首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Early sensory processing can play a critical role in sensing environmental cues. We have investigated the physiological and behavioral function of gain control at the first synapse of olfactory processing in Drosophila. Olfactory receptor neurons (ORNs) express the GABA(B) receptor (GABA(B)R), and its expression expands the dynamic range of ORN synaptic transmission that is preserved in projection neuron responses. Strikingly, each ORN channel has a unique baseline level of GABA(B)R expression. ORNs that sense the aversive odorant CO(2) do not express GABA(B)Rs and do not have significant presynaptic inhibition. In contrast, pheromone-sensing ORNs express a high level of GABA(B)Rs and exhibit strong presynaptic inhibition. Furthermore, pheromone-dependent mate localization is impaired in flies that lack GABA(B)Rs in specific ORNs. These findings indicate that different olfactory receptor channels employ heterogeneous presynaptic gain control as a mechanism to allow an animal's innate behavioral responses to match its ecological needs.  相似文献   

2.
3.
We modeled the firing rate of populations of olfactory receptor neurons (ORNs) responding to an odorant at different concentrations. Two cases were considered: a population of ORNs that all express the same olfactory receptor (OR), and a population that expresses many different ORs. To take into account ORN variability, we replaced single parameter values in a biophysical ORN model with values drawn from statistical distributions, chosen to correspond to experimental data. For ORNs expressing the same OR, we found that the distributions of firing frequencies are Gaussian at all concentrations, with larger mean and standard deviation at higher concentrations. For a population expressing different ORs, the distribution of firing frequencies can be described as the superposition of a Gaussian distribution and a lognormal distribution. Distributions of maximum value and dynamic range of spiking frequencies in the simulated ORN population were similar to experimental results.  相似文献   

4.
In the developing visual system of Xenopus laevis retinal ganglion cell (RGC) axons extend through the brain towards their major target in the midbrain, the optic tectum. Enroute, the axons are guided along their pathway by cues in the environment. In vitro, neurotransmitters have been shown to act chemotropically to influence the trajectory of extending axons and regulate the outgrowth of developing neurites, suggesting that they may act to guide or modulate the growth of axons in vivo. Previous work by Roberts and colleagues (1987) showed that populations of cells within the developing Xenopus diencephalon and mid-brain express the neurotransmitter gamma amino butyric acid (GABA). Here we show that Xenopus RGC axons in the midoptic tract grow alongside the GABAergic cells and cross their GABA immunopositive nerve processes. Moreover, RGC axons and growth cones express GABA-A and GABA-B receptors, and GABA and the GABA-B receptor agonist baclofen both stimulate RGC neurite outgrowth in culture. Finally, the GABA-B receptor antagonist CGP54626 applied to the developing optic projection in vivo causes a dose-dependent shortening of the optic projection. These data indicate that GABA may act in vivo to stimulate the outgrowth of Xenopus RGC axons along the optic tract.  相似文献   

5.
Evidence has accumulated to support a model for odorant detection in which individual olfactory receptor neurons (ORNs) express one of a large family of G protein-coupled receptor proteins that are activated by a small number of closely related volatile chemicals. However, the issue of whether an individual ORN expresses one or multiple types of receptor proteins has yet to be definitively addressed. Physiological data indicate that some individual ORNs can be activated by odorants differing substantially in structure and/or perceived quality, suggesting multiple receptors or one nonspecific receptor per cell. In contrast, molecular biological studies favor a scheme with a single, fairly selective receptor per cell. The present studies directly assessed whether individual rat ORNs can express multiple receptors using single-cell PCR techniques with degenerate primers designed to amplify a wide variety of receptor sequences. We found that whereas only a single OR sequence was obtained from most ORNs examined, one ORN produced two distinct receptor sequences that represented different receptor gene families. Double-label in situ hybridization studies indicated that a subset of ORNs co-express two distinct receptor mRNAs. A laminar segregation analysis of the cell nuclei of ORNs labeled with the two OR mRNA probes showed that for one probe, the histogram of the distribution of the cell nuclei along the depth of the epithelium was bimodal, with one peak overlapping the (unimodal) histogram for the other probe. These results are consistent with co-expression of two OR mRNAs in a population of single ORNs.  相似文献   

6.
In olfactory receptor neurons (ORNs) of aquatic animals amino acids have been shown to be potent stimuli. Here we report on calcium imaging experiments in slices of the olfactory mucosa of Xenopus laevis tadpoles. We were able to determine the response profiles of 283 ORNs to 19 amino acids, where one profile comprises the responses of one ORN to 19 amino acids. 204 out of the 283 response profiles differed from each other. 36 response spectra occurred more than once, i.e., there were 36 classes of ORNs identically responding to the 19 amino acids. The number of ORNs that formed a class ranged from 2 to 13. Shape and duration of amino acid-elicited [Ca2+]i transients showed a high degree of similarity upon repeated stimulation with the same amino acid. Different amino acids, however, in some cases led to clearly distinguishable calcium responses in individual ORNs. Furthermore, ORNs clearly appeared to gain selectivity over time, i.e., ORNs of later developmental stages responded to less amino acids than ORNs of earlier stages. We discuss the narrowing of ORN selectivity over stages in the context of expression of olfactory receptors.  相似文献   

7.
Different classes of olfactory receptor neurons (ORNs) in Drosophila innervate distinct targets, or glomeruli, in the antennal lobe of the brain. Here we demonstrate that specific ORN classes require the cell surface protein Dscam (Down Syndrome Cell Adhesion Molecule) to synapse in the correct glomeruli. Dscam mutant ORNs frequently terminated in ectopic sites both within and outside the antennal lobe. The morphology of Dscam mutant axon terminals in either ectopic or cognate targets was abnormal. Target specificity for other ORNs was not altered in Dscam mutants, suggesting that different ORNs use different strategies to regulate wiring. Multiple forms of Dscam RNA were detected in the developing antenna, and Dscam protein was localized to developing ORN axons. We propose a role for Dscam protein diversity in regulating ORN target specificity.  相似文献   

8.
9.
Innate attraction and aversion to odorants are observed throughout the animal kingdom, but how olfactory circuits encode such valences is not well understood, despite extensive anatomical and functional knowledge. In Drosophila melanogaster, ~50 types of olfactory receptor neurons (ORNs) each express a unique receptor gene, and relay information to a cognate type of projection neurons (PNs). To examine the extent to which the population activity of ORNs is required for olfactory behavior, we developed a genetic strategy to block all ORN outputs, and then to restore output in specific types. Unlike attraction, aversion was unaffected by simultaneous silencing of many ORNs, and even single ORN types previously shown to convey neutral valence sufficed to mediate aversion. Thus, aversion may rely on specific activity patterns in individual ORNs rather than the number or identity of activated ORNs. ORN activity is relayed into the brain by downstream circuits, with excitatory PNs (ePN) representing a major output. We found that silencing the majority of ePNs did not affect aversion, even when ePNs directly downstream of single restored ORN types were silenced. Our data demonstrate the robustness of olfactory aversion, and suggest that its circuit mechanism is qualitatively different from attraction.  相似文献   

10.
Axon-axon interactions have been implicated in neural circuit assembly, but the underlying mechanisms are poorly understood. Here, we show that in the Drosophila antennal lobe, early-arriving axons of olfactory receptor neurons (ORNs) from the antenna are required for the proper targeting of late-arriving ORN axons from the maxillary palp (MP). Semaphorin-1a is required for targeting of all MP but only half of the antennal ORN classes examined. Sema-1a acts nonautonomously to control ORN axon-axon interactions, in contrast to its cell-autonomous function in olfactory projection neurons. Phenotypic and genetic interaction analyses implicate PlexinA as the Sema-1a receptor in ORN targeting. Sema-1a on antennal ORN axons is required for correct targeting of MP axons within the antennal lobe, while interactions amongst MP axons facilitate their entry into the antennal lobe. We propose that Sema-1a/PlexinA-mediated repulsion provides a mechanism by which early-arriving ORN axons constrain the target choices of late-arriving axons.  相似文献   

11.
BACKGROUND: Olfactory receptor neurons (ORNs) convey chemical information into the brain, producing internal representations of odors detected in the periphery. A comprehensive understanding of the molecular and neural mechanisms of odor detection and processing requires complete maps of odorant receptor (Or) expression and ORN connectivity, preferably at single-cell resolution. RESULTS: We have constructed near-complete maps of Or expression and ORN targeting in the Drosophila olfactory system. These maps confirm the general validity of the "one neuron--one receptor" and "one glomerulus--one receptor" principles and reveal several additional features of olfactory organization. ORNs in distinct sensilla types project to distinct regions of the antennal lobe, but neighbor relations are not preserved. ORNs grouped in the same sensilla do not express similar receptors, but similar receptors tend to map to closely appositioned glomeruli in the antennal lobe. This organization may serve to ensure that odor representations are dispersed in the periphery but clustered centrally. Integrated with electrophysiological data, these maps also predict glomerular representations of specific odorants. Representations of aliphatic and aromatic compounds are spatially segregated, with those of aliphatic compounds arranged topographically according to carbon chain length. CONCLUSIONS: These Or expression and ORN connectivity maps provide further insight into the molecular, anatomical, and functional organization of the Drosophila olfactory system. Our maps also provide an essential resource for investigating how internal odor representations are generated and how they are further processed and transmitted to higher brain centers.  相似文献   

12.
13.
Hummel T  Zipursky SL 《Neuron》2004,42(1):77-88
Drosophila olfactory receptor neurons (ORNs) elaborate a precise internal representation of the external olfactory world in the antennal lobe (AL), a structure analagous to the vertebrate olfactory bulb. ORNs expressing the same odorant receptor innervate common targets in a highly organized neuropilar structure inside the AL, the glomerulus. During normal development, ORNs target to specific regions of the AL and segregate into subclass-specific aggregates called protoglomeruli prior to extensive intermingling with target dendrites to form mature glomeruli. Using a panel of ORN subclass-specific markers, we demonstrate that in the adult AL, N-cadherin (N-cad) mutant ORN terminals remain segregated from dendrites of target neurons. N-cad plays a crucial role in protoglomerulus formation but is largely dispensible for targeting to the appropriate region of the AL. We propose that N-cad, a homophilic cell adhesion molecule, acts in a permissive fashion to promote subclass-specific sorting of ORN axon terminals into protoglomeruli.  相似文献   

14.
15.
In the olfactory system of Drosophila, 50 functional classes of sensory receptor neurons (ORNs) project in a highly organized fashion into the CNS, where they sort out from one another and converge into distinct synaptic glomeruli. We identified the transmembrane molecule Semaphorin-1a (Sema-1a) as an essential component to ensure glomerulus-specific axon segregation. Removal of sema-1a in ORNs does not affect the pathfinding toward their target area but disrupts local axonal convergence into a single glomerulus, resulting in two distinct targeting phenotypes: axons either intermingle with adjacent ORN classes or segregate according to their odorant receptor identity into ectopic sites. Differential Sema-1a expression can be detected among neighboring glomeruli, and mosaic analyses show that sema-1a functions nonautonomously in ORN axon sorting. These findings provide insights into the mechanism by which afferent interactions lead to synaptic specificity in the olfactory system.  相似文献   

16.
Chu XP  Li P  Xu NS 《生理学报》1998,50(5):483-489
在73张脑片上观察了γ-氨基丁酸(GABA)对106个延髓头端腹外侧区(RVLM)神经元单位放电的影响。外源性的GABA(0.1 ̄3.0mmol/L)抑制了106神经元中的84个神经元的电活动,这些抑制效应呈剂量-反应关系。GABA的抑制效应大部分可被GABAA受体选择性拮抗剂荷苞牡丹碱甲基碘化物(BMI)和Cl^-通道阻断剂印防己毒素(PTX)所阻断,而单独灌流BMI和PTX对RVLM神经元主要  相似文献   

17.
Olsen SR  Bhandawat V  Wilson RI 《Neuron》2007,54(1):89-103
Each odorant receptor gene defines a unique type of olfactory receptor neuron (ORN) and a corresponding type of second-order neuron. Because each odor can activate multiple ORN types, information must ultimately be integrated across these processing channels to form a unified percept. Here, we show that, in Drosophila, integration begins at the level of second-order projection neurons (PNs). We genetically silence all the ORNs that normally express a particular odorant receptor and find that PNs postsynaptic to the silent glomerulus receive substantial lateral excitatory input from other glomeruli. Genetically confining odor-evoked ORN input to just one glomerulus reveals that most PNs postsynaptic to other glomeruli receive indirect excitatory input from the single ORN type that is active. Lateral connections between identified glomeruli vary in strength, and this pattern of connections is stereotyped across flies. Thus, a dense network of lateral connections distributes odor-evoked excitation between channels in the first brain region of the olfactory processing stream.  相似文献   

18.
Development of the adult olfactory system of the moth Manduca sexta depends on reciprocal interactions between olfactory receptor neuron (ORN) axons growing in from the periphery and centrally-derived glial cells. Early-arriving ORN axons induce a subset of glial cells to proliferate and migrate to form an axon-sorting zone, in which later-arriving ORN axons will change their axonal neighbors and change their direction of outgrowth in order to travel with like axons to their target areas in the olfactory (antennal) lobe. These newly fasciculated axon bundles will terminate in protoglomeruli, the formation of which induces other glial cells to migrate to surround them. Glial cells do not migrate unless ORN axons are present, axons fail to fasciculate and target correctly without sufficient glial cells, and protoglomeruli are not maintained without a glial surround. We have shown previously that Epidermal Growth Factor receptors and the IgCAMs Neuroglian and Fasciclin II play a role in the ORN responses to glial cells. In the present work, we present evidence for the importance of glial Fibroblast Growth Factor receptors in glial migration, proliferation, and survival in this developing pathway. We also report changes in growth patterns of ORN axons and of the dendrites of olfactory (antennal lobe) neurons following blockade of glial FGFR activation that suggest that glial FGFR activation is important in reciprocal communication between neurons and glial cells.  相似文献   

19.
The molecular basis of odor coding in the Drosophila larva   总被引:2,自引:0,他引:2  
Kreher SA  Kwon JY  Carlson JR 《Neuron》2005,46(3):445-456
We have analyzed the molecular basis of odor coding in the Drosophila larva. A subset of Or genes is found to be expressed in larval olfactory receptor neurons (ORNs). Using an in vivo expression system and electrophysiology, we demonstrate that these genes encode functional odor receptors and determine their response spectra with 27 odors. The receptors vary in their breadth of tuning, exhibit both excitation and inhibition, and show different onset and termination kinetics. An individual receptor appears to transmit signals via a single ORN to a single glomerulus in the larval antennal lobe. We provide a spatial map of odor information in the larval brain and find that ORNs with related functional specificity map to related spatial positions. The results show how one family of receptors underlies odor coding in two markedly different olfactory systems; they also provide a molecular mechanism to explain longstanding observations of larval odor discrimination.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号