首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The bacterium Holospora obtusa is a macronuclear-specific symbiont of the ciliate Paramecium caudatum. H. obtusa-bearing paramecia could survive even after the cells were quickly heated from 25 degrees C to 35 degrees C. To determine whether infection with H. obtusa confers heat shock resistance on its host, we isolated genes homologous to the heat shock protein genes hsp60 and hsp70 from P. caudatum. The deduced amino acid sequences of both cDNAs were highly homologous to hsp family sequences from other eukaryotes. Competitive PCR showed that H. obtusa-free paramecia expressed only trace amounts of hsp60 and hsp70 mRNA at 25 degrees C, but that expression of hsp70 was enhanced immediately after the cells were transferred to 35 degrees C. H. obtusa-bearing paramecia expressed high levels of hsp7O mRNA even at 25 degrees C and the level was further enhanced when the cells were incubated at 35 degrees C. In contrast, the expression pattern of hsp60 mRNA was the same in H. obtusa-bearing as in H. obtusa-free paramecia. These results indicate that infection with its endosymbiont can confer a heat-shock resistant nature on its host cells.  相似文献   

2.
Stat1 has been known as a regulator of gene expression and a mediator of IFNgamma signaling in mammalian cells, while its effect in a heat shock response remains unclear. We used RNAi knockdown, point mutations, ChIP and promoter activity assays to study the effect of Stat1 on the heat-shock induction of the hsp90alpha gene under heat shock conditions. We found that Stat1 regulates the heat shock induction of its target genes, the hsp90alpha gene in a heat shock response while the constitutive activity of the gene remains unaffected. The result of Stat1 in complex with Stat3 and HSF1 that bound at the GAS to lead a moderate heat shock induction was designated as an "intrinsic" induction of the hsp90alpha gene. Additionally a reduced or an elevated level of heat shock induction was also controlled by the Stat1 on hsp90alpha. These diverse effects on the hsp90alpha gene were a "reduced" induction with over-expressed Stat1 elicited by transfection of wild-type Stat1 or IFNgamma treatment, bound at the GAS as homodimer; and an "enhanced" heat shock induction with a mutation-mediated prohibition of Stat1/GAS binding. In conclusion, the status and efficacy of Stat1 bound at the GAS of its target gene are pivotal in determining the impact of Stat1 under heat shock. The results provided the first evidence on the tumor suppressor Stat1 that it could play diverse roles on its target genes under heat shock that also shed lights on patients with fever or under thermotherapy.  相似文献   

3.
4.
Prior to morphologic and functional maturation, terminally differentiating hematopoietic cells first exit the cell cycle and undergo growth arrest. Relatively little is known about which molecules regulate differentiation-induced growth arrest. In the present report, we sought to determine whether the mammalian low molecular weight heat shock protein (hsp28) was a candidate growth-regulatory molecule during human hematopoiesis. To this end, hsp28 protein expression was examined during phorbol ester (PMA)-induced macrophage differentiation of the human HL-60 promyelocytic leukemic cell line. Whereas hsp28 was constitutively expressed at relatively low levels in an unphosphorylated state, hsp28 was rapidly phosphorylated within 4 hr following PMA-induced differentiation, preceding increased hsp28 protein levels at 24–48 h. In contrast to other differentiative agents, hsp28 steady state mRNA and protein were regulated concordantly in response to macrophage differentiation. More importantly, these changes were transient, and occurred concomitant with the down-regulation of cellular proliferation and the onset of G1 phase cell cycle arrest. In total, these observations implicate hsp28 as an intermediary in the myelomonocytic differentiative pathway of promyelocytic leukemic cells, and will shed light on the events regulating this process. © 1993 Wiley-Liss, Inc.  相似文献   

5.
6.
We have examined differences in the spatial and temporal regulation of stress-induced hsp47 and hsp70 gene expression following exposure of zebrafish embryos to heat shock or ethanol. Using Northern blot analysis, we found that levels of hsp47 and hsp70 mRNA were dramatically elevated during heat shock in 2-day-old embryos. In contrast, ethanol exposure resulted in strong upregulation of the hsp47 gene whereas hsp70 mRNA levels increased only slightly following the same treatment. Whole-mount in situ hybridization analysis revealed that hsp47 mRNA was expressed predominantly in precartilagenous cells, as well as several other connective tissue cell populations within the embryo following exposure to either stress. hsp70 mRNA displayed a very different cell-specific distribution. For example, neither stress induced hsp70 mRNA accumulation in precartilagenous cells. However, high levels of hsp70 mRNA were detectable in epithelial cells of the developing epidermis following exposure to heat shock, but not to ethanol. These cells did not express the hsp47 gene following exposure to either of these stresses. The results suggest the presence of different inducible regulatory mechanisms for these genes which operate in a cell- and stress-specific manner in zebrafish embryos. Dev. Genet. 21:123–133, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
Synchronized regulation of cell division during gastrulation is essential for the regional proliferation of cells and pattern formation of the early CNS. The neural plate and neuroectoderm cells are a rapidly dividing and differentiating population of cells with a unique and rapid heat-shock response. Heat shock and the heat-shock genes were studied during neural plate development in a whole rat embryo culture system at 9.5-11.5 days. A lethal heat shock can cause cell death and severe developmental defects to the forebrain and eye during organogenesis. Heat shock can also result in acquired thermotolerance whereby cell progression is delayed at the G1/S and S/G2 boundaries of the cell cycle. This delay in cell cycle progression caused an overall lengthening of the cell cycle time of at least 2 hr. The heat shock genes may therefore function as cell cycle regulators in neuroectoderm induction and differentiation. The kinetics and expression of the hsp genes were examined in neuroectodermal cells by flow cytometry and Northern analysis. The levels of hsp mRNA 27, 71, 73, and 88 were identified following exposure at 42°C (nonlethal), 43deg;C (lethal) and 42deg;/43deg;C (thermotolerant) heat shock. Examination of hsp gene expression in the neural plate showed tight regulation in the cell cycle phases. Hsp 88 expression was enhanced at Go and hsp71 induction at G2 + M of the cell cycle. Cells exposed to a thermotolerant heat shock of 42deg;C induced hsp71 mRNA expression in all phases of the cell cycle with the mRNA levels of hsp27, 73, and 88 increased but relatively constant. Following a lethal heat shock, dramatic changes in hsp expression were seen especially enhanced hsp71 induction in late S phase. The regulated expression of hsps during the cell cycle at various phases could play a unique and important role in the fate and recovery of neuroectoderm cells during early mammalian embryo development. © 1993Wiley-Liss, Inc.  相似文献   

8.
9.
10.
The expression of chromosomal proteins HMG 14 and HMG 17 during proliferation and differentiation into the osteoblast and monocyte phenotypes was studied. Cellular levels of HMG 14 and HMG 1 7 mRNA were assayed in primary cultures of calvarial-derived rat osteoblasts under conditions that (1) support complete expression of the mature osteocytic phenotype and development of a bone tissue-like organization; and (2) where development of osteocytic phenotypic properties are both delayed and reduced in extent of expression. HMG 14 and HMG 17 are preferentially expressed in proliferating osteoblasts and decline to basal levels post-proliferatively at the onset of extracellular matrix mineralization. In contrast, under conditions that are not conducive to extracellular matrix mineralization, HMG 14 is maximally expressed following the downregulation of proliferation. Consistent with previous reports by Bustin and co-workers [Crippa et al., 1990], HMG 14 and HMG 17 are expressed in proliferating HL-60 promyelocytic leukemia cells and downregulated post-proliferatively following phorbol ester-induced monocytic differentiation. However, differentiation into the monocyte phenotype is accompanied by reinitiation of HMG 17 gene expression. The results indicate that the levels of HMG 14 and HMG 17 mRNA are selectively down-regulated during differentiation.  相似文献   

11.
ABSTRACT. The bacterium Holospora is an endonuclear symbiont of the ciliate Paramecium. Previously, we reported that paramecia bearing the macronuclear‐specific symbiont Holospora obtusa survived better than symbiont‐free paramecia, even under high temperatures unsuitable for growth. The paramecia with symbionts expressed high levels of hsp70 mRNAs even at 25 °C, a usual growth temperature. We report herein that paramecia bearing the micronuclear‐specific symbiont Holospora elegans also acquire the heat‐shock resistance. Even after the removal of the bacteria from the hosts by treatment with penicillin, the resulting aposymbiotic paramecia nevertheless maintained their heat shock‐resistant nature for over 1 yr. Like symbiotic paramecia, these aposymbiotic paramecia also expressed high levels of both hsp60 and hsp70 mRNAs even at 25 °C. Moreover, analysis by fluorescent in situ hybridization with a probe specific for Holospora 16S rRNA revealed that the 16S rRNA of H. elegans was expressed around the nucleoli of the macronucleus in the aposymbiotic cells. This result suggests the possible transfer of Holospora genomic DNA from the micronucleus into the macronucleus in symbiotic paramecia. Perhaps this exogenous DNA could trigger the aposymbiotic paramecia to induce a stress response, inducing higher expression of Hsp60 and Hsp70, and thus conferring heat‐shock resistance.  相似文献   

12.
In an HL-60 cell subline (PR-17) which was greater than 100-fold resistant to the differentiating and cytostatic activities of phorbol 12-myristate 13-acetate (PMA), the protein kinase C phenotype was found to be nearly identical to that of wild-type HL-60 cells. A measurable decrease (30%) in the specific activities of crude preparations of PR-17 cell protein kinase C was observed when the enzyme was measured with histone as the phosphate acceptor substrate, but other aspects of the protein kinase C phenotype (intracellular concentrations and binding affinities of phorbol diester receptors, translocation of activated enzyme from cytosolic to particulate subcellular fractions, relative expression of the alpha and beta isozyme proteins) were equivalent in both PMA-resistant PR-17 cells and in wild-type HL-60 cells. Direct analysis of the behavior of the alpha and beta isozymes after the exposure of each cell type to 100 nM PMA for 12 h revealed that the activities and intracellular concentrations of both isozymes were downregulated to an equivalent extent in both wild-type and PMA-resistant cells. These results suggest that the cellular basis for the resistance to the effects of PMA was present "down-stream" from the activation and down-regulation of protein kinase C and was perhaps a nuclear component. Among the genes which were likely to be differentially regulated when each of the two cell lines were treated with PMA were those for the protein kinase C isozymes themselves. In wild-type HL-60 cells, the intracellular concentrations of type HL-60 cells, the intracellular concentrations of mRNA for each of the beta isozymes were increased (up to 5-fold) 48 h after the initiation of PMA treatment; further studies indicate that an activator of protein kinase C could influence the expression of HL-60 cell protein kinase C genes in an isozyme-specific manner. Comparable PMA-induced alterations in mRNA levels were not observed in PMA-resistant cells, even under conditions of significant activation and subsequent down-regulation of protein kinase C protein. Taken together, these data suggest that activation and down-regulation of the isozymes of protein kinase C may not represent absolute determinants of the PMA-induced differentiation of HL-60 cells, but that specific alterations in the levels of the mRNA for the beta isozymes of protein kinase C, or of other genes which may be regulated by the activated kinase isozymes, are important to the induction of leukemia cell differentiation by PMA.  相似文献   

13.
14.
Our previous works have shown that bone marrow stromal cells secrete thymosin beta4 (Tbeta4) and AcSDKP. Tbeta4 and AcSDKP are existed in the conditioned medium of bone marrow endothelial cells. They exerted inhibitory effects on hematopoietic cells and then had protective effect on the early hematopoietic cells, which were cultured in the presence of hematopoietic stimulators. Thymosin beta4 consists of 43 peptides with a molecular weight of 4963. It contains at its N-terminal end the sequence of the acetylated tetrapeptide Ac-N-Ser-Asp-Lys-Pro (AcSDKP). This study was performed to evaluate the effect of Tbeta4 and AcSDKP on the growth of HL-60 cells. It was showed that Tbeta4 (10(-11)-10(-7)mol/L) and AcSDKP (10(-11)-10(-7)mol/L) had the dose-dependent inhibitory effect on the proliferation of HL-60 cells. Based on cell morphology and NBT reduction, Tbeta4 and AcSDKP induced differentiation of HL-60 cells. Morphologic and DNA fragment analysis proved that Tbeta4 and AcSDKP induced apoptosis of HL-60 cells. In order to analyze the mechanism of the effects of Tbeta4 and AcSDKP, intracellular free Ca(2+) concentration ([Ca(2+)](i)) of HL-60 leukemic cells was tested and Atlas cDNA Expression Array was performed. The results showed that Tbeta4 and AcSDKP could increased [Ca(2+)](i) by stimulating the release of Ca(2+) from intracellular Ca(2+) pool. Moreover, AcSDKP could also elicit a potent extracelluar calcium influx in HL-60 cells. Tbeta4 could also change apoptotic-related gene expression in leukemic cells, and resulted in the inhibition of proliferation and induction of differentiation and apoptosis of leukemic cells.  相似文献   

15.
Downregulation of the c-myc gene in HL-60 cells is associated with growth inhibition and induction of differentiation. Previous studies have reported that the growth inhibitors TGF beta and TNF alpha downregulate c-myc mRNA levels, suggesting the possibility that these agents may exert some of their phenotypic effects via c-myc downregulation. Our study demonstrates that although both growth inhibitors produce a similar decrease in c-myc protein synthesis, TNF alpha produces a greater growth inhibition and differentiation induction in HL-60 cells. Combined addition of anti-myc oligomer with either growth inhibitor produces no additive effect. In fact, 4 microM anti-myc oligomer produces the same growth and differentiation effects as does 10 ng/ml TGF beta 1. We conclude that downregulation of c-myc expression represents a common mechanism of growth inhibition by TGF beta and TNF alpha, but that TNF alpha possesses an additional effect that is independent of c-myc expression.  相似文献   

16.
The major heat shock protein (hsp) of Hydra vulgaris has recently been found to be a 60 kDa protein. Since in all organisms studied so far, the major heat shock protein is a 70 kDa protein, we have analyzed the relationship of hydra hsp60 to the highly conserved 70 kDa heat shock protein family. Genes and proteins related to the 70 kDa class of stress proteins are present in hydra. However, antibodies known to cross-react with hsp70 proteins in several different organisms do not cross-react with hydra hsp60 suggesting that hsp60 is not related to the conserved hsp70 proteins.  相似文献   

17.
It has been hypothesized that in ancient apomictic, nonrecombining lineages the two alleles of a single copy gene will become highly divergent as a result of the independent accumulation of mutations (Meselson effect). We used a partial sequence of the elongation factor-1alpha (ef-1alpha) and the heat shock protein 82 (hsp82) genes to test this hypothesis for putative ancient parthenogenetic oribatid mite lineages. In addition, we tested if the hsp82 gene is fully transcribed by sequencing the cDNA and we also tested if there is evidence for recombination and gene conversion in sexual and parthenogenetic oribatid mite species. The average maximum intra-specific divergence in the ef-1alpha was 2.7% in three parthenogenetic species and 8.6% in three sexual species; the average maximum intra-individual genetic divergence was 0.9% in the parthenogenetic and 6.0% in the sexual species. In the hsp82 gene the average maximum intra-individual genetic divergence in the sexual species Steganacarus magnus and in the parthenogenetic species Platynothrus peltifer was 1.1% and 1.2%, respectively. None of the differences were statistically significant. The cDNA data indicated that the hsp82 sequence is transcribed and intron-free. Likelihood permutation tests indicate that ef-1alpha has undergone recombination in all three studied sexual species and gene conversion in two of the sexual species, but neither process has occurred in any of the parthenogenetic species. No evidence for recombination or gene conversion was found for sexual or parthenogenetic oribatid mite species in the hsp 82 gene. There appears to be no Meselson effect in parthenogenetic oribatid mite species. Presumably, their low genetic divergence is due to automixis, other homogenizing mechanisms or strong selection to keep both the ef-1alpha and the hsp82 gene functioning.  相似文献   

18.
Background. To investigate whether the Helicobacter pylori status influences levels of antibodies against mycobacterial heat shock protein (hsp) 65 and human hsp60 in systemic autoimmune diseases and to study the concentration of anti‐H. pylori antibodies in autoimmune patients and healthy controls. Materials and Methods. Antibodies against human heat‐shock protein hsp60, mycobacterial heat‐shock protein hsp65 were analyzed by ELISA. Anti‐Helicobacter antibodies were determined by enzyme immunoassay. Results. There was a markedly higher prevalence of H. pylori infection in undifferentiated connective tissue disease (82%) (n = 33) and systemic sclerosis (78%) (n = 55) but not in systemic lupus erythematosus (n = 49), polymyositis/dermatomyositis (n = 14), rheumatoid arthritis (n = 21) or primary Raynaud's syndrome (n = 26) compared with controls (59%) (n = 349). In autoimmune diseases H. pylori infection was associated with elevated levels of antihsp65 (p = .008) but not of antihsp60. Anti‐hsp65 levels were significantly higher in H. pylori‐infected (n = 129) than in uninfected patients (n = 69) (p = .0007). Conclusions. These findings indicate that in autoimmune diseases the infection with the H. pylori bacterium is associated with increased concentration of antimycobacterial hsp65.  相似文献   

19.
20.
We examined the relationship of cellular oncogene c-myc and transferrin receptor (TfR) gene expression to cell proliferation and cell cycle progression during myeloid differentiation in the HL-60 myeloid leukemia cell line. In order to determine levels of mRNA for these genes in HL-60 cells induced to differentiate along the myeloid pathway, RNA was isolated from HL-60 cells incubated with retinoic acid for 24 h and Northern blots were probed with labeled cDNAs for c-myc and TfR. c-myc mRNA decreased within 3 h of retinoic acid addition, and TfR mRNA decreased after 9 h; both mRNAs continued to decrease over 24 h. RNA was also isolated from HL-60 cells separated by centrifugal elutriation into cell cycle phases. TfR and c-myc cDNA probes hybridized equally to RNA from uninduced cells in all phases of the cell cycle. However, after 24 h incubation with the differentiation inducer retinoic acid, TfR mRNA was expressed substantially less in the G1 stage, whereas c-myc mRNA was still expressed equally in all cell cycle phases. These data indicate that, although TfR and c-myc expression are both associated with cell proliferation in the HL-60 line, TfR is down-regulated specifically in G1 upon induction of terminal differentiation whereas c-myc expression is disassociated from cell cycle control in these cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号