首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The pepsinogen gene is hypomethylated in the stomach, in which it is expressed. For demonstration that this hypomethylation of the pepsinogen gene in the stomach reflects pepsinogen-producing cells, we analyzed fractions of dispersed mucosal cells with various contents of pepsinogen-producing cells prepared from guinea pig stomach by centrifugal elutriation. mRNA expression and the extent of hypomethylation of the pepsinogen gene in each fraction was closely correlated with the content of pepsinogen-producing cells. These results suggested hypomethylation of the pepsinogen gene in pepsinogen-producing cells and differential pepsinogen gene methylation in cell subpopulations in the stomach.  相似文献   

2.
Undifferentiated glandular stomach tissue fragments from 16.5-day fetal rats were transplanted under the kidney capsule of syngeneic adult rats, and the proliferation, differentiation and morphogenesis of the transplanted tissues were investigated. Gastric epithelial cells began to invaginate 3–4 days after the transplantation and immature glands were formed after 1 week. During the period, there was a gradual increase in the expression of pepsinogen and cathepsin E, markers of cytodifferentiation of the stomach epithelia, both at protein and mRNA levels. Cathepsin E was weakly expressed in undifferentiated gastric epithelial cells at 16.5 days of gestation, and a higher level of the expression was observed in differentiated epithelia of the transplants. In contrast, the pepsinogen-producing cells first appeared around days 3–4 after transplantation and gradually increased in number to about 30% of the epithelial cells and became localized at the bottom of the gland. During the period of the experiment up to 1 month, the pepsinogen-producing cells were all positive for class III mucin and cathepsin E, indicating the immature character of these cells. In addition, no parietal cells were observed. When the tissue fragments were transplanted into adrenalectomized animals, the epithelial differentiation and morphogenesis was suppressed, but its proliferation was enhanced. The observed changes were reversed by hydrocortisone replacement. These results suggest that the development of the 16.5-day fetal stomach is regulated intrinsically to a certain extent by the genetic program of the cells involved and various gastric functions develop in the absence of luminal stimulation, stage-specific systemic hormonal change, neuronal regulation or other systemic influences, and that glucocorticoids modulate the developmental program of the fetal stomach tissues.  相似文献   

3.
Injection of hydrocortisone into developing rats induced precocious increase in the potential peptic activity of pepsinogen in the fundic mucosa, change from the immature to the mature electrophoretic pattern of pepsinogen isozymes and morphological change from the immature to the mature chief cells. The continual presence of hydrocortisone was required for maintenance of mature chief cells.  相似文献   

4.
Effects of hormones on pepsinogen activity in mouse stomach were investigated by enzyme assay and electron microscopy. Administration of hydrocortisone alone to mice on days 5–10 increased the enzyme activity in the stomach to as much as 4.5-fold that of untreated mice and the increase was dose dependent. Thyroxine also evoked precocious differentiation of the stomach. The effects of thyroxine and hydrocortisone were additive. Injections of insulin had little effect when given alone, or in combination with other hormones. Injection of hydrocortisone alone or plus thyroxine also caused morphological differentiation of the chief cells in the stomach mucosa. Administration of thyroxine to mice on days 15–20 induced as much enzyme activity as that induced by hydrocortisone, but neither of these hormones had any effect when injected after day 23.These results suggest that besides hydrocortisone, thyroxine is also involved in differentiation of the stomach in mice for the first 20 days after birth and that the normal increase of pepsinogen activity in the stomach of mice during the late suckling period is brought about by serum glucocorticoids, possibly with thyroxine.  相似文献   

5.
Maturing amphibian oocytes undergo drastic morphological changes, including germinal vesicle breakdown (GVBD), chromosome condensation, and spindle formation in response to progesterone. Two kinases, maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK), are involved in these changes, but their precise roles are unknown. Unlike in Xenopus oocytes, discrimination of the functions of MAPK and MPF in Rana oocytes is easy owing to the lack of pre-MPF. We investigated the roles of these kinases by careful observations of chromosomes and microtubules in Rana oocytes. MPF and MAPK activities were manipulated by treatment with progesterone, c-mos mRNA, or cyclin B mRNA in combination with MAPK kinase inhibitors. Activation of one kinase without activation of the other induced only limited events; GVBD was induced by MPF without MAPK, and reorganization of microtubules at GVBD was induced by MAPK without MPF, but other events were not induced. In contrast, coactivation of MPF and MAPK by injection of c-mos and cyclin B mRNA promoted almost all of the morphological changes that occur during maturation without progesterone, indicating that these are controlled by cooperation of MPF and MAPK. The results revealed the functions of MAPK and MPF in each process of sequential morphological changes during oocyte maturation.  相似文献   

6.
7.
The effects of omeprazole, a proton pump inhibitor, on gene expression, protein synthesis, intracellular storage and secretion of pepsinogen in guinea pig stomach were investigated. After treatment with omeprazole for five days, acid and pepsinogen secretion into the gastric lumen was significantly reduced. Concomitant with this, there was an increase in intracellular pepsinogen as demonstrated by increased pepsin activity in the gastric mucosa, more intense immunohistochemical staining by antibodies specific of pepsinogen and accumulation of secretory granules in the cells producing pepsinogen. In these cells, the amount for pepsinogen mRNA was reduced as revealed by Northern blotting and in situ hybridization. Ultrastructurally the endoplasmic reticulum of these cells was poorly developed, the findings being consistent with a reduction in protein synthesis. It appears that omeprazole inhibits the secretion of pepsinogen, increasing the intracellular store and leading to the reduction in gene expression probably by a feedback mechanism and consequent reduction in pepsinogen synthesis. Since these changes were most evident in the acid-secreting fundic gland mucosa, as compared with other mucosae secreting only pepsinogen, namely pyloric and duodenal mucosa, it appears probable that these changes are linked with omeprazole-induced reduction in the acid secretion.  相似文献   

8.
9.
The ontogeny of pepsinogen C-producing cells in rat fundic glands was studied by means of light and electron microscopy using an antiserum raised against a synthetic peptide based on rat pepsinogen C. To confirm the immunocytochemistry results, the expression of rat pepsinogen C messenger RNA (mRNA) in the fundic gland was also examined by in situ hybridization using a digoxigenin-labeled RNA probe. In adult rats, pepsinogen C was produced by chief cells, mucous neck cells, and intermediate mucopeptic cells. Pepsinogen C-producing cells appeared in embryos as early as 18.5 days’ gestation. The development of these cells could be classified into four stages: (1) 18.5 days’ gestation to 0.5 days after birth; (2) 0.5 days to 2 weeks after birth; (3) 3–4 weeks after birth; (4) 4–8 weeks after birth. In embryos and young animals, pepsinogen C-producing cells were mucopeptic cells. By 4 weeks after birth, mucous neck cells could be distinguished morphologically. The maturation stages of the chief cells could be traced by electron microscopy along the longitudinal axis of the rat fundic gland by double-staining with anti-pepsinogen C antibody and periodic acid-thiocarbohydrazide-silver proteinate. Positive reactions for pepsinogen C and pepsinogen C mRNA expression were detected in mucous neck cells. Therefore, we conclude that mucous neck cells are precursor cells of chief cells. Mucous neck cells, intermediate cells, and chief cells are in the same differentiating cell lineage.  相似文献   

10.
11.
12.
13.
14.
Reduced bone formation is the main finding in glucocorticoid-induced osteoporosis. The aim of this study was to determine whether differentiation of cultured human osteoblasts is inhibited by high concentrations of hydrocortisone. We measured the levels of mRNAs for three markers of cellular differentiation, type 1 collagen (COL1), alkaline phosphatase (ALP), and osteocalcin (OC), in four lines of human osteoblasts from female donors cultured with doses of hydrocortisone from 0 microM to 4 microM. The change in ALP/COL1 mRNA ratio over a given time was used to determine the average rate of differentiation of the cells in a culture. Although basal expression profiles and their changes with time were different for the different cell lines, all cell lines showed a dose-dependent rise in the rate of increase of ALP mRNA relative to COL1 mRNA. However, increase in OC mRNA with time, seen here only in young donor hOBs, was significantly inhibited by 4 microM hydrocortisone, indicating that hydrocortisone can inhibit OC expression while promoting cellular differentiation. The data suggest that increasing concentrations of glucocorticoid, including concentrations similar to plasma levels in patients receiving oral glucocorticoid therapy, increase the rate of cellular differentiation.  相似文献   

15.
16.
Electron microscopic observations of an originally established mouse mastocytoma cell line (BSP-MST-2) revealed that the cytoplasm of many of the MST-2 cells contained small and low osmiophilic granules and a few mature electron-dense granules. Fluorescent- and immuno-histochemical examinations also suggested the immaturity of granules as the cytoplasmic reaction for serotonin (5-HT) was weak. Induction of further maturation of granules was investigated by administration of various chemical agents. Among the chemicals examined, sodium butyrate and hydrocortisone were effective. In the presence of 1 mM sodium butyrate for 24 h, the cytoplasmic granules contained an abundant dense matrix. MST-2 cells incubated with hydrocortisone at 5 micrograms/ml for 24 h showed a somewhat different granulopoietic pattern from those incubated with sodium butyrate, including numerous electron-dense progranules. Fluorescent- and immuno-histochemical studies showed increased reactions of cytoplasmic 5-HT of both butyrate- and hydrocortisone-treated MST-2 cells. The specificity of these morphological and cytochemical changes was confirmed by treatment with reserpine, a drug which depletes cellular 5-HT; electron-dense materials were virtually diminished and cytochemical reactions were significantly decreased. The mode of induced production of 5-HT in mastocytoma granules is discussed, in relation to mastocyte differentiation.  相似文献   

17.
The actions of prostaglandins (PG) on cAMP in dispersed chief cells from guinea pig stomach were examined and compared to the actions of these agents on pepsinogen secretion. Maximal concentrations of A, B, or E prostaglandins caused a 2-5-fold increase in pepsinogen secretion and cellular cAMP. The relative order of potency for these actions was PGEs greater than PGAs greater than PGBs. Detection of prostaglandin-induced changes in cAMP was enhanced by adding a phosphodiesterase inhibitor to the incubation solution. The time courses for the effects of prostaglandins on pepsinogen secretion and cAMP were similar. With PGE1 an increase in cAMP and pepsinogen secretion was detected by 1 min and was maximal by 7.5 min. Although significant increases in cAMP were detected with a ten-fold lower concentration of PGEs than PGAs, a maximal increase in cAMP was observed with the same concentration, 30 microM, of either agent. These data indicate that prostaglandins that stimulate pepsinogen secretion increase cAMP in dispersed chief cells. However, comparison of the dose-response curves for the actions of prostaglandins on pepsinogen secretion and cAMP revealed that detectable increases in cAMP occurred with concentrations of these agents that were about ten-fold greater than those needed to stimulate pepsinogen secretion. Therefore, although the similarity in the kinetics and relative potencies of prostaglandin-induced changes in cAMP and enzyme secretion provides further evidence that changes in cAMP play a role in the mediation of prostaglandin-induced pepsinogen secretion, the present data suggest the involvement of a cellular messenger in addition to cAMP.  相似文献   

18.
R Xu  J R Sowers  D F Skafar  J L Ram 《Life sciences》2001,69(23):2811-2817
The interaction between hydrocortisone and estradiol on the regulation of endothelial nitric oxide synthase (eNOS) expression was investigated in human umbilical vein endothelial cells (HUVECs). Following incubation in medium containing dextran-coated-charcoal-stripped serum (DCC-stripped medium) for 4 days, incubation of HUVECs with 0.1 nM estradiol for 24 hr in the absence of hydrocortisone increased levels of eNOS mRNA measured by ribonuclease protection assay above control (0 nM estradiol). 2 microM hydrocortisone applied for 24 hr preceding and during estradiol application inhibited the estradiol-elicited increase in eNOS mRNA levels, reducing mRNA levels from 134% +/- 14% of control to 85% +/- 5% of control. Significant (ANOVA, p<0.01) reductions of estradiol-mediated increases of mRNA levels occurred over a range of hydrocortisone concentrations (10 nM, p<0.05; 2 microM, p<0.05; n=3-12). In the presence of 2 microM hydrocortisone, 10 nM estradiol significantly reduced eNOS mRNA levels to 59% +/- 3% of control. The ability of hydrocortisone to block or reverse the estradiol-mediated increase in eNOS mRNA levels may provide a link between elevated hydrocortisone levels and decreased NO production, potentially contributing to the development of hypertension and cardiovascular disease in vivo and antagonizing cardioprotective effects of estrogens.  相似文献   

19.
The progressive differentiation of both normal rat osteoblasts and HL-60 promyelocytic leukemia cells involves the sequential expression of specific genes encoding proteins that are characteristic of their respective developing cellular phenotypes. In addition to the selective expression of various phenotype marker genes, several members of the heat shock gene family exhibit differential expression throughout the developmental sequence of these two cell types. As determined by steady state mRNA levels, in both osteoblasts and HL-60 cells expression of hsp27, hsp60, hsp70, hsp89 alpha, and hsp89 beta may be associated with the modifications in gene expression and cellular architecture that occur during differentiation. In both differentiation systems, the expression of hsp27 mRNA shows a 2.5-fold increase with the down-regulation of proliferation while hsp60 mRNA levels are maximal during active proliferation and subsequently decline post-proliferatively. mRNA expression of two members of the hsp90 family decreases with the shutdown of proliferation, with a parallel relationship between hsp89 alpha mRNA levels and proliferation in osteoblasts and a delay in down-regulation of hsp89 alpha mRNA levels in HL-60 cells and of hsp89 beta mRNA in both systems. Hsp70 mRNA rapidly increases, almost twofold, as proliferation decreases in HL-60 cells but during osteoblast growth and differentiation was only minimally detectable and showed no significant changes. Although the presence of the various hsp mRNA species is maintained at some level throughout the developmental sequence of both osteoblasts and HL-60 cells, changes in the extent to which the heat shock genes are expressed occur primarily in association with the decline of proliferative activity. The observed differences in patterns of expression for the various heat shock genes are consistent with involvement in mediating a series of regulatory events functionally related to the control of both cell growth and differentiation.  相似文献   

20.
Daudi (B-cell line) and Molt-3 (T-cell line) cells provide a model for the study of apoptosis, the induction of which is often accompanied by concominant modulations of proteins involved in mRNA maturation. One of these proteins is poly(A) polymerase (PAP), which is responsible for mRNA cleavage and polyadenylation. A number of recent reports also suggest involvement of mRNA maturation and stability in the induction of specific pathways of cell apoptosis. In this study we identified PAP activity levels and isoform modulations in two different cell lines (Daudi and Molt-3) and related them to DNA fragmentation (a hallmark of apoptosis) and cell cycle phase specificity in terms of the temporal sequence of events and the time that elapsed between administration of the apoptosis inducer (the widely used anticancer drug etoposide) and the observed effects. Treatment of both cell lines with 20 microg/mL etoposide induced apoptosis after four hours in Molt-3 cells and only after 24 hours in Daudi cells, as revealed by two independent methods. In Daudi cells the PAP activity levels and isoforms were downregulated prior to deltapsim reduction, DNA fragmentation and the morphological changes of the nucleus, whereas in Molt-3 cells no PAP activity and isoform modulations were observed prior to the early hallmarks of apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号