首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD2 is a plasma membrane glycoprotein present on T lymphocytes that functions as a cell adhesion molecule (CAM). The CD2 counter-receptor in rodents is the structurally-related CAM CD48. Intercellular adhesion involves the formation of multiple CAM complexes between adhering cells and de-adhesion requires disruption of these complexes. To gain an insight into the initiation and termination of intercellular adhesion, the kinetics and affinity of the rat CD2-CD48 interaction was analysed using a BIAcore instrument, which enables the monitoring of protein binding in real time. A soluble chimeric protein, comprising the extracellular portion of rat CD48 and domains 3 and 4 of rat CD4 (sCD48-CD4), bound to immobilized soluble CD2 (sCD2) with a KD of 90 microM. The affinity was also determined in the reverse orientation and sCD2 was shown to bind immobilized sCD48-CD4 with a comparable KD of 60 microM. sCD48-CD4 bound to immobilized deglycosylated sCD2 with a KD of 125 microM, indicating that glycosylation of sCD2 has little effect on the affinity of the interaction. The low affinity was the result of an extremely rapid off-rate constant (K(off) > or = 6 s-1), whereas the on-rate constant was unremarkable (K(on) > or = 10(5) M-1s-1). The kinetic analysis revealed that small amounts of multimeric aggregates of sCD48-CD4 formed in concentrated preparations. Our experience suggests that even low concentrations (< 2%) of these aggregates may be a cause of artifactually high affinity values when analysing low-affinity protein interactions. In conclusion, this study provides the first detailed analysis of the kinetics and affinity of monomeric CAM interactions and suggests that binding between CAMs may be weaker than anticipated.  相似文献   

2.
The relationship between intermembrane spacing, adhesion efficiency, and lateral organization of adhesion receptors has not been established for any adhesion system. We have utilized the CD2 ligand CD48 with two (wild type CD48 (CD48-WT)), four (CD48-CD2), or five (CD48-CD22) Ig-like domains. CD48-WT was 10-fold more efficient in mediating adhesion than CD48-CD2 or CD48-CD22. Electron tomography of contact areas with planar bilayers demonstrated average intermembrane spacing of 12.8 nm with CD48-WT, 14.7 nm with CD48-CD2, and 15.6 nm with CD48-CD22. Both CD48-CD2 and CD48-CD22 chimeras segregated completely from CD48-WT in mixed contact areas. In contrast, CD48-CD2 and CD48-CD22 co-localized when mixed contacts were formed. Confocal imaging of immunological synapses formed between primary T lymphocytes and Chinese hamster ovary cells presenting major histocompatibility complex-peptide complexes, and different forms of CD48 demonstrated that CD48-CD2 and CD48-CD22 induce an eccentric CD2/T cell antigen receptor cluster. We propose that this reorganization of the immunological synapse sequesters the T cell antigen receptor in a location where it cannot interact with its ligand and dramatically reduces T cell sensitivity.  相似文献   

3.
This study describes quantitative investigations of the impact of single charge mutations on equilibrium binding, kinetics, and the adhesion strength of the CD2-CD58 interaction. Previously steered molecular dynamics simulations guided the selection of the charge mutants investigated, which include the CD2 mutants D31A, K41A, K51A, and K91A. This set includes mutations in which the previous cell aggregation and binding data either agreed or disagreed with the steered molecular dynamics predictions. Surface plasmon resonance measurements quantified the solution binding properties. Adhesion was quantified with the surface force apparatus, which was used previously to study the closely related CD2-CD48 interaction. The results reveal roles that these salt bridges play in equilibrium binding and adhesion. We discuss both the molecular basis of this behavior and its implications for cell adhesion.  相似文献   

4.
The heterophilic CD2-CD58 adhesion interface contains interdigitating residues that impart high specificity and rapid binding kinetics. To define the hot spot of this counter-receptor interaction, we characterized CD2 adhesion domain variants harboring a single mutation of the central Tyr86 or of each amino acid residue forming a salt link/hydrogen bond. Alanine mutations at D31, D32 and K34 on the C strand and K43 and R48 on the C' strand reduce affinity for CD58 by 47-127-fold as measured by isothermal titration calorimetry. The Y86A mutant reduces affinity by approximately 1000-fold, whereas Y86F is virtually without effect, underscoring the importance of the phenyl ring rather than the hydroxyl moiety. The CD2-CD58 crystal structure offers a detailed view of this key functional epitope: CD2 D31 and D32 orient the side-chain of CD58 K34 such that CD2 Y86 makes hydrophobic contact with the extended aliphatic component of CD58 K34 between CD2 Y86 and CD58 F46. The elucidation of this hot spot provides a new target for rational design of immunosuppressive compounds and suggests a general approach for other receptors.  相似文献   

5.
Alefacept is a chimeric protein combining CD58 immunoglobulin-like domain 1 with human IgG1 Fc. Alefacept mediates adhesion by bridging CD2 on T cells to activating Fc receptors on effector cells, but the equilibrium binding parameters have not been determined. Alefacept mediated T cell killing by NK cells and adhesion between CD2- and CD16-expressing cells at an optimum concentration of 100 nM. We introduce novel measurements with supported planer bilayers, from which key two-dimensional and three-dimensional parameters can be determined by data fitting. Alefacept competitively inhibited cell bilayer adhesion mediated by the CD2-CD58 interaction. Alefacept mediated maximal adhesion of CD2(+) T cells to CD16B, an Fc receptor, in planar bilayers at 500 nM. A mechanistic model for alefacept-mediated cell-bilayer adhesion allowed fitting of the data and determination of two-dimensional binding parameters. These included the density of bonds in the adhesion area, which grew to maintain a consistent average bond density of 200 molecules/microm(2) and two-dimensional association constants of 3.1 and 630 microm(2) for bivalently and monovalently bound forms of alefacept, respectively. The maximum number of CD16 bound and the fit value of 4,350 CD2 per cell are much lower than the 40,000 CD2 per cell measured with anti-CD2 Fab. These results suggest that additional information is needed to correctly predict Alefacept-mediated bridge formation.  相似文献   

6.
The interaction between cell-adhesion molecules CD2 and CD58 is critical for an immune response. Modulation or inhibition of these interactions has been shown to be therapeutically useful. Synthetic 12-mer linear and cyclic peptides, and cyclic hexapeptides based on rat CD2 protein, were designed to modulate CD2-CD58 interaction. The synthetic peptides effectively blocked the interaction between CD2-CD58 proteins as demonstrated by antibody binding, E-rosetting and heterotypic adhesion assays. NMR and molecular modeling studies indicated that the synthetic cyclic peptides exhibit beta-turn structure in solution and closely mimic the beta-turn structure of the surface epitopes of the CD2 protein. Docking studies of CD2 peptides and CD58 protein revealed the possible binding sites of the cyclic peptides on CD58 protein. The designed cyclic peptides with beta-turn structure have the ability to modulate the CD2-CD58 interaction.  相似文献   

7.
The fusion of human immunodeficiency virus type 1 (HIV-1) to host cells is a dynamic process governed by the interaction between glycoproteins on the viral envelope and the major receptor, CD4, and coreceptor on the surface of the cell. How these receptors organize at the virion-cell interface to promote a fusion-competent site is not well understood. Using single-molecule force spectroscopy, we map the tensile strengths, lifetimes, and energy barriers of individual intermolecular bonds between CCR5-tropic HIV-1 gp120 and its receptors CD4 and CCR5 or CXCR4 as a function of the interaction time with the cell. According to the Bell model, at short times of contact between cell and virion, the gp120-CD4 bond is able to withstand forces up to 35 pN and has an initial lifetime of 0.27 s and an intermolecular length of interaction of 0.34 nm. The initial bond also has an energy barrier of 6.7 k(B)T (where k(B) is Boltzmann's constant and T is absolute temperature). However, within 0.3 s, individual gp120-CD4 bonds undergo rapid destabilization accompanied by a shortened lifetime and a lowered tensile strength. This destabilization is significantly enhanced by the coreceptor CCR5, not by CXCR4 or fusion inhibitors, which suggests that it is directly related to a conformational change in the gp120-CD4 bond. These measurements highlight the instability and low tensile strength of gp120-receptor bonds, uncover a synergistic role for CCR5 in the progression of the gp120-CD4 bond, and suggest that the cell-virus adhesion complex is functionally arranged about a long-lived gp120-coreceptor bond.  相似文献   

8.
The structural analysis of surface proteins belonging to the CD2 subset of the immunoglobulin superfamily has yielded important insights into transient cellular interactions. In mice and rats, CD2 and CD244 (2B4), which are expressed predominantly on T cells and natural killer cells, respectively, bind the same, broadly expressed ligand, CD48. Structures of CD2 and CD244 have been solved previously, and we now present the structure of the receptor-binding domain of rat CD48. The receptor-binding surface of CD48 is unusually flat, as in the case of rat CD2, and shares a high degree of electrostatic complementarity with the equivalent surface of CD2. The relatively simple arrangement of charged residues and this flat topology explain why CD48 cross-reacts with CD2 and CD244 and, in rats, with the CD244-related protein, 2B4R. Comparisons of modeled complexes of CD2 and CD48 with the complex of human CD2 and CD58 are suggestive of there being substantial plasticity in the topology of ligand binding by CD2. Thermodynamic analysis of the native CD48-CD2 interaction indicates that binding is driven by equivalent, weak enthalpic and entropic effects, in contrast to the human CD2-CD58 interaction, for which there is a large entropic barrier. Overall, the structural and biophysical comparisons of the CD2 homologues suggest that the evolutionary diversification of interacting cell surface proteins is rapid and constrained only by the requirement that binding remains weak and specific.  相似文献   

9.
The force-induced detachment of the adhesion protein complex CD2-CD58 was studied by steered molecular dynamics simulations. The forced detachment of CD2 and CD58 shows that the system can respond to an external force by two mechanisms, which depend on the loading rate. At the rapid loading rates of 70 and 35 pN/ps (pulling speeds of 1 and 0.5 A/ps) the two proteins unfold before they separate, whereas at slower loading rates of 7 and 3.5 pN/ps (pulling speeds of 0.1 and 0.05 A/ps), the proteins separate before the domains can unfold. When subjected to a constant force of 400 pN, the two proteins separated without significant structural distortion. These findings suggest that protein unfolding is not coupled to the adhesive function of CD2 and CD58. The simulations further confirm that salt bridges primarily determine the tensile strength of the protein-to-protein bond, and that the order of salt bridge rupture depends mainly on the position of the bond, relative to the line of action of the applied force. Salt bridges close to this line break first. The importance of each of the salt bridges for adhesion, determined from the simulations, correlates closely with their role in cell-to-cell adhesion and equilibrium binding determined by site-directed mutagenesis experiments.  相似文献   

10.
The role of beta2-integrins CD11b/CD18 and CD 11c/CD 18 in adhesion and migration of leukocytes on fibrinogen was studied. The monoclonal antibodies against CD11b inhibited the spontaneous adhesion of monocytic THP-1 cells on fibrinogen, whereas antibodies to CD11c more effectively inhibited the adhesion stimulated by chemokine MCP-1. By the RNA-interference method the clones of THP-1 with reduced expression of CD11b and general beta2-subunit CD18 were obtained. MCP-I stimulated the adhesion to fibrinogen of THP-1 cells of wild-type and mutant cells with reduced expression of CD11b (THP-1-CD11b-low), but not of cells with low expression of CD18 (THP-1-CD18-low). THP-1-CD18-low cells were also characterized by the impaired chemotaxis in presence of MCP-1. The data obtained suggest that spontaneous cell adhesion to fibrinogen is mediated to a greater extent by CD11b/CD18 integrins, while chemokine-stimulated adhesion and migration is mostly dependent on CD11c/CD18 molecules.  相似文献   

11.
CD2 is a cell adhesion molecule found on the plasma membrane of T-lymphocytes. Its counter-receptor in rat is the structurally related CD48. This interaction is believed to contribute to the adhesion of T-cells to other cells such as cytotoxic targets and antigen presenting cells. Cell-cell adhesion involves the formation of multiple cell adhesion molecule complexes at the cell surface and if cell-cell de-adhesion is to occur, these complexes need to be disrupted. The affinities of cell adhesion molecule interactions are suggested to be relatively weak to allow this de-adhesion of cell-cell interactions. The CD2/CD48 interaction has been studied using recombinant extracellular proteins and the affinity of the interaction of soluble recombinant rat CD2–CD48 has been determined (at 37°C) using surface plasmon resonance (and shown to be weak), with the dissociation constant Kd=60–90 μm. The values determined by surface plasmon resonance results could be affected by the immobilisation of the ligand on the chip and any self-association on the chip. We used three different analytical ultracentrifuge procedures which each allowed the interaction to be studied in free solution without the need for an immobilisation medium. Both sedimentation equilibrium (using direct analysis of the concentration distribution and also modelling of molecular weight versus concentration data) and sedimentation velocity at 5°C yielded dissociation constants in the range of 20– 110 μm, supporting the surface plasmon resonance findings showing that binding between these cell adhesion molecules is relatively weak. These studies also ruled out the presence of any significant self-association of the reactants which could lead to systematic error in the surface plasmon resonance results. Accepted: 19 November 1996  相似文献   

12.
The strength of anchoring of transmembrane receptors to cytoskeleton and membrane is important in cell adhesion and cell migration. With micropipette suction, we applied pulling forces to human neutrophils adhering to latex beads that were coated with antibodies to CD62L (L-selectin), CD18 (beta2 integrins), or CD45. In each case, the adhesion frequency between the neutrophil and bead was low, and our Monte Carlo simulation indicates that only a single bond was probably involved in every adhesion event. When the adhesion between the neutrophil and bead was ruptured, it was very likely that receptors were extracted from neutrophil surfaces. We found that it took 1-2 s to extract an L-selectin at a force range of 25-45 pN, 1-4 s to extract a beta2 integrin at a force range of 60-130 pN, and 1-11 s to extract a CD45 at a force range of 35-85 pN. Our results strongly support the conclusion that, during neutrophil rolling, L-selectin is unbound from its ligand when the adhesion between neutrophils and endothelium is ruptured.  相似文献   

13.
The Nef proteins of human immunodeficiency virus and simian immunodeficiency virus (SIV) bind the AP-1 and AP-2 clathrin adaptors to downmodulate the expression of CD4 and CD28 by recruiting them to sites of AP-2 clathrin-dependent endocytosis. Additionally, SIV Nef directly binds the CD3-zeta subunit of the CD3 complex and downmodulates the T-cell receptor (TCR)-CD3 complex. We report here that SIV mac239 Nef induces the endocytosis of TCR-CD3 in Jurkat T cells. SIV Nef also induces the endocytosis of a chimeric CD8-CD3-zeta protein containing only the CD3-zeta cytoplasmic domain (8-zeta), in the absence of other CD3 subunits. Thus, the interaction of SIV Nef with CD3-zeta likely mediates the induction of TCR-CD3 endocytosis. In cells expressing SIV Nef and 8-zeta, both proteins colocalize with AP-2, indicating that Nef induces 8-zeta internalization via this pathway. Surprisingly, deletion of constitutively strong AP-2 binding determinants (CAIDs) in SIV Nef had little effect on its ability to induce TCR-CD3, or 8-zeta endocytosis, even though these determinants are required for the induction of CD4 and CD28 endocytosis via this pathway. Fluorescent microscopic analyses revealed that while neither the mutant SIV Nef protein nor 8-zeta colocalized with AP-2 when expressed independently, both proteins colocalized with AP-2 when coexpressed. In vitro binding studies using recombinant SIV Nef proteins lacking CAIDs and recombinant CD3-zeta cytoplasmic domain demonstrated that SIV Nef and CD3-zeta cooperate to bind AP-2 via a novel interaction. The fact that Nef uses distinct AP-2 interaction surfaces to recruit specific membrane receptors demonstrates how Nef independently selects distinct types of target receptors and recruits them to AP-2 for endocytosis.  相似文献   

14.
The preferential growth of CD3-CD2-CD11a/CD18- thymocytes was obtained by stimulation of CD2-CD3- thymic cells with low doses of PMA (0.5 ng/ml) and subsequent culture in the presence of recombinant interleukin-2 (100 U/ml). After 2-3 weeks, CD3-CD2-CD11a/CD18- thymocytes represented 40-60% of the total proliferating cells. Highly purified CD3-CD2-CD11a/CD18- cell populations were obtained by depletion of the CD11a/CD18+ thymocytes by immunomagnetic beads. Moreover, these populations proliferated for 2-5 weeks and did not change their surface phenotype. It is of note that these cells, despite the lack of CD2 and CD11a/CD18 adhesion molecules, could bind to umbilical vein endothelial cells as efficiently as did CD3+CD2+CD11a/CD18+ thymocytes. Furthermore we demonstrate that (a) CD56 molecule is involved in the adhesion of CD3-CD2-CD11a/CD18- thymic cells, but not of peripheral CD3-CD56+ lymphocytes, to untreated or IFN-gamma- and/or TNF-alpha-treated endothelium, (b) anti-CDw49d mAb could inhibit the adhesion of this thymus-derived population to either IFN-gamma- or TNF-alpha-treated endothelial cells but not to untreated endothelium, and (c) CD56 antigen expressed by these cultured thymocytes has a sialic acid content different from that of peripheral lymphocytes. Indeed, isoelectrofocusing analysis showed that CD56 molecule expressed on CD3-CD2-CD11a/CD18- thymocytes displayed an isoelectric point (pI 5.0) different from that of CD56 antigen expressed by peripheral NK cells (pI 4.7 and 5.4). Further, we noted that CD56 antigen showed the same pI 5.8 after desialylation obtained using neuraminidase treatment. Finally, CD3-CD2-CD11a/CD18- thymocytes mobilized Ca2+ and released TNF-alpha and IFN-gamma after treatment with lectins.  相似文献   

15.
Discovery of selective small-molecule CD80 inhibitors   总被引:1,自引:0,他引:1  
Protein-protein interactions are widely found in biological systems controlling diverse cellular events. Because these interactions are implicated in many diseases such as autoimmunity and cancer, regulation of protein-protein interactions provides ideal targets for drug intervention. The CD80-CD28 costimulatory pathway plays a critical role in regulation of the immune response and thus constitutes an attractive target for therapeutic manipulation of autoimmune diseases. The objective of this study is to identify small compounds disrupting these pivotal protein-protein interactions. Compounds that specifically blocked binding of CD80 to CD28 were identified using a strategy involving a cell-based scintillation proximity assay as the initial step. Secondary screening (e.g., by analyzing the direct binding of these compounds to the target immobilized on a biosensor surface) revealed that these compounds are highly selective CD80 binders. Screening of structurally related derivatives led to the identification of the chemical features required for inhibition of the CD80-CD28 interaction. In addition, the optimization process led to a 10-fold increase in binding affinity of the CD80 inhibitors. Using this approach, the authors identify low-molecular-weight compounds that specifically and with high potency inhibit the interaction between CD80 and CD28. These compounds serve as promising starting points for further development of CD80 inhibitors as potential immunomodulatory drugs.  相似文献   

16.
Membrane nanotubes are thin membranous projections that physically connect two cells. While nanotubes have been studied in human natural killer (NK) cells and are implicated in aiding NK cell cytotoxic function, requirements for their formation to susceptible target cells remain incompletely understood. Here we demonstrate that the CD2-CD58/48 receptor-ligand interaction promotes and is required for nanotube formation in human NK cells. In the CD2 NK cell line YTS, a stable CD2 expression variant enabled effective nanotube formation, and was associated with better cytotoxic function. Importantly, only interactions between an NK cell and a susceptible target cell were associated with multiple nanotubes and the number of nanotubes was inversely correlated with their length. Quantitative live cell fluorescence microscopy of CD2 nanotubes revealed time-dependent enrichment and localization of CD2 to the nanotube tip, and blocking CD2 receptor-ligand interactions prevented nanotube formation. Increased nanotube formation was not simply a feature of receptor-ligand pairing, as a KIR-MHC interaction in the same cell line system failed to promote nanotube formation. Additionally, blocking LFA-1-ICAM and 2B4-CD48 receptor-ligand interactions failed to inhibit nanotube formation. Thus only specific receptor-ligand pairs promote nanotubes. CD2 also promoted nanotube formation in ex vivo NK cells suggesting that CD2 plays a crucial role in the generation of nanotubes between an NK cell and its target.  相似文献   

17.
The interaction between human immunodeficiency virus type 1 (HIV-1) gp120 and the CD4 receptor is highly specific and involves relatively small contact surfaces on both proteins according to crystal structure analysis. This molecularly conserved interaction presents an excellent opportunity for antiviral targeting. Here we report a group of pentavalent antimony-containing small molecule compounds, NSC 13778 (molecular weight, 319) and its analogs, which exert a potent anti-HIV activity. These compounds block the entry of X4-, R5-, and X4/R5-tropic HIV-1 strains into CD4(+) cells but show little or no activity in CD4-negative cells or against vesicular stomatitis virus-G pseudotyped virions. The compounds compete with gp120 for binding to CD4: either immobilized on a solid phase (soluble CD4) or on the T-cell surface (native CD4 receptor) as determined by a competitive gp120 capture enzyme-linked immunosorbent assay or flow cytometry. NSC 13778 binds to an N-terminal two-domain CD4 protein, D1/D2 CD4, immobilized on a surface plasmon resonance sensor chip, and dose dependently reduces the emission intensity of intrinsic tryptophan fluorescence of D1/D2 CD4, which contains two of the three tryptophan residues in the gp120-binding domain. Furthermore, T cells incubated with the compounds alone show decreased reactivity to anti-CD4 monoclonal antibodies known to recognize the gp120-binding site. In contrast to gp120-binders that inhibit gp120-CD4 interaction by binding to gp120, these compounds appear to disrupt gp120-CD4 contact by targeting the specific gp120-binding domain of CD4. NSC 13778 may represent a prototype of a new class of HIV-1 entry inhibitors that can break into the gp120-CD4 interface and mask the gp120-binding site on the CD4 molecules, effectively repelling incoming virions.  相似文献   

18.
Bowen MA  Aruffo AA  Bajorath J 《Proteins》2000,40(3):420-428
CD6 is a cell surface receptor belonging to the scavenger receptor cysteine-rich (SRCR) protein superfamily (SRCRSF). It specifically binds activated leukocyte cell adhesion molecule (ALCAM, CD166), a member of the immunoglobulin (Ig) superfamily (IgSF). CD166 was among the first molecules identified as a ligand for an SRCRSF receptor, and the CD6-CD166 interaction was the first interaction characterized involving SRCRSF and IgSF proteins. We focus here on what has been learned about the specifics of the CD6-CD166 interaction from in vitro analysis. The studies are thought to provide an instructive example for the analysis of interactions between single-path transmembrane cell surface proteins. Using soluble recombinant forms, the extracellular binding domains of receptor and ligand have been identified and characterized in a variety of assay systems. Both CD6 and CD166 have been subjected to intense mutagenesis and monoclonal antibody (mAb) binding studies and residues critical for their interaction have been identified. The availability of structural prototypes of both superfamilies has made it possible to map the binding site in CD166 and, more recently, in CD6 and compare these regions to epitopes of mAbs that block, or do not block, the interaction. In addition, the molecular basis of observed cross-species receptor-ligand interactions could be rationalized. These studies illustrate the value of structural templates for the interpretation of sequence and mutagenesis analyses. Proteins 2000;40:420-428.  相似文献   

19.
Human neutrophil-specific CD177 (NB1 and PRV-1) has been reported to be up-regulated in a number of inflammatory settings, including bacterial infection and granulocyte-colony-stimulating factor application. Little is known about its function. By flow cytometry and immunoprecipitation studies, we identified platelet endothelial cell adhesion molecule-1 (PECAM-1) as a binding partner of CD177. Real-time protein-protein analysis using surface plasmon resonance confirmed a cation-dependent, specific interaction between CD177 and the heterophilic domains of PECAM-1. Monoclonal antibodies against CD177 and against PECAM-1 domain 6 inhibited adhesion of U937 cells stably expressing CD177 to immobilized PECAM-1. Transendothelial migration of human neutrophils was also inhibited by these antibodies. Our findings provide direct evidence that neutrophil-specific CD177 is a heterophilic binding partner of PECAM-1. This interaction may constitute a new pathway that participates in neutrophil transmigration.  相似文献   

20.
Rac1 is a member of the Rho family of small GTPases, which regulate cell adhesion and migration through their control of the actin cytoskeleton. Rho-GTPases are structurally very similar, with the exception of a hypervariable domain in the C terminus. Using peptide-based pulldown assays in combination with mass spectrometry, we previously showed that the hypervariable domain in Rac1 mediates specific protein-protein interactions. Most recently, we found that the Rac1 C terminus associates to the ubiquitously expressed adapter protein CMS/CD2AP. CD2AP is critical for the formation and maintenance of a specialized cell-cell contact between kidney podocyte foot processes, the slit diaphragm. Here, CD2AP links the cell adhesion protein nephrin to the actin cytoskeleton. In addition, CMS/CD2AP binds actin-regulating proteins, such as CAPZ and cortactin, and has been implicated in the internalization of growth factor receptors. We found that CD2AP specifically interacts with the C-terminal domain of Rac1 but not with that of other Rho family members. Efficient interaction between Rac1 and CD2AP requires both the proline-rich domain and the poly-basic region in the Rac1 C terminus, and at least two of the three N-terminal SH3 domains of CD2AP. CD2AP co-localizes with Rac1 to membrane ruffles, and small interfering RNA-based experiments showed that CD2AP links Rac1 to CAPZ and cortactin. Finally, expression of constitutive active Rac1 recruits CD2AP to cell-cell contacts in epithelial cells, where we found CD2AP to participate in the control of the epithelial barrier function. These data identify CD2AP as a novel Rac1-associated adapter protein that participates in the regulation of epithelial cell-cell contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号