首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Three analogs of bradykinin (BK) containing l-3,4-dehydroproline (l-Δ3Pro) at positions 2, 3, or 7 of the BK sequence have been synthesized by the solid-phase technique and assayed for their effects on isolated smooth muscle tissues and on the systemic arterial blood pressure of rats. In these assays, (l-Δ3Pro2)-BK and (l-Δ3Pro3)-BK are as potent as BK itself, and each appears to be more resistant to enzymic degradation than BK itself during passage through the pulmonary circulation. (l-Δ3Pro7)-BK has approximately 25% of the potency of BK and appears to be more susceptible to pulmonary degradation than is BK. The circular dichroism (CD) spectra for the three analogs in water are similar in profile between 250 and 200 nm, although with different intensities, and more closely parallel the CD spectrum of BK in trifluoroethanol (TFE) than in water. The CD spectra in TFE show changes for all three analogs from the aqueous spectra. The TFE CD spectra of (l-Δ3Pro3)-BK and (l-Δ3Pro7)-BK are similar in profile to the spectrum of BK in TFE, whereas the spectrum of (l-Δ3Pro2)-BK is considerably different from that of BK. The spectroscopic changes can be interpreted in terms of a change in polyproline-like character or β-fold formation, presumably imposed by the greater rigidity of the dehydroproline ring.  相似文献   

2.
Abstract

NMR and CD spectroscopy have been used to examine the conformation of the peptide, β(12–28), (VHHQKLVFFAEDVGSNK) in aqueous and 60% TFE/40% H20 solution at pH 2.4. In 60% TFE solution, the peptide is helical as confirmed by the CD spectrum and by the pattern of the NOE cross peaks detected in the NOESY spectrum of the peptide. In aqueous solution, the peptide adopts a more extended and flexible conformation. Broadening of resonances at low temperature, temperature-dependent changes in the chemical shifts of several of the CHα resonances and the observation of a number of NOE contacts between the hydrophobic side-chain protons of the peptide are indicative of aggregation in aqueous solution. The behavior of β(12–28) in 60% TFE and in aqueous solution are consistent with the overall conformation and aggregation behavior reported for the larger peptide fragment, β(1–28) and the parent β-amyloid peptide.  相似文献   

3.
1H and 13C high-resolution nmr spectra of cationic, zwitterionic, and anionic forms of the peptides: H-Trp-(Pro)n-Tyr-OH, n = 0-5, and H-Trp-Pro-OCH3 were obtained in D2O solution. Analysis of Hα(Pro1), Hα(Trp), Cγ(Pro), Hε(Tyr), and Hδ(Trp) resonances provided evidence for the presence of two predominant backbone isomers: the all-trans one and another with the Trp-Pro peptide bond in cis conformation; the latter constituted about 0.8 molar fraction of the total peptide (n > 1) concentration. Relative content of these isomers varied in a characteristic way with the number of Pro residues and the ionization state of the peptides. The highest content of the cis (Trp-Pro) isomer, 0.74, was found in the anionic form of H-Trp-Pro-Tyr-OH; it decreased in the order of: anion ? zwitterion ≈ cation, and with the number of Pro residues to reach the value of 0.42 in the cationic form of H-Trp- (Pro)5-Tyr-OH. Isomerization equilibria about Pro-Pro bond(s) were found to be shifted far (?0.9) in favor of the trans conformation. Interpretation of the measured vicinal coupling constants Jα?β′ and Jα?β″ for CαH-CβH2 proton systems of Trp and Tyr side chains in terms of relative populations of g+, g?, and t staggered rotamers around the χ1 dihedral angle indicated that in all the peptides studied (a) rotation of Trp indole ring in cis (Trp-Pro) isomers is strongly restricted, and (b) rotation of Tyr phenol ring is relatively free. The most preferred χ1 rotamer of Trp (0.8-0.9 molar fraction) was assigned as the t one on the basis of a large value of the vicinal coupling constant between the high-field Hβ and carbonyl carbon atoms of Trp, estimated for the cis (Pro1) form of H-Trp-Pro-Tyr-OH from a 1H, 13C correlated spectroscopy 1H detected multiple quantum experiment. This indicates that cis ? trans equilibrium in the Trp-Pro fragment is governed by nonbonding interactions between the pyrrolidine (Pro) and indole (Trp) rings. A molecular model of the terminal cis Trp-Pro dipeptide fragment is proposed, based on the presented nmr data and the results of our molecular mechanics modeling of low-energy conformers of the peptides, reported elsewhere. © 1993 John Wiley & Sons, Inc.  相似文献   

4.
Min Zhang  Tuck C. Wong 《Biopolymers》1993,33(12):1901-1908
High-resolution proton spectra at 500 MHz of two tachykinin peptides, substance P methyl ester (SPOMe) and [Nle10]-neurokinin A (4–10), have been obtained in dimethylsulfoxide (DMSO), and for SPOMe, also in 2, 2, 2-trifluoroethanol (TFE)/water mixtures. Complete chemical shift assignments for these peptides were made based on two-dimensional (2D) nmr techniques, correlated spectroscopy and total COSY. J coupling measurement and nuclear Overhauser effect spectroscopy (NOESY) were then used to determine the conformation of these peptides in the various solvents. Based on the J coupling, NOE correlations, and temperature coefficients of the NH resonances, it is concluded that these two peptides exist in DMSO at room temperature as a mixture of conformers that are primarily extended. For SPOMe in TFE/water with high TFE content, however, helical structures are found to be present, and they become quite clear at temperatures between 270 and 280 K. The variation of the 13C chemical shifts of the Cα (the secondary shift) with TFE contents corroborates this conclusion. The NOE and Cα shifts show that the main helical region for SPOMe lies between 4P and 9G. The C-terminus segment L? M? NH2 is found to be quite flexible, which appears to be quite common for neurokinin-1 selective peptides. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
Abstract

The type II and type III collagen α-1 chain C-telopeptides are a 27 mer with the sequence NAc- GPGIDMSAFAGLGPREKGPDPLQYMRA and a 22mer, NAc-GGGVASLGAGEKGPVG- YGYEYR, respectively. Their conformations have been studied in CD3OH/H2O (80/20) solution by means of two-dimensional proton NMR and CD spectroscopy. Based on TOCSY and NOESY experiments, all resonances were assigned and the conformational properties were analyzed in terms of vicinal NH-Hα coupling constants, sequential and medium range NOEs and amide proton temperature coefficients.

The conformation of the type II C-telopeptide is essentially extended. Evidence from CD spectroscopy suggests that a very minor proportion of the peptide might be helical (ca. 8%), but the NMR data show no evidence for a non-linear structure. The observation of reduced amide proton temperature dependence coefficients in certain sections of the molecule can, in view of the absence of any other supporting evidence, only be interpreted in terms of local shielding from solvent for sterical reasons (large hydrophobic side-chains).

The conformation of the type III C-telopeptide is mostly extended except for a β-turn ranging from Gly8 to Glu11, which is stabilized by a hydrogen-bond between NH of Glu11 and the carbonyl group of Gly8. The low temperature coefficient of NH(Glu11) and, in particular, the observation of a medium range NOE between Hα (A9) and NH(E11) corroborate the existence of a β-turn in this region. Although spectral overlap prevents a precise conclusion with regard to the type of β-turn present, there is some evidence that it might be type II.  相似文献   

6.
A highly potent and selective agonist to the tachykinin NK-3 receptor, [pGlu6, N-MePhe8, Aib9] substance P (6–11) ( I ), was synthesized via the solid phase method. The ED50 of I was 4n M in the guinea pig ileum in the absence of atropine (NK-1 + NK-3 receptors) and this agonist was 5000-fold less potent in the presence of atropine (NK-1 receptor). The analogue was virtually inactive in the rat vas deferens (NK-2 receptor). A detailed analysis of the solution conformation of this analogue in DMSO-d6 and in a DMSO-d6 H2O cryornixture was carried out by a combination of 1H-nmr 2D techniques (DQF-COSY, TOCSY, NOESY and ROESY) and model building based on empirical energy calculations. Peptide I exists as a mixture of isomers containing cis and trans Phe-N-MePhe peptide bonds. The main isomer, containing a cis Phe-N-MePhe peptide bond, shows a preferred folded conformation characterized by a type VI β-turn with Phe and N-MePhe in the i + 1 and i + 2 positions. The turn is followed by a helical segment extending to the C-terminal. This conformation is compared to previously reported conformations of other selective tachykinin agonists and may be a promising lead for the design of novel NK-3 agonists with additional conformational constraints. © 1993 John Wiley & Sons, Inc.  相似文献   

7.
The conformation of the head-to-tail cyclic analogue of bradykinin in DMSO was investigated by nmr. Three sets of resonances were detected and fully assigned. These were attributed to the presence of three stable conformers, two of which were exchanging on the nmr time scale. A fourth, incomplete set of resonances was detected but not assigned. The three major conformers differ in the conformation at the three X-Pro bonds present. From nuclear Overhauser effect spectroscopy (NOESY) spectra, three sets of interproton distances were derived and used in NOE-restrained distance geometry calculations. The resulting structures were refined by energy minimization to yield families of structures. Conformer I is characterized by the presence of two type VIb β-turns between Arg1 and Gly4 and between Phe5 and Phe8. The first β-turn is present also in conformer II, while an inverse γ-turn bridging Pro3 is the most pronounced structural feature of conformer III. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
Reduced dipeptides with the general formula RCO-Xaa- rXbb-N+HR′R′′ (rXbb, reduced analogue of residue Xbb: NH-Cα HR1 -Cr H2) are shown to adopt a folded conformation in solution and in the solid state. The protonated reduced amide bond is an active proton donor capable of interacting with a peptide carbonyl to give a strong hydrogen bond topologically equivalent to the i+2 or i+3? i interaction. The resulting conformation is similar to the γ- or β-turn structure found in peptides and proteins.  相似文献   

9.
The three‐dimensional solution structure of harzianin HC IX, a peptaibol antibiotic isolated from the fungus Trichoderma harzianum, was determined using CD, homonuclear, and heteronuclear two‐dimensional nmr spectroscopy combined with molecular modeling. This 14‐residue peptide, Ac Aib1 Asn2 Leu3 Aib4 Pro5 Ala6 Ile7 Aib8 Pro9 Iva10 Leu11 Aib12 Pro13 Leuol14 (Aib, α‐aminoisobutyric acid; Iva, isovaline; Leuol, leucinol), is a main representative of a short‐sequence peptaibol class characterized by an acetylated N‐terminus, a C‐terminal amino alcohol, and the presence of three Aib‐L ‐Pro motifs at positions 4–5, 8–9, and 12–13, separated by two dipeptide units. In spite of a lower number of residues, compared to the 18/20‐residue peptaibols such as alamethicin, harzianin HC IX exhibits remarkable membrane‐perturbing properties. It interacts with phospholipid bilayers, increasing their permeability and forming voltage‐gated ion channels through a mechanism slightly differing from that proposed for alamethicin. Sequence‐specific 1H‐ and 13C‐nmr assignments and conformational nmr parameters (3JNHCαH coupling constants, quantitative nuclear Overhauser enhancement data, temperature coefficients of amide and carbonyl groups, NH–ND exchange rates) were obtained in methanol solution. Sixty structures were calculated based on 98 interproton distance restraints and 6 Φ dihedral angle restraints, using high temperature restrained molecular dynamics and energy minimization. Thirty‐seven out of the sixty generated structures were consistent with the nmr data and were convergent. The peptide backbone consists in a ribbon of overlapping β‐turns twisted into a continuous spiral from Asn2 to Leuol14 and forming a 26 Å long helix‐like structure. This structure is slightly amphipathic, with the three Aib–Pro motifs aligned on the less hydrophobic face of the spiral where the Asn2 side chain is also present, while the more hydrophobic bulky side chains of leucines, isoleucine, isovaline, and leucinol are located on the concave side. The repetitive (Xaa–Yaa–Aib–Pro) tetrapeptide subunit, making up the peptide sequence, is characterized by four sets of (Φ,Ψ) torsional angles, with the following mean values: Φi = −90°, Ψi = −27°; Φi+1 = −98°, Ψi+1 = −17°; Φi+2 = −49°, Ψi+2 = −50°; Φi+3 = −78°, Ψi+3 = +3°. We term this particular structure, specifically occurring in the case of (Xaa–Yaa–Aib–Pro)n sequences, the (Xaa–Yaa–Aib–Pro)‐β‐bend ribbon spiral. It is stabilized by 4 → 1 intramolecular hydrogen bonds and differs from both the canonical 310‐helix made of a succession of type III β‐turns and from the β‐bend ribbon spiral that has been described in the case of (Aib–Pro)n peptide segments. © 1999 John Wiley & Sons, Inc. Biopoly 50: 71–85, 1999  相似文献   

10.
The structures formed by peptide models of the N-terminal domain of the nucleolar protein nucleolin were studied by CD and nmr. The sequences of the peptides are based on the putative nucleic acid binding sequence motif TPAKK: The peptides TP1 and TP2 have the sequence acetyl-G(ATPAKKAA)nG-amide, with n = 1 and 2, respectively. CD measurements indicate structural changes in both peptides when the lysine side chains are uncharged by increasing the pH or acetylation of the side-chain amines. When trifluoroethanol (TFE) is added, more extensive structural changes are observed, resembling helical structure based on nmr nuclear Overhauser effect (NOE) and Cα proton chemical shift changes, and CD spectra. The structure formed in 0.5M NaClO4 as observed by nmr is similar to that when the lysine side chains are acetylated, due presumably to interactions of perchlorate ion with side-chain charges on lysines. The helical structure observed in TPAKK motifs may be stabilized via N-capping interactions involving threonine. The structures observed in TFE suggest that the Thr-Pro sequence initiates short helical segments in TPAKK motifs, and these helical structures might interact with nucleic acids, presumably via interactions between lysines and threonines of nucleolin. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
Dermenkephalin, H-Tyr-(D ) Met-Phe-His-Leu-Met-Asp-NH2, a highly potent and selective δ-opioid peptide isolated from frog skin, was studied in DMSO-d6 solution by two-dimensional nmr spectroscopy, including the determination of NH temperature coefficients, the evaluation of 3J coupling constants from phase-sensitive correlated spectroscopy (COSY) and the volumes of nuclear Overhauser effect (NOE) correlations. The two-dimensional NOE spectroscopy (NOESY) spectrum of dermenkephalin revealed sequential, medium-, and long-range effects. To put this information on a quantitative basis, special attention was devoted to J cross-peak suppression, quantification of the NOE volumes and analysis of the overlaps, normalization of the NOEs against diagonal peaks and Hββ′ geminal interactions. Although most of the dihedral angles deduced from the 3J coupling constants together with several Niαi and αiNi + 1 NOEs pointed to a partially extended peptide backbone, several Ni Ni + 1 NOEs and βi Ni + 1 interactions argued in favor of a folded structure. Moreover, several long-range correlations of strong intensities were found that supported a close spatial proximity between the side chains of D -Met2 and Met6, Tyr1 and His4, Tyr1 and Asp7, and His4 and the C-terminal amide group. In Phe, the g? rotamer in the side chain is deduced from the 3Jαβ coupling constants and αβ and Nβ NOE correlations. Whereas the amide proton dependency was not indicative of stable hydrogen bonds, the nonuniform values of the temperature coefficient may reflect an equilibrium mixture of folded and extended conformers. The overall data should provide realistic starting models for energy minimization and modelization studies. © 1993 John Wiley & Sons, Inc.  相似文献   

12.
The complete sequence-specific assignments of resonances in the1H-NMR spectrum of huwentoxin-I from the Chinese bird spider,Selenocosmia huwena, is described. A combination of two-dimensional NMR experiments including 2D-COSY, 2D-NOESY, and 2D-TOCSY has been employed on samples of the toxin dissolved in D2O and in H2O for assignment purposes. Protons belonging to spin systems for each of the 33 amino acids were identified. The sequence-specific assignments were facilitated by the identification ofd αN connectivities on the fingerprint regions of the COSY and NOESY spectra and were supported by the identification ofd NN andd αN connectivities in the TOCSY and NOESY spectra. These studies provide a basis for the determination of the solution-phase conformation of this toxin.  相似文献   

13.
The crystal structure of the model tripeptide Boc-Aib-Gly-Leu-OMe ( 1 ) reveals two independent molecules in the asymmetric unit that adopt “enantiomeric” type I and type I′ β-turn conformations with the Aib and Gly residues occupying the corner (i + 1 and i + 2) positions. 13C cross polarization and magic angle sample spinning spectra in the solid state also support the coexistence of two conformational species. 13C-nmr in CDCl3 establishes the presence of a single species or rapid exchange between conformations. 400 MHz 1H-nmr provides evidence for conformational exchange involving a major and minor species, with β-turn conformations supported by the low solvent exposure of Leu(3) NH and the observation of NiH ↔ Ni+1H nuclear Overhauser effects. CD bands in the region 190–230 nm are positive, supporting a major population of type I′ β-turns. The isomeric peptide, Boc-Gly-Leu-Aib-OMe ( 2 ), adopts an “open” type II′ β-turn conformation in crystals. Solid state and solution nmr support population of a single conformational species. Chiral perturbation introduced outside the folded region of peptides may provide a means of modulating screw sense in achiral sequences. © 1998 John Wiley & Sons, Inc. Biopoly 45: 191–202, 1998  相似文献   

14.
The CD spectra of β-homoprolyl7-bradykinin (βHProB) and β-homophenylalanyl8-bradykinin (βHPheB) were compared to those of bradykinin. The spectra were analyzed in terms of models that have been proposed for the solution conformation of bradykinin. Cann et al. (1) proposed 3 → 1 hydrogen-bonding across Pro3, Pro7 and Phe8 in bradykinin, as shown by a 234 nm trough in the CD. The extra CH2 groups in the chains of the two bradykinin analogs would be expected to facilitate the proposed hydrogen-bonding, but in the case of βHProB the 234 nm trough is eliminated, and is reduced in magnitude for βHPheB. Ivanov et al. (2) proposed a cyclic conformation for bradykinin, stabilized by ionic attraction between the side-chain of Arg1 and the carboxylate terminal. The extra CH2 groups of these two analogs would be expected to increase the stability of such a conformation, and there was some evidence that the ionic effects on the CD spectra of the two analogs were different from those on the bradykinin spectra. Alternatively, the effects could be attributed to cis-trans isomerizations around the prolyl peptide bonds.  相似文献   

15.
Abstract NMR and CD spectroscopy have been used to examine the conformation of the peptide, β(12-28), (VHHQKLVFFAEDVGSNK) in aqueous and 60% TFE/40% H(2)0 solution at pH 2.4. In 60% TFE solution, the peptide is helical as confirmed by the CD spectrum and by the pattern of the NOE cross peaks detected in the NOESY spectrum of the peptide. In aqueous solution, the peptide adopts a more extended and flexible conformation. Broadening of resonances at low temperature, temperature-dependent changes in the chemical shifts of several of the CH(α) resonances and the observation of a number of NOE contacts between the hydrophobic side-chain protons of the peptide are indicative of aggregation in aqueous solution. The behavior of β(12-28) in 60% TFE and in aqueous solution are consistent with the overall conformation and aggregation behavior reported for the larger peptide fragment, β(1-28) and the parent β-amyloid peptide.  相似文献   

16.
Large-conductance Ca2+-activated (BK) channels, expressed in a variety of tissues, play a fundamental role in regulating and maintaining arterial tone. We recently demonstrated that the slow voltage indicator DiBAC4(3) does not depend, as initially proposed, on the β1 or β4 subunits to activate native arterial smooth muscle BK channels. Using recombinant mslo BK channels, we now show that the β1 subunit is not essential to this activation but exerts a large potentiating effect. DiBAC4(3) promotes concentration-dependent activation of BK channels and slows deactivation kinetics, changes that are independent of Ca2+. Kd values for BK channel activation by DiBAC4(3) in 0 mM Ca2+ are approximately 20 μM (α) and 5 μM (α+β1), and G-V curves shift up to ?40mV and ?110 mV, respectively. β1 to β2 mutations R11A and C18E do not interfere with the potentiating effect of the subunit. Our findings should help refine the role of the β1 subunit in cardiovascular pharmacology.  相似文献   

17.
The complete sequence-specific assignments of resonances in the1H-NMR spectrum of huwentoxin-I from the Chinese bird spider,Selenocosmia huwena, is described. A combination of two-dimensional NMR experiments including 2D-COSY, 2D-NOESY, and 2D-TOCSY has been employed on samples of the toxin dissolved in D2O and in H2O for assignment purposes. Protons belonging to spin systems for each of the 33 amino acids were identified. The sequence-specific assignments were facilitated by the identification ofd N connectivities on the fingerprint regions of the COSY and NOESY spectra and were supported by the identification ofd NN andd N connectivities in the TOCSY and NOESY spectra. These studies provide a basis for the determination of the solution-phase conformation of this toxin.Abbreviations HWTX-I huwentoxin-I - 2D two-dimensional - COSY 2D homonuclear correlation spectroscopy - NOE nuclear Overhauser enhancement - NOESY 2D nuclear Overhauser enhancement spectroscopy - TOCSY 2D total correlation spectroscopy - TPPI time-proportional phase incrementation - TSP sodium 3-(trimethyl-silyl)propionate-d4 - EDTA ethylenediaminetetraacetic acid  相似文献   

18.
T Higashijima  T Miyazawa  M Kawai  U Nagai 《Biopolymers》1986,25(12):2295-2307
The proton nmr and CD spectra of gramicidin S (GS) cyclic-(Val1,1′-Orn2,2′-Leu3,3′-D-Phe4,4′-Pro5,5′)2 and of GS analogs—namely, [D-Ala4,4′]-GS, [Gly4,4′]-GS, and [L-Ala4,4′]-GS—were analyzed. The molecular conformation of [D-Ala4,4′]-GS is similar to that of GS, with the trans form about the D-Ala-Pro peptide bond. The molecular conformation of [Gly4,4′]-GS depends on the solvent composition of dimethylsulfoxide-d6/trifluoroethanol (DMSO)-d6/TFE and DMSO-d6/H2O as well as the solute concentration. In DMSO-d6 solution, [Gly4,4′]-GS forms the GS-type conformation of the monomer at lower concentration. At higher concentration, the GS-type conformer is converted to the other one that forms molecular aggregates. The cis form about the X-Pro peptide bonds is found for [Gly4,4′]-GS and [L-Ala4,4′]-GS in DMSO-d6 and for [L-Ala4,4′]-GS in TFE solution. The large temperature dependences of α-proton chemical shifts of [L-Ala4,4′]-GS in DMSO-d6 solution indicate that the conformer equilibrium changes with temperature. The GS-type conformation is not formed in [L-Ala4,4′]-GS. The two active peptide analogs, [D-Ala4,4′]-GS and [Gly4,4′]-GS, interact with the phospholipid membrane, taking the GS-type conformation. By contrast, an inactive analog, [L-Ala4,4′]-GS, does not interact with phospholipid membrane. The activities of GS analogs are found to correlate to the formation of the GS-type conformation upon binding with phospholipid membrane.  相似文献   

19.
K. Uma  R. Kishore  P. Balaram 《Biopolymers》1993,33(6):865-871
The competing effects of a disulfide bridge and an α-aminoisobutyryl residue (Aib) in determining the conformation of a hexapeptide have been investigated, by comparing the cyclic disulfide (1) and the acylic peptide Boc-Cys(SBzl)-Val-Aib-Ala-Leu-Cys(SBzl)-NHMe ( 2 ). Previously published nmr and crystallographic studies [R. Kishore, S. Raghothama, and P. Balaram (1987) Biopolymers, Vol. 26, pp. 873–891; I. L. Karle, R. Kishore, S. Raghothama, & P. Balaram, (1988) Journal of the American Chemical Society Vol. 110, pp. 1958–1963] have established an antiparallel β-hairpin structure for 1 with a central Aib-Ala β-turn. A comparison of nmr data for 1 and 2 in chloroform and dimethylsulfoxide reveals that the acyclic peptide is conformationally labile. Evidence for a 310-helical conformation in CDCl3 is obtained from sensitivity of NH chemical shifts to temperature and solvent perturbation and low JHNCαH values. Studies in solvent mixtures establish a conformational transition on going from CDCl3 to (CD3)2SO. The changes in NH nmr parameters, together with the observation of several interresidue C H-Ni + 1H nuclear Overhauser effects support a conformation having a central β-turn with extended arms in (CD3)2SO. A single Aib residue appears to stabilize a helix in apolar solvents, for the acyclic hexapeptide, while the disulfide bridge serves to lock the β-hairpin conformation. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
Brevinin‐1BYa (FLPILASLAAKFGPKLFCLVTKKC), first isolated from skin secretions of the foothill yellow‐legged frog Rana boylii, shows broad‐spectrum activity, being particularly effective against opportunistic yeast pathogens. The structure of brevinin‐1BYa was investigated in various solution and membrane‐mimicking environments by proton nuclear magnetic resonance (1H‐NMR) spectroscopy and molecular modelling. The peptide does not possess a secondary structure in aqueous solution. In a 33% 2,2,2‐trifluoroethanol (TFE‐d3)‐H2O solvent mixture, as well as in membrane‐mimicking sodium dodecyl sulfate and dodecylphosphocholine micelles, the peptide's structure is characterised by a flexible helix‐hinge‐helix motif, with the hinge located at the Gly13/Pro14 residues, and the two α‐helices extending from Pro3 to Phe12 and from Pro14 to Thr21. Positional studies involving the peptide in sodium dodecyl sulfate and dodecylphosphocholine micelles using 5‐doxyl‐labelled stearic acid and manganese chloride paramagnetic probes show that the peptide's helical segments lie parallel to the micellar surface, with the residues on the hydrophobic face of the amphipathic helices facing towards the micelle core and the hydrophilic residues pointing outwards, suggesting that the peptide exerts its biological activity by a non–pore‐forming mechanism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号