首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
2.
DNA损伤生物学反应中ATM对p21~(WAF1/CIP1)蛋白的直接磷酸化   总被引:3,自引:0,他引:3  
毛细血管扩张性共济失调症突变蛋白 (mutatedinataxiatelangiectasia ,ATM)是直接感受DNA双链断裂损伤并起始诸多DNA损伤信号反应通路的主开关分子 .已有研究发现 ,DNA损伤生物学反应中 ,ATM可通过磷酸化活化p5 3,继而转录活化细胞周期检查点蛋白p2 1WAF1 CIP1的表达 ,而对于ATM是否直接参与p2 1WAF1 CIP1的早期活化迄今尚无实验证明 .通过免疫共沉淀反应 ,检测到细胞电离辐射 (ionizingradiation ,IR)反应早期ATM与p2 1WAF1 CIP1蛋白存在相互作用 .将p2 1WAF1 CIP1蛋白编码基因全长克隆入原核表达载体pGEX4T 2 ,经诱导表达及亲和层析纯化获取GST p2 1融合蛋白作为磷酸化底物 .体外磷酸化实验检测证明 ,IR活化的ATM具磷酸化p2 1WAF1 CIP1蛋白的功能 ,并且此磷酸化功能可被PI3K家族特异性抑制剂Wortmannin所抑制 .结果揭示了IR后ATM可通过直接磷酸化p2 1WAF1 CIP1蛋白 ,在IR致DNA损伤生物学反应早期调控p2 1WAF1 CIP1蛋白的快速活化过程  相似文献   

3.
4.
Faithful repair of DNA double-strand breaks is vital to the maintenance of genome integrity and proper cell functions. Histone modifications, such as reversible acetylation, phosphorylation, methylation, and ubiquitination, which collectively contribute to the establishment of distinct chromatin states, play important roles in the recruitment of repair factors to the sites of double-strand breaks. Here we report that histone acetyltransferase 1 (HAT1), a classical B type histone acetyltransferase responsible for acetylating the N-terminal tail of newly synthesized histone H4 in the cytoplasm, is a key regulator of DNA repair by homologous recombination in the nucleus. We found that HAT1 is required for the incorporation of H4K5/K12-acetylated H3.3 at sites of double-strand breaks through its HIRA-dependent histone turnover activity. Incorporated histones with specific chemical modifications facilitate subsequent recruitment of RAD51, a key repair factor in mammalian cells, to promote efficient homologous recombination. Significantly, depletion of HAT1 sensitized cells to DNA damage compromised the global chromatin structure, inhibited cell proliferation, and induced cell apoptosis. Our experiments uncovered a role for HAT1 in DNA repair in higher eukaryotic organisms and provide a mechanistic insight into the regulation of histone dynamics by HAT1.  相似文献   

5.
The Mre11/Rad50/NBS1 (MRN) complex is thought to be a critical sensor that detects damaged DNA and recruits ATM to DNA foci for activation. However, it remains to be established how the MRN complex regulates ATM recruitment to the DNA foci during DNA double-strand breaks (DSBs). Here we show that Skp2 E3 ligase is a key component for the MRN complex-mediated ATM activation in response to DSBs. Skp2 interacts with NBS1 and triggers K63-linked ubiquitination of NBS1 upon DSBs, which is critical for the interaction of NBS1 with ATM, thereby facilitating ATM recruitment to the DNA foci for activation. Finally, we show that Skp2 deficiency exhibits a defect in homologous recombination (HR) repair, thereby increasing IR sensitivity. Our results provide molecular insights into how Skp2 and the MRN complex coordinate to activate ATM, and identify Skp2-mediatetd NBS1 ubiquitination as a vital event for ATM activation in response to DNA damage.  相似文献   

6.
7.
The repair of DNA damage is fundamental to normal cell development and replication. Hydrogen sulfide (H2S) is a novel gasotransmitter that has been reported to protect cellular aging. Here, we show that H2S attenuates DNA damage in human endothelial cells and fibroblasts by S‐sulfhydrating MEK1 at cysteine 341, which leads to PARP‐1 activation. H2S‐induced MEK1 S‐sulfhydration facilitates the translocation of phosphorylated ERK1/2 into nucleus, where it activates PARP‐1 through direct interaction. Mutation of MEK1 cysteine 341 inhibits ERK phosphorylation and PARP‐1 activation. In the presence of H2S, activated PARP‐1 recruits XRCC1 and DNA ligase III to DNA breaks to mediate DNA damage repair, and cells are protected from senescence.  相似文献   

8.
9.
Poly(ADP-ribose) polymerase-1 (PARP-1), nuclear protein of higher eukaryotes, specifically detects strand breaks in DNA. When bound to DNA strand breaks, PARP-1 is activated and catalyzes synthesis of poly(ADP-ribose) covalently attached to the row of nuclear proteins, with the main acceptor being PARP-1 itself. This protein participates in a majority of DNA dependent processes: repair, recombination; replication: cell death: apoptosis and necrosis. Poly(ADP-ribosyl)ation of proteins is considered as mechanism, which signals about DNA damage and modulate protein functioning in response to genotoxic impact. The main emphasis is made on the roles of PARP-1 and poly(ADP-ribosyl)ation in base excision repair (BER), the process, which provides repair of DNA breaks. The main proposed functions of PARP-1 in this process are: factor initiating assemblage of protein complex of BER; temporary protection of DNA ends; modulation of chromatin structure via poly(ADP-ribosyl)ation of histones; signaling function in detection of the levels of DNA damage in cell.  相似文献   

10.
Insults to nuclear DNA induce multiple response pathways to mitigate the deleterious effects of damage and mediate effective DNA repair. G-protein-coupled receptor kinase-interacting protein 2 (GIT2) regulates receptor internalization, focal adhesion dynamics, cell migration, and responses to oxidative stress. Here we demonstrate that GIT2 coordinates the levels of proteins in the DNA damage response (DDR). Cellular sensitivity to irradiation-induced DNA damage was highly associated with GIT2 expression levels. GIT2 is phosphorylated by ATM kinase and forms complexes with multiple DDR-associated factors in response to DNA damage. The targeting of GIT2 to DNA double-strand breaks was rapid and, in part, dependent upon the presence of H2AX, ATM, and MRE11 but was independent of MDC1 and RNF8. GIT2 likely promotes DNA repair through multiple mechanisms, including stabilization of BRCA1 in repair complexes; upregulation of repair proteins, including HMGN1 and RFC1; and regulation of poly(ADP-ribose) polymerase activity. Furthermore, GIT2-knockout mice demonstrated a greater susceptibility to DNA damage than their wild-type littermates. These results suggest that GIT2 plays an important role in MRE11/ATM/H2AX-mediated DNA damage responses.  相似文献   

11.
BRCA1 carboxyl-terminal (BRCT) motifs are present in a number of proteins involved in DNA repair and/or DNA damage-signaling pathways. Human DNA topoisomerase II binding protein 1 (TopBP1) contains eight BRCT motifs and shares sequence similarity with the fission yeast Rad4/Cut5 protein and the budding yeast DPB11 protein, both of which are required for DNA damage and/or replication checkpoint controls. We report here that TopBP1 is phosphorylated in response to DNA double-strand breaks and replication blocks. TopBP1 forms nuclear foci and localizes to the sites of DNA damage or the arrested replication forks. In response to DNA strand breaks, TopBP1 phosphorylation depends on the ataxia telangiectasia mutated protein (ATM) in vivo. However, ATM-dependent phosphorylation of TopBP1 does not appear to be required for focus formation following DNA damage. Instead, focus formation relies on one of the BRCT motifs, BRCT5, in TopBP1. Antisense Morpholino oligomers against TopBP1 greatly reduced TopBP1 expression in vivo. Similar to that of ataxia telangiectasia-related protein (ATR), Chk1, or Hus1, downregulation of TopBP1 leads to reduced cell survival, probably due to increased apoptosis. Taken together, the data presented here suggest that, like its putative counterparts in yeast species, TopBP1 may be involved in DNA damage and replication checkpoint controls.  相似文献   

12.
In mammalian cells, DNA is often subjected to stresses such as ionizing radiation (IR) and ultraviolet light that can induce DNA double strand breaks (DSBs). In response to DNA DSBs, mammalian cells activate a rapid phosphorylation signaling cascade through the protein kinases, Ataxia-Telangiectasia Mutated (ATM) and ATM- and Rad3-Related (ATR).1 Many well-characterized DNA repair factors are phosphorylated by ATM in response to DSBs, and the sequential phosphorylation of some of these factors, including NBS1, delay cell cycle progression (checkpoint arrest) to allow time for DNA damage repair.2 Results from a new study suggest that phosphorylation of NBS1 is regulated by the acetylation status of the protein, which is modulated by SIRT1 deacetylase.  相似文献   

13.
14.
DNA damage activates signaling pathways that lead to modification of local chromatin and recruitment of DNA repair proteins. Multiple DNA repair proteins having ubiquitin ligase activity are recruited to sites of DNA damage, where they ubiquitinate histones and other substrates. This DNA damage-induced histone ubiquitination is thought to play a critical role in mediating the DNA damage response. We now report that the polycomb protein BMI1 is rapidly recruited to sites of DNA damage, where it persists for more than 8 h. The sustained localization of BMI1 to damage sites is dependent on intact ATM and ATR and requires H2AX phosphorylation and recruitment of RNF8. BMI1 is required for DNA damage-induced ubiquitination of histone H2A at lysine 119. Loss of BMI1 leads to impaired repair of DNA double-strand breaks by homologous recombination and the accumulation of cells in G(2)/M. These data support a crucial role for BMI1 in the cellular response to DNA damage.  相似文献   

15.
DNA double-strand breaks (DSBs) trigger activation of the ATM protein kinase, which coordinates cell-cycle arrest, DNA repair and apoptosis. We propose that ATM activation by DSBs occurs in two steps. First, dimeric ATM is recruited to damaged DNA and dissociates into monomers. The Mre11-Rad50-Nbs1 complex (MRN) facilitates this process by tethering DNA, thereby increasing the local concentration of damaged DNA. Notably, increasing the concentration of damaged DNA bypasses the requirement for MRN, and ATM monomers generated in the absence of MRN are not phosphorylated on Ser1981. Second, the ATM-binding domain of Nbs1 is required and sufficient to convert unphosphorylated ATM monomers into enzymatically active monomers in the absence of DNA. This model clarifies the mechanism of ATM activation in normal cells and explains the phenotype of cells from patients with ataxia telangiectasia-like disorder and Nijmegen breakage syndrome.  相似文献   

16.
The ATM kinase has previously been shown to respond to the DNA damage induced by reoxygenation following hypoxia by initiating a Chk 2-dependent cell cycle arrest in the G(2) phase. Here we show that ATM is both phosphorylated and active during exposure to hypoxia in the absence of DNA damage, detectable by either comet assay or 53BP1 focus formation. Hypoxia-induced activation of ATM correlates with oxygen concentrations low enough to cause a replication arrest and is entirely independent of hypoxia-inducible factor 1 status. In contrast to damage-activated ATM, hypoxia-activated ATM does not form nuclear foci but is instead diffuse throughout the nucleus. The hypoxia-induced activity of both ATM and the related kinase ATR is independent of NBS1 and MRE11, indicating that the MRN complex does not mediate the DNA damage response to hypoxia. However, the mediator MDC1 is required for efficient activation of Kap1 by hypoxia-induced ATM, indicating that similarly to the DNA damage response, there is a requirement for MDC1 to amplify the ATM response to hypoxia. However, under hypoxic conditions, MDC1 does not recruit BRCA1/53BP1 or RNF8 activity. Our findings clearly demonstrate that there are alternate mechanisms for activating ATM that are both stress-specific and independent of the presence of DNA breaks.  相似文献   

17.
PARP-1 and ATM are both involved in the response to DNA strand breaks, resulting in induction of a signaling network responsible for DNA surveillance, cellular recovery, and cell survival. ATM interacts with double-strand break repair pathways and induces signals resulting in the control of the cell cycle-coupled checkpoints. PARP-1 acts as a DNA break sensor in the base excision repair pathway of DNA. Mice with mutations inactivating either protein show radiosensitivity and high radiation-induced chromosomal aberration frequencies. Embryos carrying double mutations of both PARP-1 and Atm genes were generated. These mutant embryos show apoptosis in the embryo but not in extraembryonic tissues and die at embryonic day 8.0, although extraembryonic tissues appear normal for up to 10.5 days of gestation. These results reveal a functional synergy between PARP-1 and ATM during a period of embryogenesis when cell cycle checkpoints are not active and the embryo is particularly sensitive to DNA damage. These results suggest that ATM and PARP-1 have synergistic phenotypes due to the effects of these proteins on signaling DNA damage and/or on distinct pathways of DNA repair.  相似文献   

18.
53BP1 is a conserved nuclear protein that is implicated in the DNA damage response. After irradiation, 53BP1 localizes rapidly to nuclear foci, which represent sites of DNA double strand breaks, but its precise function is unclear. Using small interference RNA (siRNA), we demonstrate that 53BP1 functions as a DNA damage checkpoint protein. 53BP1 is required for at least a subset of ataxia telangiectasia-mutated (ATM)-dependent phosphorylation events at sites of DNA breaks and for cell cycle arrest at the G2-M interphase after exposure to irradiation. Interestingly, in cancer cell lines expressing mutant p53, 53BP1 was localized to distinct nuclear foci and ATM-dependent phosphorylation of Chk2 at Thr 68 was detected, even in the absence of irradiation. In addition, Chk2 was phosphorylated at Thr 68 in more than 50% of surgically resected lung and breast tumour specimens from otherwise untreated patients [corrected]. We conclude that the constitutive activation of the DNA damage checkpoint pathway may be linked to the high frequency of p53 mutations in human cancer, as p53 is a downstream target of Chk2 and ATM.  相似文献   

19.
DNA polymerase eta (PolH) is the product of the xeroderma pigmentosum variant (XPV) gene and a well-characterized Y-family DNA polymerase for translesion synthesis. Cells derived from XPV patients are unable to faithfully bypass UV photoproducts and DNA adducts and thus acquire genetic mutations. Here, we found that PolH can be up-regulated by DNA breaks induced by ionizing radiation or chemotherapeutic agents, and knockdown of PolH gives cells resistance to apoptosis induced by DNA breaks in multiple cell lines and cell types in a p53-dependent manner. To explore the underlying mechanism, we examined p53 activation upon DNA breaks and found that p53 activation is impaired in PolH knockdown cells and PolH-null primary fibroblasts. Importantly, reconstitution of PolH into PolH knockdown cells restores p53 activation. Moreover, we provide evidence that, upon DNA breaks, PolH is partially colocalized with phosphorylated ATM at gamma-H2AX foci and knockdown of PolH impairs ATM to phosphorylate Chk2 and p53. However, upon DNA damage by UV, PolH knockdown cells exhibit two opposing temporal responses: at the early stage, knockdown of PolH suppresses p53 activation and gives cells resistance to UV-induced apoptosis in a p53-dependent manner; at the late stage, knockdown of PolH suppresses DNA repair, leading to sustained activation of p53 and increased susceptibility to apoptosis in both a p53-dependent and a p53-independent manner. Taken together, we found that PolH has a novel role in the DNA damage checkpoint and that a p53 target can modulate the DNA damage response and subsequently regulate p53 activation.  相似文献   

20.
PTEN (phosphatase and tensin homologue deleted on chromosome TEN) is the major negative regulator of phosphatidylinositol 3-kinase signaling and has cell-specific functions including tumor suppression. Nuclear localization of PTEN is vital for tumor suppression; however, outside of cancer, the molecular and physiological events driving PTEN nuclear entry are unknown. In this paper, we demonstrate that cytoplasmic Pten was translocated into the nuclei of neurons after cerebral ischemia in mice. Critically, this transport event was dependent on a surge in the Nedd4 family-interacting protein 1 (Ndfip1), as neurons in Ndfip1-deficient mice failed to import Pten. Ndfip1 binds to Pten, resulting in enhanced ubiquitination by Nedd4 E3 ubiquitin ligases. In vitro, Ndfip1 overexpression increased the rate of Pten nuclear import detected by photobleaching experiments, whereas Ndfip1(-/-) fibroblasts showed negligible transport rates. In vivo, Ndfip1 mutant mice suffered larger infarct sizes associated with suppressed phosphorylated Akt activation. Our findings provide the first physiological example of when and why transient shuttling of nuclear Pten occurs and how this process is critical for neuron survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号