provided effective protection against the stem borer even under a high level of larval infestation in the greenhouse. The observed tolerance is examined and discussed in the light of the susceptibility of C. partellus to the Cry1Ab protein in laboratory bioassays. The implications of the tissue concentrations of Cry1Ab in MON 810, and baseline susceptibility recorded in the current study, for insect-resistance management are discussed.  相似文献   

7.
Laboratory bioassays were conducted to evaluate the response of first instar larvae of the monarch butterfly, Danaus plexippus L. (Lepidoptera: Danaidae), a non‐target species, to pollen from corn, Zea mays L. (Commelinales: Poaceae), from two new corn hybrids genetically modified to express different types of insecticidal proteins derived from the bacterium Bacillus thuringiensis Berliner (Bacillales: Bacillaceae) (Bt). One hybrid expresses both Cry1Ab and Cry2Ab2 proteins (MON 810 × MON 84006), active against lepidopteran pests, and the other expresses Cry3Bb1 protein (MON 863), targeted against coleopteran pests. First instar larvae were placed on milkweed leaves (Asclepias syriaca L.) (Gentianales: Asclepiadaceae) dusted with doses of either Bt pollen or its nonexpressing (isoline) pollen counterpart ranging from 50 to 3200 grains cm?2 of milkweed leaves, or no pollen at all. Larvae were exposed to pollen for 4 days, then moved to pollen‐free leaves and observed for another 6 days. Survival was observed after 2, 4, and 10 days. Weight gain was estimated after 4 and 10 days, leaf consumption after 2 and 4 days, and larval development after 10 days. Exposure to pollen of the Cry1Ab/Cry2Ab2‐Bt expressing hybrid reduced larval survival approximately 7.5–23.5% at the dose ranges tested relative to a no pollen control. Larval weight gain and consumption were reduced for larvae exposed to pollen of this hybrid and a small minority of larvae (3.1%) never developed past the third instar after 10 days of observation. Exposure to pollen of the Cry3Bb1‐Bt expressing hybrid had no negative effects on larval mortality, weight gain, consumption, or development relative to the consumption of Bt‐free corn pollen. The relevance of these findings to the risk that these Bt corn hybrids pose to monarch populations is discussed.  相似文献   

8.
Field studies were done to assess how much of the transgenic, insecticidal protein, Cry1Ab, encoded by a truncated cry1Ab gene from Bacillus thuringiensis (Bt), was released from Bt-maize MON810 into soil and whether bacterial communities inhabiting the rhizosphere of MON810 maize were different from those of the rhizosphere of nontransgenic maize cultivars. Bacterial community structure was investigated by SSCP (single-strand conformation polymorphism) of PCR-amplified 16S rRNA genes from community DNA. Using an improved extraction and detection protocol based on a commercially available ELISA, it was possible to detect Cry1Ab protein extracted from soils to a threshold concentration of 0.07 ng/g soil. From 100 ng of purified Cry1Ab protein added per gram of soil, only an average of 37% was extractable. At both field sites investigated, the amount of Cry1Ab protein in bulk soil of MON810 field plots was always lower than in the rhizosphere, the latter ranging from 0.1 to 10 ng/g soil. Immunoreactive Cry1Ab protein was also detected at 0.21 ng/g bulk soil 7 months after harvesting, i.e. in April of the following year. At this time, however, higher values were found in residues of leaves (21 ng/g) and of roots (183 ng/g), the latter corresponding to 12% of the Cry1Ab protein present in intact roots. A sampling 2 months later indicated further degradation of the protein. Despite the detection of Cry1Ab protein in the rhizosphere of MON810 maize, the bacterial community structure was less affected by the Cry1Ab protein than by other environmental factors, i.e. the age of the plants or field heterogeneities. The persistence of Cry1Ab protein emphasizes the importance of considering post-harvest effects on nontarget organisms.  相似文献   

9.
Scientific studies are frequently used to support policy decisions related to transgenic crops. Schmidt et al., Arch Environ Contam Toxicol 56:221–228 (2009) recently reported that Cry1Ab and Cry3Bb were toxic to larvae of Adalia bipunctata in direct feeding studies. This study was quoted, among others, to justify the ban of Bt maize (MON 810) in Germany. The study has subsequently been criticized because of methodological shortcomings that make it questionable whether the observed effects were due to direct toxicity of the two Cry proteins. We therefore conducted tritrophic studies assessing whether an effect of the two proteins on A. bipunctata could be detected under more realistic routes of exposure. Spider mites that had fed on Bt maize (events MON810 and MON88017) were used as carriers to expose young A. bipunctata larvae to high doses of biologically active Cry1Ab and Cry3Bb1. Ingestion of the two Cry proteins by A. bipunctata did not affect larval mortality, weight, or development time. These results were confirmed in a subsequent experiment in which A. bipunctata were directly fed with a sucrose solution containing dissolved purified proteins at concentrations approximately 10 times higher than measured in Bt maize-fed spider mites. Hence, our study does not provide any evidence that larvae of A. bipunctata are sensitive to Cry1Ab and Cry3Bb1 or that Bt maize expressing these proteins would adversely affect this predator. The results suggest that the apparent harmful effects of Cry1Ab and Cry3Bb1 reported by Schmidt et al., Arch Environ Contam Toxicol 56:221–228 (2009) were artifacts of poor study design and procedures. It is thus important that decision-makers evaluate the quality of individual scientific studies and do not view all as equally rigorous and relevant.  相似文献   

10.
The cultivation of Lepidoptera‐resistant Bt‐maize may affect nontarget butterflies. We assessed the risk posed by event MON89034 × MON88017 (expressing Cry1A.105 and Cry2Ab2 against corn borers) to nontarget Lepidoptera. Using the small tortoiseshell Aglais urticae, a butterfly species common in central Europe, as a test organism we (i) assessed the toxicity of Bt‐maize pollen on butterfly larvae; (ii) measured pollen deposition on leaves of the host plant Urtica dioica; (iii) mapped the occurrence and distribution of host plants and larvae in two arable landscapes in Germany during maize anthesis; and (iv) described the temporal occurrence of a 1‐year population of A. urticae. (i) Larvae‐fed 200 Bt‐maize pollen grains/cm2 had a reduced feeding activity. Significant differences in developmental time existed at pollen densities of 300 Bt‐maize pollen grains/cm2 and in survival at 400 grains/cm2. (ii) The highest pollen amount found was 212 grains/cm2 at the field margin. Mean densities were much lower. (iii) In one region, over 50% of A. urticae nests were located within 5 m of a maize field, while in the other, all nests were found in more than 25 m distance to a maize field. (iv) The percentage of larvae developing during maize anthesis was 19% in the study area. The amount of pollen from maize MON89034 × MON88017 found on host plants is unlikely to adversely affect a significant proportion of larvae of A. urticae. This paper concludes that the risk of event MON89034 × MON88017 to populations of this species is negligible.  相似文献   

11.
The survival of KS-SC DiPel-resistant and -susceptible European corn borer, Ostrinia nubilalis (Hübner), was evaluated on different tissues from corn, Zea mays L., hybrids, including a nontransgenic and two transgenic corn plants (events MON810 and Bt11) expressing high doses of Bacillus thuringiensis (Bt) Cry1Ab. The survival of Bt-resistant and -susceptible third instars was similar after a 5-d exposure to transgenic plant tissues. Survivors eventually died when returned to Bt corn tissues, but many were able to continue development when transferred to non-Bt corn tissues. Survival of resistant and susceptible larvae also was evaluated in bioassays with dilutions of leaf extracts from the three corn hybrids incorporated in an artificial diet. In these assays, survival was significantly higher for resistant O. nubilalis neonates at three of the five dilutions compared with the susceptible strain, but the resistance ratio was only 2.2- and 2.4-fold for MON810 and Bt11, respectively. The data demonstrate that Bt-resistant and unselected control O. nubilalis larvae were similar in susceptibility to MON810 and Bt11 event corn hybrids. Although we were unable to evaluate the Cry1Ab protein that larvae were exposed to in the transgenic tissue because of company restrictions, Cry1Ab protoxin produced in Escherichia coli was incubated with extracts from non-Bt corn leaves to simulate the in planta effect on the transgenic protein. Cry1Ab protoxin was hydrolyzed rapidly by enzymes in the corn extract into peptide fragments with molecular masses ranging from 132 to 74 kDa, and eventually 58 kDa. Overall, these data suggest that plant enzymes hydrolyze transgenic toxin to one that is functionally activated. Therefore, resistant insect populations with reduced proteinase activity do not seem to pose a threat to the efficacy of commercial MON810 and Bt11 corn hybrids.  相似文献   

12.
Abstract Maize production in the United States is dominated by plants genetically modified with transgenes from Bacillus thuringiensis (Bt). Cry3Bb delta endotoxins expressed by Bt maize specifically target corn rootworms (genus Diabrotica) and have proven highly efficacious. However, development of resistance to Bt maize, especially among western corn rootworm (Diabrotica virgifera virgifera) populations, poses a significant threat to the future viability of this pest control biotechnology. The structured refuge insect resistance management (IRM) strategy implemented in the United States for Bt maize adopts a conservative approach to managing resistance by assuming no fitness costs of Bt resistance, even though these trade‐offs strongly influence the dynamics of Bt resistance within numerous agricultural pest species. To investigate the effects of Bt resistance on fitness components of western corn rootworm, we compared survivorship, fecundity and viability of five Bt‐resistant laboratory lines reared on MON863 (YieldGard Rootworm), a Bt maize product that expresses Cry3Bb1 delta endotoxin, and on its non‐transgenic isoline. Analysis of performance on the isoline maize demonstrated no fitness costs associated with Bt resistance. In fact, resistant lines emerged approximately 2–3 days earlier than control lines when reared on both MON863 and the isoline, indicating that selection for Bt resistance resulted in a general increase in the rate of larval development. In addition, resistant lines reared on Bt maize displayed higher fecundity than those reared on the isoline, which may have significant management implications. These data will be valuable for formulating improved IRM strategies for a principal agricultural pest of maize.  相似文献   

13.
Bt maize cultivars based on the event MON810 (expressing Cry1Ab) have shown high efficacy for controlling corn borers. However, their efficiency for controlling some secondary lepidopteran pests such as Mythimna unipuncta has been questioned, raising concerns about potential outbreaks and its economic consequences. We have selected a resistant strain (MR) of M. unipuncta, which is capable of completing its life cycle on Bt maize and displays a similar performance when feeding on both Bt and non-Bt maize. The proteolytic activation of the protoxin and the binding of active toxin to brush border membrane vesicles were investigated in the resistant and a control strain. A reduction in the activity of proteolytic enzymes, which correlates with impaired capacity of midgut extracts to activate the Cry1Ab protoxin has been observed in the resistant strain. Moreover, resistance in larvae of the MR strain was reverted when treated with Cry1Ab toxin activated with midgut juice from the control strain. All these data indicate that resistance in the MR strain is mediated by alteration of toxin activation rather than to an increase in the proteolytic degradation of the protein. By contrast, binding assays performed with biotin labelled Cry1Ab suggest that binding to midgut receptors does not play a major role in the resistance to Bt maize. Our results emphasize the risk of development of resistance in field populations of M. unipuncta and the need to consider this secondary pest in ongoing resistance management programs to avoid the likely negative agronomic and environmental consequences.  相似文献   

14.
Approximately 22 000 hectares (5% of the total maize growing area) of transgenic maize expressing the Cry1Ab toxin from Bacillus thuringiensis (Bt maize) have been planted annually in Spain since 1998. Changes in the susceptibility to Cry1Ab of Spanish populations of the Mediterranean corn borer (MCB), Sesamia nonagrioides (Lefebvre) (Lepidoptera: Noctuidae), and the European corn borer (ECB), Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), were assessed by annual monitoring on Bt maize fields. No increase in resistance was detected in the MCB populations from Ebro, Albacete, and Badajoz, nor in the ECB populations from Ebro and Badajoz during the period 1999–2002. The susceptibility of the MCB population from Madrid fluctuated from year to year, but a gradual trend towards higher levels of tolerance was not observed. Laboratory selection assays for eight generations yielded selected strains of MCB and ECB that were 21‐ and 10‐fold significantly more tolerant to Cry1Ab than the corresponding unselected strains, respectively. Nevertheless, none of the field‐collected or laboratory‐selected larvae were able to survive on Bt maize. Considering these data, no consistent shifts in susceptibility were found for Spanish populations of MCB nor ECB after 5 years of Bt maize cultivation, but systematic field monitoring needs to be continued.  相似文献   

15.
Genetically modified plants expressing insecticidal proteins from Bacillus thuringiensis (Bt) offer valuable options for managing insect pests with considerable environmental and economic benefits. Despite the benefits provided by Bt crops, the continuous expression of these insecticidal proteins imposes strong selection for resistance in target pest populations. Bt maize (Zea mays) hybrids have been successful in controlling fall armyworm (Spodoptera frugiperda), the main maize pest in Brazil since 2008; however, field-evolved resistance to the protein Cry1F has recently been reported. Therefore it is important to assess the possibility of cross-resistance between Cry1F and other Cry proteins expressed in Bt maize hybrids. In this study, an F2 screen followed by subsequent selection on MON 89034 maize was used to select an S. frugiperda strain (RR) able to survive on the Bt maize event MON 89034, which expresses the Cry1A.105 and Cry2Ab2 proteins. Field-collected insects from maize expressing the Cry1F protein (event TC1507) represented most of the positive (resistance allele-containing) (iso)families found. The RR strain showed high levels of resistance to Cry1F, which apparently also conferred high levels of cross resistance to Cry1A.105 and Cry1Ab, but had only low-level (10-fold) resistance to Cry2Ab2. Life history studies to investigate fitness costs associated with the resistance in RR strain revealed only small reductions in reproductive rate when compared to susceptible and heterozygous strains, but the RR strain produced 32.2% and 28.4% fewer females from each female relative to the SS and RS (pooled) strains, respectively. Consistent with the lack of significant resistance to Cry2Ab2, MON 89034 maize in combination with appropriate management practices continues to provide effective control of S. frugiperda in Brazil. Nevertheless, the occurrence of Cry1F resistance in S. frugiperda across Brazil, and the cross-resistance to Cry1Ab and Cry1A.105, indicates that current Cry1-based maize hybrids face a challenge in managing S. frugiperda in Brazil and highlights the importance of effective insect resistance management for these technologies.  相似文献   

16.
In the United States of America, the western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is commonly managed with transgenic corn (Zea mays L.) expressing insecticidal proteins from the bacteria Bacillus thuringiensis Berliner (Bt). Colonies of this pest have been selected in the laboratory on each commercially available transformation event and several resistant field populations have also been identified; some field populations are also resistant. In this study, progeny of a western corn rootworm population collected from a Minnesota corn field planted to SmartStax® corn were evaluated for resistance to corn hybrids expressing Cry3Bb1 (event MON88017) or Cry34/35Ab1 (event DAS‐59122‐7) and to the individual constituent proteins in diet‐overlay bioassays. Results from these assays suggest that this population is resistant to Cry3Bb1 and is incompletely resistant to Cry34/35Ab1. In diet toxicity assays, larvae of the Minnesota (MN) population had resistance ratios of 4.71 and >13.22 for Cry34/35Ab1 and Cry3Bb1 proteins, respectively, compared with the control colonies. In all on‐plant assays, the relative survival of the MN population on the DAS‐59122‐7 and MON88017 hybrids was significantly greater than the control colonies. Larvae of the MN population had inhibited development when reared on DAS‐59122‐7 compared with larvae reared on the non‐Bt hybrid, indicating resistance was incomplete. Overall, these results document resistance to Cry3Bb1 and an incomplete resistance to Cry34/35Ab1 in a population of WCR from a SmartStax® performance problem field.  相似文献   

17.
The cultivation of genetically modified plants (GMP) has raised concerns regarding the plants’ ecological safety. A greenhouse experiment was conducted to assess the impact of five seasons of continuous Bt (Bacillus thuringiensis) maize cultivation on the colonisation and community structure of the non-target organisms arbuscular mycorrhizal fungi (AMF) in the maize roots, bulk soils and rhizospheric soils using the terminal restriction fragment length polymorphism (T-RFLP) analysis of the 28S ribosomal DNA and sequencing methods. AMF colonisation was significantly higher in the two Bt maize lines that express Cry1Ab, 5422Bt1 (event Bt11) and 5422CBCL (MON810) than in the non-Bt isoline 5422. No significant differences were observed in the diversity of the AMF community between the roots, bulk soils and rhizospheric soils of the Bt and non-Bt maize cultivars. The AMF genus Glomus was dominant in most of the samples, as detected by DNA sequencing. A clustering analysis based on the DNA sequence data suggested that the sample types (i.e., the samples from the roots, bulk soils or rhizospheric soils) might have greater influence on the AMF community phylotypes than the maize cultivars. This study indicated that the Cry1Ab protein has minor effects on the AMF communities after five seasons of continuous Bt maize cultivation.  相似文献   

18.
To investigate the relative degradation and fragmentation pattern of the recombinant Cry1Ab protein from genetically modified (GM) maize MON810 throughout the gastrointestinal tract (GIT) of dairy cows, a 25 months GM maize feeding study was conducted on 36 lactating Bavarian Fleckvieh cows allocated into two groups (18 cows per group) fed diets containing either GM maize MON810 or nearly isogenic non-GM maize as the respective diet components. All cows were fed a partial total mixed ration (pTMR). During the feeding trial, 8 feed (4 transgenic (T) and 4 non-transgenic (NT) pTMR) and 42 feces (26 T and 18 NT) samples from the subset of cows fed T and NT diets, and at the end of the feeding trial, digesta contents of rumen, abomasum, small intestine, large intestine and cecum were collected after the slaughter of six cows of each feeding group. Samples were analyzed for Cry1Ab protein and total protein using Cry1Ab specific ELISA and bicinchoninic acid assay, respectively. Immunoblot analyses were performed to evaluate the integrity of Cry1Ab protein in feed, digesta and feces samples. A decrease to 44% in Cry1Ab protein concentration from T pTMR to the voided feces (9.40 versus 4.18 μg/g of total proteins) was recorded. Concentrations of Cry1Ab protein in GIT digesta of cows fed T diets varied between the lowest 0.38 μg/g of total proteins in abomasum to the highest 3.84 μg/g of total proteins in rumen. Immunoblot analysis revealed the extensive degradation of recombinant Cry1Ab protein into a smaller fragment of around 34 kDa in GIT. The results of the present study indicate that the recombinant Cry1Ab protein from MON810 is increasingly degraded into a small fragment during dairy cow digestion.  相似文献   

19.
The sugarcane borer, Diatraea saccharalis (F.) (Lepidoptera: Crambidae), is a dominant maize borer pest and a major target of Bacillus thuringiensis (Bt)‐maize in Louisiana and the Gulf Coast area of Texas (USA). Growth and development of D. saccharalis on non‐toxic diet, diet treated with three low concentrations (0.01, 0.05, and 0.1 μg g?1) of Cry1Ab toxin, and on non‐Bt maize plants were compared for five insect genotypes: a Bt‐susceptible strain (BT‐SS), a Cry1Ab‐resistant strain (BT‐RR), a back‐crossed and re‐selected resistant strain (BT‐R’R’), and two F1 progeny of the BT‐SS and BT‐R’R’ strains. Fitness of the five genotypes was examined by infesting neonates on diet with/without Cry1Ab toxin in the laboratory and on intact non‐Bt maize plants in the greenhouse. Biological parameters measured were neonate‐to‐pupa development time and pupation rate, larval survival, larval and pupal weight, and sex ratio. Larvae of BT‐SS and BT‐R’R’ on non‐toxic diet and non‐Bt maize plants grew normally and there were no significant differences between the two strains in all measured parameters, suggesting a lack‐of‐fitness cost of the Cry1Ab resistance in D. saccharalis. Except for the development time on non‐Bt diet, all other parameters on both non‐Bt diet and non‐Bt maize plants were similar among the five genotypes. Larval development of BT‐SS was significantly affected on diet treated with Cry1Ab toxin at 0.05 and 0.1 μg g?1, whereas the effect to BT‐RR and BT‐R’R’ was not significant. Pupal weight and sex ratio reared on Cry1Ab‐diet were similar and there were no significant differences among the five genotypes. Neonate‐to‐pupation rate decreased as Cry1Ab concentrations increased but the decrease was more significant for BT‐SS than for the other four genotypes. The lack‐of‐fitness costs of Bt resistance in D. saccharalis imply a greater challenge in managing Bt resistance for this maize borer species.  相似文献   

20.
The high dose/refuge strategy for delaying evolution of resistance to Bt maize [Zea mays L. (Poaceae)] relies on random mating between resistant European corn borers, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae), and susceptible O. nubilalis from the refuge. However, differences in developmental rate caused by feeding on Bt maize, or infection with the microsporidium Nosema pyrausta Paillot (Microsporida: Nosematidae) may result in assortative mating. Developmental delays and mortality caused by infection with N. pyrausta and feeding on Bt maize were quantified alone and in combination in Cry1Ab‐resistant and susceptible O. nubilalis. Feeding on Cry1Ab‐incorporated diet significantly increased number of days from hatch to pupation and decreased survival in the resistant population. Infection with N. pyrausta increased mortality and lengthened development in both the resistant and susceptible populations. The combination of Cry1Ab‐incorporated diet and infection with N. pyrausta in resistant O. nubilalis lengthened development and increased mortality to a greater extent than either factor alone. Greater larval delays of resistant O. nubilalis feeding on Bt maize could lead to temporal isolation from adults emerging from refuge maize. The resulting assortative mating would hasten the evolution of resistance. Developmental delays caused by infection with N. pyrausta may increase the likelihood of mating between resistant and infected susceptible adults emerging from refuge maize, producing infected offspring that are also more susceptible to Bt maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号