首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Some epidemiological studies report a relationship between magnetic field exposure and such human diseases as leukemia and immune system disturbances. The few published studies on animals do not demonstrate field exposure-related alterations in hematologic and immune systems. The data presented here are part of a broader study designed to investigate the possible effects of acute exposure to a 50 Hz linearly polarized magnetic field (10 μT) on hematologic and immunologic functions. Thirty-two young men (20–30 years old) were divided into two groups (control group, i.e., sham-exposed, 16 subjects; exposed group, 16 subjects). All subjects participated in two 24 h experiments to evaluate the effects of both continuous and intermittent (1 h “off” and 1 h with the field switched “on” and “off” every 15 s) exposure to linearly polarized magnetic fields. The subjects were exposed to the magnetic field (generated by three Helmholtz coils per bed) from 23:00 to 08:00 while lying down. Blood samples were collected during each session at 3 h intervals from 11:00 to 20:00 and hourly from 22:00 to 08:00. No significant differences were observed between sham-exposed (control) and exposed men for hemoglobin concentration, hematocrit, red blood cells, platelets, total leukocytes, monocytes, lymphocytes, eosinophils, or neutrophils. Immunologic variables [CD3, CD4, CD8, natural killer (NK) cells and B cells] were unaltered. To our knowledge, this study is the first to document the effects of a 50 Hz magnetic field on the circadian rhythm of human hematologic and immune functions, and it suggests that acute exposure to either a continuous or an intermittent 50 Hz linearly polarized magnetic field of 10 μT, at least under the conditions of our experiment, does not affect either these functions or their circadian rhythms in healthy young men. © 1996 Wiley-Liss, Inc.  相似文献   

2.
We sought to determine whether a 6-week exposure to a 50-Hz rotating magnetic field influences melatonin synthesis by 11–18 week-old Wistar-King male rats. Rats were exposed continuously to a rotating magnetic field at 1, 5, 50, or 250 μT (spatial vector rms) for 6 weeks, except for twice-weekly breaks of about 2 h for cleaning of cages and feeding. The rats were housed in exposure and sham-exposure facilities, which were located in the same room, under a 12:12 light-dark photoperiod (lights on at 06:00 h). The room was constantly illuminated by 4 small, dim red lights (< 0.07 lux in dark period). Levels of plasma and pineal gland melatonin were determined by radioimmunoassay. A significant decrease of melatonin was observed between the control group and groups exposed to a magnetic field at a flux density in excess of l μT during the night time, but no statistical differences were found among the exposed groups. These results indicate that subchronic exposure of albino rats to a 50-Hz rotating magnetic field influences melatonin production and secretion by the pineal gland. © 1993 Wiley-Liss, Inc.  相似文献   

3.
The effect of exposure to 100 or 50 microT, 50 Hz, vertical magnetic field on the excretion of 6-sulphatoxymelatonin (6SM) in the nocturnal urine of rats was studied. Twelve male Wistar rats were kept under 12:12 hr light:dark conditions. The nocturnal urine of animals was collected in metabolic cages over 4 consecutive weeks. The concentration of 6SM in the rat urine was measured by 125I radioimmunoassay and normalized to creatinine concentration. After the first week of urine collection, 6 rats were exposed to 100 microT or 50 microT flux density magnetic fields (MF) for 8 hr daily for 1 week. It was found that the excretion of the primary metabolite of melatonin in the urine, 6SM, did not show statistically significant changes during and after magnetic field exposure.  相似文献   

4.
The purpose of this study was to determine if 60 Hz magnetic fields can alter the clinical progression of leukemia in an animal model. Large granular lymphocytic (LGL) leukemia cells from spleens of leukemic rats were transplanted into young male Fischer 344 rats, producing signs of leukemia in approximately 2–3 months. The animals were randomly assigned to 4 treatment groups (108/group) as follows: 1) 10 G (1.0 mT) linearly polarized 60 Hz magnetic fields, 2) sham exposed [null energized unit with residual 20 mG (2 μT) fields], 3) ambient controls [<1 mG (0.1 μT)], and 4) positive controls (a single 5 Gy whole body exposure to 60Co 4 days prior to initiation of exposure). All rats were injected intraperitoneally (ip) with 2.2 × 107 LGL leukemic cells at the initiation of exposure or sham exposure. The magnetic fields were activated for 20 h/day, 7 days/week, allowing time for animal care. The experimental fields were in addition to natural ambient magnetic fields. Eighteen rats from each treatment group were bled, killed, and evaluated at 5, 6, 7, 8, 9, and 11 weeks of exposure. Peripheral blood hematological endpoints, changes in spleen growth, and LGL cell infiltration into the spleen and liver were measured to evaluate the leukemia progression. No significant or consistent differences were detected between the magnetic field exposed groups and the ambient control group, although the clinical progress of leukemia was enhanced in the positive control animals. These data indicate that exposure to sinusoidal, linearly polarized 60 Hz, 10 G magnetic fields did not significantly alter the clinical progression of LGL leukemia. Furthermore, the data are in general agreement with previous results of a companion repeated‐bleeding study in which animals were exposed for 18 weeks. Bioelectromagnetics 20:48–56, 1999. © 1999 Wiley‐Liss, Inc.  相似文献   

5.
The present study was conducted to investigate the possible effect of 60 Hz circularly polarized magnetic fields (MFs) as promoters of genetically initiated lymphoma in AKR mice. One hundred sixty female animals were divided into four different groups. They were exposed to four different intensities of circularly polarized MFs. Animals received exposure to 60 Hz circularly polarized MF at field strengths (rms‐value) of 0 µT (sham control, T1, Group I), 5 µT(T2, Group II), 83.3 µT (T3, Group III), or 500 µT(T4, Group IV), for 21 h/day from the age of 4–6 weeks to the age of 44–46 weeks. There were no exposure‐related changes in mean survival time, clinical signs, body weights, hematological values, micronucleus assay, gene expression arrays, analysis of apoptosis, and necropsy findings. At histopathological examination, lymphoma was seen in all the groups. The tumor incidence was 31/40(78%), 30/40(75%), 32/40(80%), and 31/40(78%) in sham control, 5, 83.3, and 500 µT groups, respectively. However, there were no differences in the tumor incidence between the sham control (T1) and circularly polarized MF exposure groups (T2–T4). In conclusion, there was no evidence that exposure to 60 Hz circularly polarized MF strengths up to 500 µT promoted lymphoma in AKR mice. Bioelectromagnetics 31:130–139, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
This paper presents a numerical analysis of currents induced in a rat by linearly and circularly polarized magnetic fields of 50 Hz. Special focus was placed on pineal gland and retina of rats since these organs were often associated with the changes of melatonin synthesis and concentration. Induced currents in two MRI-based rat models with resolutions of up to 0.125 mm(3) were calculated by using the impedance method. We characterized the induced currents by amplitude and polarization. Calculated induced current densities were extremely small, i.e., < 30 microA/m(2) for both linearly and circularly polarized magnetic fields of 1.41 microT (peak). There were no significant differences in amplitude nor polarization of induced currents in the pineal gland between the linearly and the circularly polarized magnetic fields when the polarization was in a vertical plane. In contrast, the magnetic fields rotating in the horizontal plane produced most circularly polarized currents both in the pineal gland and in the retina.  相似文献   

7.
Groups of mated female Sprague-Dawley rats were simultaneously exposed to 0 (sham exposed), 7, 70, or 350 microT (rms) circularly polarized 50 Hz magnetic fields (MF) for 22 h/day on gestational day 8-15, the period of rat fetal organogenesis (organogenesis study) or from day 0 to day 7 of gestation, the rat preimplantation period (preimplantation study). Developmental toxicity was assessed on gestational day 20. Identical experiments were repeated to confirm reproducibility of both studies. In both studies, statistically significant differences between exposed and sham exposed animals were observed in several measured parameters; however, these differences only appeared in one, but not both replicate experiments and generally at only an isolated exposure level. Because these differences were not reproducible and did not show a dose response relationship, they were not considered related to MF exposure. In the organogenesis study, lower kidney weights of dams were seen at 70 and 350 microT in Experiment 1. Lower dam liver weights and lower mean body weights of viable female and male fetuses were seen at 70 microT in Experiment 2. Otherwise, there were no differences in these parameters or in group means for fetal loss after implantation, number of viable fetuses, fetal body weight and sex ratio, incidences of external, visceral, and skeletal abnormalities or variations, or tissue abnormalities after histopathological examination. In the preimplantation study, dam health and indices for reproduction and embryo-fetal development, including pre or postimplantation loss, number and body weight of live fetuses, and sex ratio, external, skeletal abnormalities and variations, and skeletal ossification did not differ. Dam inorganic phosphorous concentration at 350 microT was elevated in one experiment and depressed in another. In one experiment, visceral abnormalities, primarily thymic remnant in neck and accessory liver lobe, were increased in the 7 microT group. Based on these results from two studies, we conclude that circularly polarized 50 Hz MF exposure of up to 350 microT during the fetal organogenesis or during the preimplantation period does not affect reproduction and embryo-fetal development in Sprague-Dawley rats.  相似文献   

8.
To provide possible laboratory support to health risk evaluation associated with long-term, low-intensity magnetic field exposure, 256 male albino rats and an equal number of control animals (initial age 12 weeks) were exposed 22 h/day to a 50 Hz magnetic flux density of 5 μmT for 32 weeks (a total of about 5000 h). Hematology was studied from blood samples before exposure to the field and at 12 week intervals. Morphology and histology of liver, heart, mesenteric lymph nodes, and testes as well as brain neurotransmitters were assessed at the end of the exposure period. In two identical sets of experiments, no significant differences in the investigated variables were found between exposed and sham-exposed animals. It is concluded that continuous exposure to a 50 Hz magnetic field of 5 μT from week 12 to week 44, which makes up ?70% of the life span of the rat before sacrifice, does not cause changes in growth rate, in the morphology and histology of liver, heart, mesenteric lymph nodes, testes, and bone marrow, in hematology and hematochemistry, or in the neurotransmitters dopamine and serotonin. © 1995 Wiley-Liss, Inc.  相似文献   

9.
An effect on the tumor promotion process, as represented by accelerated cell growth, has been indicated as one example of areas that demonstrate the possibility of biological effects of extremely-low frequency magnetic fields. We, therefore, exposed the five cell lines (HL-60, K-562, MCF-7, A-375, and H4) derived from human tumors to a magnetic field for 3 days to investigate the effects on cell growth. Prior to exposure or sham exposure, the cells were precultured for 2 days in low serum conditions. The number of growing cells was counted in a blind manner. To investigate the effect on the initial response of cell proliferation, two cell lines were synchronized in G1 phase by serum starvation and then exposed to a magnetic field for 18 h (H4 cells) or 24 h (MCF-7 cells), both with and without serum stimulation. The rate of DNA synthesis, taken as a measure of the cell proliferation, was determined by following the incorporation of [(3)H]-thymidine into the DNA. Three different magnetic field polarizations at both 50 and 60 Hz were used: linearly polarized (vertical); circularly polarized; and an elliptically polarized field. Magnetic field flux densities were set at 500, 100, 20 and 2 microT (rms) for the vertical field and at 500 microT (rms) for the rotating fields. No effect of magnetic field exposure was observed on either cell growth or the initial response of cell proliferation.  相似文献   

10.
B Selmaoui  Y Touitou 《Life sciences》1999,64(24):2291-2297
In a previous study we have shown that exposure to a 50-Hz sinusoidal magnetic field decreased serum melatonin concentration and pineal enzyme activities in young rats (9 weeks). In the present study we looked for the effect of a magnetic field of 100 microT on serum melatonin and pineal NAT activity in aged rats and compared them to young rats. We hypothesized that aging may change sensitivity of rats to a magnetic field. Two groups of Wistar male rats [aged rats (23 months) and young rats (9 weeks)] were exposed to 50-Hz magnetic fields of 100 microT for one week (18h/day). The animals were kept under a standard 12:12 light: dark cycle with a temperature of 25 degrees C and a relative humidity of 45 to 50%. Control (sham-exposed) animals were kept in a similar environment but without exposure to a magnetic field. The animals were sacrificed under red dim light. Serum melatonin concentration and pineal N-acetyltransferase (NAT) and hydroxyindole-O-methyltransferase (HIOMT) activities were studied. Our results showed that sinusoidal magnetic fields altered the production of melatonin (28% decrease; P <0.05) through an inhibition of pineal NAT activity (52% decrease; P <0.05) in the young rats whereas no effect was observed in aged ones. On the other hand, when comparing data from control animals between young and aged rats, we observed that serum melatonin level and NAT activity, but not HIOMT activity, decreased in aged rats (decrease by about 38% and 36% respectively). Our data strongly suggest that old rats are insensitive to the magnetic field.  相似文献   

11.
The effects of extremely low-frequency (ELF) magnetic fields on sex hormones of adult female Spague-Dawley rats were investigated. Adult female rats were exposed to a 50 Hz sinusoidal magnetic field at approximately 25 microT (rms) for 18 weeks before they returned to their normal life with unexposed counterparts. Serum level of Luteinizing Hormone (LH), Follicle Stimulating Hormone (FSH), progesterone, and estrogen were measured before, after, and during the exposure. Body and uterine weights were not affected by the field. A significant reduction in absolute and relative ovarian weights in exposed rats was observed when compared with sham-exposed controls (P < 0.05). The reduction in the levels of gonadotropins (FSH and LH) was significant after six weeks of exposure (P < 0.005). FSH levels were affected only on week 6 of exposure while LH remained affected during at 12 and 18 weeks (P < 0.05). Interestingly, no significant effects were found at 6 and 12 weeks after removing the field. The level of progesterone and estrogen was significantly decreased after 12 weeks of exposure (P < 0.05), while no other effects on progesterone level was observed during exposure or after removing the exposure. The level of estrogen was also significantly reduced at 12 weeks after removing the field (P < 0.05). These results suggest possible adverse effect on mammalian fertility and reproduction. The effects of ELF-MF on sex hormones were shown to be partly reversible.  相似文献   

12.
Using a crossover experimental design, we evaluated our earlier findings that exposure to a 30 kV/m, 60 Hz electric field for 12 hours per day, 7 days per week for 6 weeks produced significant changes in the performance rates of social behaviors among young adult male baboons. In the crossover experiment, the former control group was exposed to a 30 kV/m, 60 Hz electric field for 3 weeks. Only an extremely small, incidental magnetic field was generated by the exposure apparatus. We found that electric-field exposure again produced increases in the performance rates that index Passive Affinity, Tension, and Stereotypy. These findings, combined with results from our other electric-field experiments, indicate that exposure to strong electric fields, in the absence of associated magnetic fields, consistently produces effects that are expressed as increases in rates of performance of social behaviors in young adult male baboons.  相似文献   

13.
In this study, the effect of exposure to 900 and 1800 MHz GSM-like radiofrequency radiation upon the urinary 6-sulfatoxymelatonin (6SM) excretion of adult male Wistar rats was studied. Seventy-two rats were used in six independent experiments, three of which were done with 900 MHz and the other three with 1800 MHz. The exposures were performed in a gigahertz transverse electromagnetic mode (GTEM) cell. The power densities of radiation were 100 and 20 microW/cm(2) at 900 and 1800 MHz frequency, respectively. The carrier frequency was modulated with 218 Hz, as in the GSM signal. The animals were exposed for 2 h between 8:00 AM and noon daily during the 14 day exposure period. The urine of rats was collected from 12:00 AM to 8:00 AM, collecting from exposed and control animal groups on alternate days. The urinary 6SM concentration was measured by (125)I radioimmunoassay and was referred to creatinine. The combined results of three experiments done with the same frequency were statistically analyzed. Statistically significant changes in the 6SM excretion of exposed rats (n = 18) compared to control group (n = 18) were not found either at 900 or 1800 MHz.  相似文献   

14.
Based primarily on the results of in vitro studies, it has been suggested that power-line (50 or 60 Hz) magnetic fields (MFs) may reduce immune function, which could lower resistance to infection or cancer. This study was conducted to evaluate the influence of acute and chronic in vivo exposure to a linearly polarized 50 Hz MF on immune function in female Sprague-Dawley rats. Groups of rats were exposed continuously to the MF at a flux density of 100 microT for periods of 3 days, 14 days or 13 weeks. For each exposure period, one control group of rats was sham-exposed together with each MF-exposed group. Experimental end points included analyses of T-lymphocyte subsets as well as other immune cells involved in cell-mediated immune responses, i.e. natural killer (NK) cells, B lymphocytes, macrophages, and granulocytes in blood, spleen and mesenteric lymph nodes. In addition, immunohistochemical methods were used to detect proliferating and apoptotic cells in the various compartments of spleen tissue. The results obtained failed to demonstrate a significant effect of short or prolonged MF exposure on different types of leukocytes, including lymphocyte subsets. Furthermore, the experiments on the in vivo proliferation activity of lymphocytes and the extent of apoptosis in spleen samples did not indicate a difference between the MF-exposed and sham-exposed groups, indicating that MF exposure does not affect the mechanisms involved in the control of lymphocyte homeostasis. The lack of MF effects in the immune tests used in the present in vivo study makes it highly unlikely that MF exposure induces immunotoxicity, at least under the experimental conditions used. However, the data do not exclude the possibility that functional alterations in T-cell responses to mitogens and in NK cell activity as recently described for MF-exposed rodents may be one mechanism involved in the carcinogenic effects of MF exposure observed in some models of co-carcinogenesis.  相似文献   

15.
Some epidemiological studies suggest that exposure to power-frequency magnetic fields increases the risk of leukemia, especially in children with high residential exposures. In contrast, most animal studies did not find a correlation between magnetic-field exposure and hematopoietic diseases. The present study was performed to investigate whether chronic, high-level (1 mT) magnetic-field exposure had an influence on lymphoma development in a mouse strain that is genetically predisposed to thymic lymphoblastic lymphoma. Three groups of 160 unrestrained female AKR/J mice were sham-exposed or exposed to sinusoidal 50 Hz magnetic fields beginning at the age of 12 weeks for 32 weeks, 7 days per week, either for 24 h per day or only during nighttime (12 h). Exposure was carried out in a blind design. Exposure did not affect survival time, body weight, lymphoma development or hematological parameters. The resulting data do not support the hypothesis that exposure to sinusoidal 50 Hz magnetic fields is a significant risk factor for hematopoietic diseases, even at this relatively high exposure level.  相似文献   

16.
New-born CD-1 mice were initiated with a single subcutaneous injection of 60 microg 7,12-dimethylbenz(a)anthracene (DMBA) within 24 h after birth. After weaning, the mice were randomly divided into five groups of 100, 50 males and 50 females each. One group served as a cage control. The other four groups of mice were exposed to either 0 (sham-exposed), 7, 70, or 350 microT(rms) circularly polarized 50 Hz magnetic fields (MFs) for 22 h/day, 7 days/week for 30 weeks. Animals were observed daily and the development of malignant lymphoma/lymphatic leukemia was examined histopathologically. The experiment was conducted twice. There was no observed sexual difference in the cumulative proportions of mice with malignant lymphoma/lymphatic leukemia and a 3-way analysis of deviance using the Cox regression model revealed no interactions between experiment, sex, or group. The cumulative proportions of mice with malignant lymphoma/lymphatic leukemia in the MF-exposed groups were not significantly higher than those in the sham-exposed group of each sex in individual experiments and in males and females combined in each experiment, and in all the animals from the two experiments combined. These data provide no evidence to support the hypothesis that power frequency MFs is a significant risk factor for hematopoietic neoplasia.  相似文献   

17.
The effects of an extremely low frequency (ELF) magnetic field on the sex hormones and other fertility parameters of adult male Sprague-Dawley rats were investigated. Adult male rats were exposed to a 50 Hz sinusoidal magnetic field at approximately 25 microT (rms) for 18 consecutive weeks. There were no significant effects on the absolute body weight and the weight of the testes of the exposed rats. However, the weights of seminal vesicles and preputial glands were significantly reduced in the exposed male rats. Similarly, a significant reduction in sperm count was observed in the exposed group. Furthermore, there were no significant effects on the serum levels of male follicle stimulating hormone (FSH) during the 18 weeks of exposure period. On the other hand, there was a significant increase in the serum levels of male luteinizing hormone (LH) after 18 weeks of exposure (P < .005), while testosterone levels were significantly decreased only after 6 and 12 weeks of the exposure period. These results suggest that long term exposure to ELF could have adverse effects on mammalian fertility and reproduction.  相似文献   

18.
An animal model for large granular lymphocytic (LGL) leukemia in male Fischer 344 rats was utilized to determine whether magnetic field exposure can be shown to influence the progression of leukemia. We previously reported that exposure to continuous 60 Hz, 1 mT magnetic fields did not significantly alter the clinical progression of LGL leukemia in young male rats following injection of spleen cells from donor leukemic rats. Results presented here extend those studies with the following objectives: (a) to replicate the previous study of continuous 60 Hz magnetic field exposures, but using fewer LGL cells in the inoculum, and (b) to determine if intermittent 60 Hz magnetic fields can alter the clinical progression of leukemia. Rats were randomly assigned to four treatment groups (18/group) as follows: (1) 1 mT (10 G) continuous field, (2) 1 mT intermittent field (off/on at 3 min intervals), (3) ambient controls ( < 0.1 microT), and (4) positive control (5 Gy whole body irradiation from cobalt-60 four days prior to initiation of exposure). All rats were injected intraperitoneally with 2.2 x 10(6) fresh, viable LGL leukemic spleen cells at the beginning of the study. The fields were activated for 20 h per day, 7 days per week, and all exposure conditions were superimposed over the natural ambient magnetic field. The rats were weighed and palpated for splenomegaly weekly. Splenomegaly developed 9-11 weeks after transplantation of the leukemia cells. Hematological evaluations were performed at 6, 8, 10, 12, 14, and 16 weeks of exposure. Peripheral blood hemoglobin concentration, red blood cells, and packed cell volume declined, and total white blood cells and LGL cells increased dramatically in all treatment groups after onset of leukemia. Although the positive control group showed different body weight curves and developed signs of leukemia earlier than other groups, differences were not detected between exposure groups and ambient controls. Furthermore, there were no overall effects of magnetic fields on splenomegaly or survival in exposed animals. In addition, no significant and/or consistent differences were detected in hematological parameters between the magnetic field exposed and the ambient control groups.  相似文献   

19.
20.
Some epidemiological studies suggest that exposure to 50 or 60 Hz magnetic fields might increase the risk of leukemia, especially in children with a comparable high residential exposure. To investigate this possibility experimentally, the influence of 50 Hz magnetic-field exposure on lymphoma induction was determined in a mouse strain that is genetically predisposed to this disease. The AKR/J mouse genome carries the AK virus, which leads within 1 year to spontaneous development of thymic lymphoblastic lymphoma. Beginning at an age of 4-5 weeks, groups of 160 female mice were sham-exposed or exposed to 50 Hz magnetic fields at 1 or 100 microT for 24 h per day, 7 days per week, for 38 weeks. Animals were checked visually daily and were weighed and palpated weekly. There was no effect of magnetic-field exposure on body weight gain or survival rate, and lymphoma incidence did not differ between exposed and sham-exposed animals. Therefore, these data do not support the hypothesis that chronic exposure to 50 Hz magnetic fields is a significant risk factor for developing hematopoietic malignancy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号