首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Pregnancy per artificial insemination (AI) was evaluated in dairy cows (Bos taurus) subjected to synchronization and resynchronization for timed AI (TAI). Cows (n = 718) received prostaglandin F (PGF) on Days –38 and –24 (Days 39 and 53 postpartum), gonadotropin-releasing hormone (GnRH) on Day –10, PGF on Day –3, and GnRH and TAI on Day 0. Between Days –10 and –3, cows received a progesterone intravaginal insert (CIDR group) or no CIDR (Control group). Between Days 14 and 23, cows received a CIDR (Resynch CIDR group) or no CIDR (Resynch control group), GnRH on Day 23, with pregnancy diagnosis on Day 30. Cows in estrus (between Days 0 and 30) were re-inseminated at detected estrus (RIDE). Nonpregnant cows received PGF on Day 30 and GnRH and TAI on Day 33. Plasma progesterone was determined to be low or high on Days –24 and –10. Pregnancy rates were evaluated 30 and 55 d after AI. The CIDR insert included in the Presynch-Ovsynch protocol did not increase overall pregnancy per AI for first service (36.1% and 33.6% for CIDR; 34.1% and 28.8% for Control) but did decrease pregnancy loss (7.0% for CIDR and 15.6% for Control). The CIDR insert increased pregnancy per AI in cows with high progesterone at the time the CIDR insert was applied. Administration of a CIDR insert between Days 14 and 23 of the estrous cycle after first service did not increase overall pregnancy per AI to second service (24.7% and 22.7% for Resynch CIDR; 28.6% and 25.3% for Resynch control). For second service, RIDE cows had lower pregnancy rates in the Resynch CIDR group than in the Resynch control group. Cows with a CL (corpus luteum) at Day 30 had higher pregnancy rates in the Resynch CIDR group than those in the Resynch control group.  相似文献   

2.
This study evaluated fertility in swamp buffalo after synchronization of ovulation combined with fixed time artificial insemination. At the start of the study, designated day 0, from a group of 98 female Thai swamp buffalo, 55 buffalo (heifers n° = 20 and cows n° = 35) were selected to be synchronized with GnRH (Day 0) followed by PGF2alpha (Day 7) and a second treatment with GnRH (Day 9). All buffalo were inseminated at two fixed times 12 h and 24 h after the second injection of GnRH (Ovsynch+TAI group); a second group of 43 buffalo (heifers n° = 19 and cows n° = 24) were not treated and were artificially inseminated (AI) at natural estrus (AI group). Blood samples were taken 22 days after insemination to evaluate progesterone plasma levels. In the Ovsynch+TAI group, overall conception rate (CR; i.e. the number of cows with progesterone >4.0 ng/ml on day 22 after AI divided by the number of animals inseminated), was 38.1% and overall pregnancy rate (PR; i.e. the number of cows that were pregnant at day 50-60 after insemination divided by the number of animals inseminated), was 32.7%. In the AI group overall CR and PR was 34.9%.Within the Ovsynch+TAI group, CR and PR were reduced (P < 0.05) in heifers compared with cows (CR 15.0% vs. 51.4% for heifers and cows, respectively; PR 15.0% vs. 42.9% for heifers and cows, respectively). Within the AI group the efficacy of treatment was similar between heifers and cows (CR and PR 31.6% for heifers and 37.5% for cows).In conclusion, this study indicates that in swamp buffalo it is possible to synchronize ovulation and use timed artificial insemination with the Ovsynch+TAI protocol.  相似文献   

3.
This study was designed to evaluate the reproductive performance of lactating dairy cows (Holstein Friesian) after the injection of PGF analogue on Day 15 postpartum, and GnRH analogue on Day 23 after artificial insemination (AI) with Presynch (two injections of PGF, administered 14 days apart starting at 30–35 days postpartum) + Ovsynch-based (GnRH–7 days–PGF–2 days–GnRH–16–20 hours–timed artificial insemination) treatments, during the warm and cold periods of the year. All the cows (n = 313) were assigned to one of the four groups including: M1 (n = 72) in which the cows were treated with PGF on Day 15 postpartum + Presynch-Ovsynch + GnRH on Day 23 post-AI; M2 (n = 41) in which the cows received PGF on Day 15 postpartum + Presynch-Ovsynch; M3 (n = 100) including the cows that got Presynch-Ovsynch; and control group (n = 100) including the cows that were not treated and were inseminated at natural estrus. Pregnancy diagnosis was performed 28 to 35 days post-insemination by means of ultrasound. The results showed that treatment with PGF on Day 15 postpartum significantly decreased the days to conception and the number of services per conception (P < 0.01) and it also improved the first service conception rate (P < 0.1) only in cows that were treated with M2 protocol. Whereas, the days to first service was not influenced by the treatment of PGF on Day 15 postpartum (P > 0.05). In contrast, administration of GnRH on Day 23 post-AI increased the days to conception and the number of service per conception (P < 0.01) and tended to decrease the first service conception rate (P < 0.1) in cows that were treated with M1 compared with M2 protocol. Therefore, it was concluded that Presynch-Ovsynch protocol could be more reproductive and beneficial when a single treatment with PGF was administered at 15 days postpartum (15 days after the PGF, Presynch-Ovsynch protocol was initiated). Interestingly, the administration of a GnRH agonist on Day 23 post-AI not only did not improve the reproductive performance of the cows receiving first postpartum timed artificial insemination after Presynch-Ovsynch protocol but also reduced that.  相似文献   

4.
Two experiments were conducted to test the hypothesis that the 5 d Co-Synch + CIDR (Controlled Internal Drug Release insert containing progesterone) protocol could be applied as an efficient timed AI (TAI) protocol in dairy heifers, and that treatment with flunixin meglumine (FM) during the period of CL maintenance would increase pregnancy per TAI (P/TAI) and late survival of embryos. Objectives were: 1) in Experiment 1, to compare P/TAI with the 5 d Co-Synch + CIDR protocol to a PGF/GnRH protocol; and 2) in Experiment 2, to determine if FM administered 15.5 and 16 d after first TAI would increase P/TAI, using the 5 d Co-Synch + CIDR protocol with a new or previously used (5 d) CIDR insert.In Experiment 1, 248 heifers were assigned randomly to either the PGF/GnRH protocol (n = 120) or the 5 d Co-Synch + CIDR protocol (n = 128). Pregnancy per TAI did not differ between the 5 d Co-Synch + CIDR protocol (53.1%) and the PGF/GnRH protocol (45.8%; P = 0.22). In Experiment 2, 325 heifers synchronized with the 5 d Co-Synch + CIDR protocol were assigned randomly to receive two injections of FM (FM group; n = 158) at 15.5 and 16 d after TAI, or to remain as untreated controls (n = 165). Pregnancy per TAI in Experiment 2 was 59.4 and 59.5% at 45 d for control and FM groups, respectively, with no differences between groups (P = 0.83). The 5 d Co-Synch + CIDR protocol resulted in an acceptable P/TAI in dairy heifers. However, FM did not improve P/TAI in dairy heifers.  相似文献   

5.
The objectives were to evaluate pregnancy per AI (P/AI) of dairy cows subjected to the 5-day timed AI protocol under various synchronization and luteolytic treatments. Cows were either presynchronized or received supplemental progesterone during the synchronization protocol, and received a double luteolytic dose of PGF, either as one or two injections. In Experiment 1, dairy cows (n = 737; Holstein = 250, Jersey = 80, and crossbred = 407) in two seasonal grazing dairy farms were randomly assigned to one of four treatments in a 2 × 2 factorial arrangement. The day of AI was considered study Day 0. Half of the cows were presynchronized (G6G: PGF on Day −16 and GnRH on Day −14) and received the 5-day timed AI protocol using 1 mg of cloprostenol, either as a single injection (G6G-S: GnRH on Day −8, PGF on Day −3, and GnRH + AI on Day 0) or divided into two injections of 0.5 mg each (G6G-T: GnRH on Day −8, PGF on Day −3 and −2, and GnRH + AI on Day 0). The remaining cows were not presynchronized and received a controlled internal drug-release (CIDR) insert containing progesterone from GnRH to the first PGF injection of the 5-day timed AI protocol, and 1 mg of cloprostenol either as a single injection on Day -3 (CIDR-S) or divided into two injections of 0.5 mg each on Days -3 and -2 (CIDR-T). Ovaries were examined by ultrasonography on Days −8 and −3 and plasma progesterone concentrations were determined on Days −3 and 0. In Experiment 2, 655 high-producing Holstein cows had their estrous cycle presynchronized with PGF at 46 ± 3 and 60 ± 3 days postpartum and were randomly assigned to receive 50 mg of dinoprost during the 5-day timed AI protocol, either as a single injection or divided into two injections of 25 mg each. Pregnancies per AI were determined on Days 35 and 64 after AI in both experiments. In Experiment 1, presynchronization with G6G increased the proportion of cows with a CL on Day −8 (80.6 vs. 58.8%), ovulation to the first GnRH of the protocol (64.2 vs. 50.2%), and the presence (95.6 vs. 88.4%) and number (1.79 vs. 1.30) of CL at PGF compared with CIDR cows. Luteolysis was greater for two injections compared to a single PGF injection (two PGF = 95.9 vs. single PGF = 72.2%), especially in presynchronized cows (G6G-T = 96.2 vs. G6G-S = 61.7%). For cows not presynchronized, two PGF injections had no effect on P/AI (CIDR-S = 30.2 vs. CIDR-T = 34.3%), whereas for presynchronized cows, it improved P/AI (G6G-S = 28.7 vs. G6G-T = 45.4%). In Experiment 2, the two-PGF injection increased P/AI on Days 35 (two PGF = 44.5 vs. single PGF = 36.4%) and 64 (two PGF = 40.3% vs. single PGF = 32.6%) after AI. Presynchronization and dividing the dose of PGF (either cloprostenol or dinoprost) into two injections increased P/AI in lactating dairy cows subjected to the 5-day timed AI protocol.  相似文献   

6.
Our objective was to determine whether rates of luteolysis or pregnancy differed in lactating dairy cows of known progesterone status and either known or unknown luteal status after either cloprostenol or dinoprost was injected as part of a timed-insemination program. In Experiment 1, 2358 lactating dairy cows in six herds were given two injections of PGF 14 d apart (Presynch), with the second injection given 12 to 14 d before the onset of a timed AI protocol (Ovsynch). Cows (n = 1094) were inseminated when detected in estrus after the Presynch PGF injections. Cows not inseminated (n = 1264) were enrolled in the Ovsynch protocol and assigned randomly to be treated with either cloprostenol or dinoprost as part of the timed-AI protocol. In cows having pretreatment concentrations of progesterone ≥ 1 ng/mL and potentially having a functional corpus luteum (CL) responsive to cloprostenol (n = 558) or dinoprost (n = 519), dinoprost increased (P < 0.05) luteal regression from 86.6 to 91.3%. Despite a significant increase in luteolysis, pregnancies per AI did not differ between luteolytic agents (dinoprost = 37.8% and cloprostenol = 36.7%). Fertility was improved in cows of both treatments having reduced concentrations of progesterone at 72 h and in cows showing signs of estrus. In Experiment 2, an ovulation-resynchronization program was initiated with GnRH or saline in 427 previously inseminated lactating dairy cows of unknown pregnancy status in one herd. Seven days later, pregnancy was diagnosed and nonpregnant cows were blocked by number of CL and assigned randomly to be treated with cloprostenol or dinoprost. Compared with cloprostenol, dinoprost increased (P < 0.05) luteal regression from 69.1 to 78.5%, regardless of the number of CL present or the total luteal volume per cow. Pregnancies per AI did not differ between dinoprost (32.8%) and cloprostenol (31.3%). Although dinoprost was more effective than cloprostenol at inducing luteolysis in lactating dairy cows exposed to an Ovsynch or ovulation-resynchronization protocol, resulting fertility did not differ between products.  相似文献   

7.
Peters MW  Pursley JR 《Theriogenology》2003,60(6):1197-1204
Synchronization of ovulation (Ovsynch) is an effective method for controlling time of first and subsequent AI in lactating dairy cows. However, validation of the original Ovsynch program did not include testing the optimal time to deliver the final treatment of GnRH. In Experiment 1, the effect of administering the final dose of GnRH on the same day as prostaglandin F2alpha (PGF2alpha) administration was tested. Lactating dairy cows (n = 218) were randomly assigned to receive either Ovsynch (OV; cows were given 100 microg GnRH, then 7 days later cows were administered 25mg PGF2alpha followed by a subsequent treatment of 100 microg GnRH 2 days after the PGF2alpha or the modified version of Ovsynch (MOV; cows were given 100 microg GnRH, then 7 days later cows were administered 25mg PGF2alpha followed immediately with 100 microg GnRH). In both treatment groups, AI took place 16 h after the final administration of GnRH. In Experiment 2, cows (n = 457) were randomly divided into four treatment groups that were administered GnRH 0, 12, 24 and 36 h following PGF(2alpha). The 36 h treatment group served as control. Pregnancy diagnoses were performed by palpation per rectum 36 days post-AI in Experiment 1 and by ultrasonography on Day 28 in Experiment 2. In Experiment 1, pregnancy rate/AI (PR/AI) was greater (P<0.025) in OV versus MOV. In a subset (n = 85), percentage of cows with both synchronized ovulations and regressed CL following administration of PGF2alpha were similar (P>0.1) between OV and MOV, respectively. All cows that became pregnant in the MOV subset group showed regression of the CL in response to the PGF2alpha. Diameter of the ovulatory follicle at the time of final GnRH administration was greater (P<0.05) in OV versus MOV. In Experiment 2, the synchronization rate was once again similar among treatments (P>0.28). There was a linear effect of treatment on follicle size (P<0.05) and PR/AI (P<0.0001) as time increased between administration of PGF2alpha and GnRH, with the greatest PR/AI at 36 h. There was a trend for a greater percentage of cows with short luteal phases in the 0 h group (P<0.10). In summary, delivering the final treatment of GnRH of the Ovsynch program at the same time as PGF2alpha, or in the 24h following PGF2alpha, resulted in lower fertility compared to controls.  相似文献   

8.
In dairy cows, subjected to a G6G protocol, objectives were to determine effects of (1) extending the interval from prostaglandin F2α (PGF2α) to gonadotropin-releasing hormone (GnRH) during presynchronization; and (2) adding a second PGF2α treatment before artificial insemination (AI), on ovarian response, plasma progesterone (P4) concentrations and pregnancy per AI (P/AI). In a 2×2 factorial design, lactating cows were randomly assigned to one of four timed AI (TAI) protocols: (1) G6G (n=149), one injection of PGF2α, GnRH 2 days later and a 7-day Ovsynch (GnRH, 7 days, PGF2α, 56 h, GnRH, 16 h, TAI) was initiated 6 days later; (2) G6GP (n=144), an additional PGF2α treatment (24 h after the first) during Ovsynch of the G6G protocol; (3) MG6G, one injection of PGF2α, GnRH 4 days later before initiation of the G6G protocol; and (4) MG6GP, an additional PGF2α treatment (24 h after the first) during Ovsynch of the MG6G protocol. Blood samples were collected (subset of 200 cows) at first GnRH and PGF2α of the Ovsynch, and at TAI to measure P4. Ultrasound examinations were performed in a subset of 406 cows to evaluate ovarian response at various times of Ovsynch, and in all cattle to determine pregnancy status at 32 and 60 days after TAI. Extending the interval by 2 days between PGF2α and GnRH during presynchronization increased (P<0.01) ovulatory response to first GnRH of Ovsynch, circulating P4 during Ovsynch, and P/AI at 32 and 60 days after TAI. Adding a second PGF2α treatment before AI increased the proportion of cows with luteal regression (P=0.04), improved P/AI at 60 days after TAI (P=0.05), and reduced pregnancy loss between 30 and 60 days after TAI (P=0.04). In summary, extending the interval from PGF2α to GnRH during presynchronization increased response to first GnRH of Ovsynch and P4 concentrations during Ovsynch, whereas adding a second PGF2α treatment before AI enhanced luteal regression. Both modifications of the G6G protocol improved fertility in lactating dairy cows.  相似文献   

9.
Our objectives were to compare: (1) conception rates (in early postpartum Japanese Black beef cows) to timed-artificial insemination (timed-AI) among Ovsynch and Ovsynch plus CIDR protocols, and a protocol that used estradiol benzoate (EB) in lieu of the first GnRH of the Ovsynch plus CIDR; and (2) the effects of these protocols on blood concentrations of ovarian steroids. Cows in the control group (Ovsynch; n=35) underwent a standard Ovsynch protocol (GnRH analogue on Day 0, PGF(2 alpha) analogue on Day 7 and GnRH analogue on Day 9), with timed-AI on Day 10, approximately 20 h after the second GnRH treatment. Cows in the Ovsynch+CIDR group (n=31) received a standard Ovsynch protocol plus a CIDR for 7 days (starting on Day 0). Cows in the third treatment group (EB+CIDR+GnRH; n=41) received 2mg of EB on Day 0 in lieu of the first GnRH treatment, followed by the same treatment as in the Ovsynch+CIDR protocol. The conception rate tended to be greater in the Ovsynch+CIDR group (67.7%, P<0.15) and was greater in the EB+CIDR+GnRH (73.2%, P<0.05) and CIDR-combined (both CIDR-treated groups were combined) groups (70.8%, P<0.05) than in the Ovsynch group (48.6%). Plasma progesterone concentrations were higher on Day 7 (P<0.01) and lower on Days 14, 17 and 21 (P<0.001) in the CIDR-combined group than in the Ovsynch group. Plasma estradiol-17beta concentrations were higher on Day 7 in the Ovsynch group of non-pregnant cows than in the CIDR-combined group of non-pregnant cows and in an all-combined group (all treatment groups combined) of pregnant cows (P<0.01). Furthermore, estradiol-17beta concentrations were lower on Day 9 in the Ovsynch and CIDR-combined groups of non-pregnant cows than in the all-combined group of pregnant cows (P<0.05). In conclusion, both protocols using CIDR improved conception rates following timed-AI in early postpartum suckled Japanese Black beef cows relative to the Ovsynch protocol. Treatment with a CIDR may prevent early maturation of follicles observed in non-pregnant cows treated with the Ovsynch protocol, by maintaining elevated blood progesterone concentrations until PGF(2 alpha) treatment.  相似文献   

10.
The primary objective was to determine the effect of supplemental progesterone, administered via an intravaginal device (CIDR), on conception rates to timed-artificial insemination (timed-AI) in postpartum suckled Japanese Black beef cows treated with the Ovsynch protocol. A secondary objective was to compare the effects of treatments on plasma concentrations of progesterone and estradiol. Cows in the control group (Ovsynch, n=38) received a standard Ovsynch protocol (100 microg GnRH analogue on Day 0, 500 microg PGF2alpha analogue on Day 7, and 100 microg GnRH analogue on Day 9), with AI on Day 10, approximately 20 h after the second GnRH treatment. Cows in the treatment group (Ovsynch+CIDR; n=40) received a standard Ovsynch protocol plus a CIDR for 7 days (starting on Day 0). Plasma progesterone concentrations were determined on Days 0, 1, 7, 9, 10, and 17 and plasma estradiol-17beta concentrations were determined on Days 7, 9, 10, and 17. The odds ratio for likelihood of conception was 3.29 times greater (P=0.02) in the Ovsynch+CIDR group compared to Ovsynch group. The conception rate was greater (P=0.03) in the Ovsynch+CIDR group than in the Ovsynch group (72.5% versus 47.7%). Insertion of a CIDR device significantly increased plasma progesterone concentrations only on Days 1 and 7 (P<0.001 and P=0.05, respectively), but had no significant effect on plasma estradiol-17beta concentrations. Including a CIDR with the Ovsynch protocol significantly improved conception rates in postpartum suckled Japanese Black beef cows.  相似文献   

11.
We hypothesized that pregnancy outcomes may be improved by inducing luteal regression, ovulation, or both (i.e., altering progesterone status) before initiating a timed–artificial insemination (TAI) program in suckled beef cows. This hypothesis was tested in two experiments in which cows were treated with either PGF (PG) or PG + GnRH before initiating a TAI program to increase the proportion of cows starting the program in a theoretical marginal (<1 ng/mL; experiment 1) or elevated (≥1 ng/mL; experiment 2) progesterone environment, respectively. The control was a standard CO-Synch + controlled internal drug release (CIDR) program employed in suckled beef cows (100 μg GnRH intramuscularly [IM] [GnRH-1] and insertion of a progesterone-impregnated intravaginal CIDR insert on study Day −10, 25 mg PG and CIDR insert removal on study Day −3, and 100 μg GnRH IM [GnRH-2] and TAI on study Day 0). In both experiments, blood was collected before each injection for later progesterone analyses. In experiment 1, cows at nine locations (n = 1537) were assigned to either: (1) control or (2) PrePG (same as control with a PG injection on study Day −13). The PrePG cows had larger (P < 0.05) follicles on study Day −10 and more (P < 0.05) ovulated after GnRH-1 compared with control cows (60.6% vs. 36.5%), but pregnancy per TAI was not altered (55.5% vs. 52.2%, respectively). In experiment 2, cows (n = 803) at four locations were assigned to: (1) control or (2) PrePGG (same as control with PG injection on study Day −20 and GnRH injection on study Day −17). Although pregnancy per TAI did not differ between control and PrePGG cows (44.0% vs. 44.4%, respectively), cows with body condition score greater than 5.0 or 77 or more days postpartum at TAI were more (P < 0.05) likely to become pregnant than thinner cows or those with fewer days postpartum. Presynchronized cows in both experiments were more (P < 0.05) likely than controls to have luteolysis after initial PG injections and reduced (P < 0.05) serum progesterone; moreover, treatments altered the proportion of cows and pregnancy per TAI of cows in various progesterone categories before the onset of the TAI protocol. In combined data from both experiments, cows classified as anestrous before the study but with elevated progesterone on Day −10 had increased (P < 0.05) pregnancy outcomes compared with anestrous cows with low progesterone concentrations. Progesterone concentration had no effect on pregnancy outcome of cycling cows. In summary, luteal regression and ovulation were enhanced and progesterone concentrations were altered by presynchronization treatments before the 7-day CO-Synch + CIDR program, but pregnancy per TAI was not improved.  相似文献   

12.
Our objective was to determine the optimal time to artificially inseminate lactating beef cows (Bos taurus typicus) after using the standard CO-Synch protocol that also included a progesterone-releasing, intravaginal controlled internal drug release (CIDR) insert. Cows (N = 605) at three locations were inseminated at four different times after CIDR insert removal and the prostaglandin F administration of the CO-Synch + CIDR protocol: 48, 56, 64, or 72 h. Blood samples were collected 9 to 10 d before and on the day of CIDR insertion. Based on elevated (>1 ng/mL) serum progesterone concentrations, 60% of 605 cows had previously ovulated (were cycling) at the initiation of the study, with a range of 39.6% to 67.9% among locations (P < 0.05). Age of cow, body condition score, and days postpartum affected (P ≤ 0.05) cycling status before ovulation was synchronized. Averaged across treatments, pregnancy rate to artificial insemination (AI) at Day 32 was affected (P ≤ 0.05) by pretreatment cycling status and body condition. Younger cows (≤3 yr) tended to have greater AI pregnancy rates when inseminated at 56 h, whereas older cows had similar pregnancy rates when inseminated at 56 h or later (timing of AI by age interaction; P = 0.085). Pregnancy loss between Days 32 and 63 was greatest (quadratic effect; P < 0.05) when cows were inseminated at 48 and 72 h. In summary, insemination times at or after 56 h improved AI pregnancy rates when using the CO-Synch + CIDR program. Further work is warranted to examine age effects on timing of AI in the CO-Synch + CIDR program.  相似文献   

13.
Ovulatory response to the first GnRH of Ovsynch is a very important factor for determining the outcome of a successful synchronization. The aim of the present study was to develop a protocol to increase the percentage of cows that ovulated in response to the first administration of Ovsynch. This study was designed to compare ovulation rates in response to GnRH or hCG at the beginning of Ovsynch and to evaluate the effects of this manipulation on pregnancy. Cows (n = 371) with corpus luteum (CL) and at least one follicle greater than 10 mm diameter size on either ovary were included in the study. Cows were divided into two groups. The Ovsynch protocol began with GnRH (10 μg) in the GPG group (n = 161; GnRH-7d-PGF2α-56h-GnRH-18h-AI), whereas in the HPG group, the first GnRH of the Ovsynch was replaced with 1500 IU hCG (n = 210; hCG-7d-PGF2α-56h-GnRH-18h-AI). Ovarian ultrasonography was performed at the times of GnRH or hCG and of PGF2α administration, at the time of artificial insemination (AI) and seven days after AI, to determine ovulation. Maximal follicle size at the beginning of the Ovsynch did not affect on response to the first GnRH/hCG treatment. Conception rate (31 d) was 0.6 times more likely to be higher (P < 0.001) in cows that responded to the first hormonal administration of Ovsynch than in those that did not respond (95% CI = 0.29-0.71). Conception rate was found to be different between the HPG (37.6%, 79/210) and the GPG groups (48.4%, 78/161). Thus, beginning of the Ovsynch protocol with hCG did not increase ovulation and conception rate in lactating dairy cows, suggesting that hCG is not a suitable replacement of the first GnRH of Ovsynch. However, our results do show that increasing the ovulation rate in response to the first hormonal administration of Ovsynch can have a significant effect on conception rate.  相似文献   

14.
The objectives were (1) to determine the effects of gonadorelin hydrochloride (GnRH) injection at controlled internal drug release (CIDR) insertion on Day 0 and the number of PGF2α doses at CIDR removal on Day 5 in a 5-day CO-Synch + CIDR program on pregnancy rate (PR) to artificial insemination (AI) in heifers; (2) to examine how the effect of systemic concentration of progesterone and size of follicles influenced treatment outcome. Angus cross beef heifers (n = 1018) at eight locations and Holstein dairy heifers (n = 1137) at 15 locations were included in this study. On Day 0, heifers were body condition scored (BCS), and received a CIDR. Within farms, heifers were randomly divided into two groups: at the time of CIDR insertion, the GnRH group received 100 μg of GnRH and No-GnRH group received none. On Day 5, all heifers received 25 mg of PGF2α at the time of CIDR insert removal. The GnRH and No-GnRH groups were further divided into 1PGF and 2PGF groups. The heifers in 2PGF group received a second dose of PGF2α 6 hours after the administration of the first dose. Beef heifers underwent AI at 56 hours and dairy heifers at 72 hours after CIDR removal and received 100 μg of GnRH at the time of AI. Pregnancy was determined approximately at 35 and/or 70 days after AI. Controlling for herd effect (P < 0.06), the treatments had significant effect on AI pregnancy in beef heifers (P = 0.03). The AI-PRs were 50.3%, 50.2%, 59.7%, and 58.3% for No-GnRH + PGF + GnRH, No-GnRH + 2PGF + GnRH, GnRH + PGF + GnRH, and GnRH + 2PGF + GnRH groups, respectively. The AI-PRs were ranged from 50% to 62.4% between herds. Controlling for herd effects (P < 0.01) and for BCS (P < 0.05), the AI pregnancy was not different among the treatment groups in dairy heifers (P > 0.05). The AI-PRs were 51.2%, 51.9%, 53.9%, and 54.5% for No-GnRH + PGF + GnRH, No-GnRH + 2PGF + GnRH, GnRH + PGF + GnRH, and GnRH + 2PGF + GnRH groups, respectively. The AI-PR varied among locations from 48.3% to 75.0%. The AI-PR was 43.5%, 50.4%, and 64.2% for 2.5 or less, 2.75 to 3.5, and greater than 3.5 BCS categories. Numerically higher AI-PRs were observed in beef and dairy heifers that exhibited high progesterone concentrations at the time of CIDR insertion (>1 ng/mL, with a CL). In addition, numerically higher AI-PRs were also observed in heifers receiving CIDR + GnRH with both high and low progesterone concentration (<1 ng/mL) initially compared with heifers receiving a CIDR only with low progesterone. In dairy heifers, there were no differences in the pregnancy loss between 35 and 70 days post-AI among the treatment groups (P > 0.1). In conclusion, GnRH administration at the time of CIDR insertion is advantageous in beef heifers, but not in dairy heifers, to improve AI-PR in the 5-day CIDR + CO-Synch protocol. In addition, in this study, both dairy heifers that received either one or two PGF2α doses at CIDR removal resulted in similar AI-PR in this study regardless of whether they received GnRH at CIDR insertion.  相似文献   

15.
Poor estrus expression and anestrus decrease the reproductive efficiency of buffaloes. The objective of this study was to determine whether the addition of equine chorionic gonadotropin (eCG) to an estrous synchronization protocol and timed insemination could improve ovulation and pregnancy rates of anestrous buffalo cows under tropical conditions. The study population comprised 65 lactating Murrah buffalo cows which were assigned to CIDR (n = 33) or CIDR + eCG (n = 32) treatment groups. Cows in the CIDR group were fitted for 8 d with a controlled intravaginal drug release (CIDR) device containing 1.38 g progesterone, received GnRH (10 μg i.m.) on D 0, PGF (750 μg i.m.) on D 7, and GnRH (10 μg i.m.) on D 9; whereas cows in the CIDR + eCG group received the same treatment plus eCG (500 IU, i.m.) at the time of PGF treatment. All cows were inseminated 16-20 h after the second GnRH treatment. Blood samples were obtained 10 d before the start of synchronization treatment (Day -10) and at the onset of treatment (Day 0). Cows with plasma progesterone concentrations <1 ng/mL recorded in both samples (Low-Low levels of P4) were classified as non-cyclic cows. Similarly, when either one or both of the sample pair contained concentrations of serum progesterone ≥1 ng/mL (High-High, Low-High, or High-Low levels of P4), the buffaloes were classified as cyclic cows. Ovulation rate, defined as the number of buffaloes with at least one corpus luteum 10 days after insemination, was significantly higher (P = 0.018) in the CIDR + eCG (84.4%) cows than in the CIDR cows (57.6%). Pregnancy rate was numerically lower in CIDR (27.3%) than CIDR + eCG (40.6%) cows, though differences were not significant (P = 0.25). Pregnancy rates for CIDR + eCG cows were similar to that of cows inseminated after natural estrus (40.9%; 29/71). In the non-cyclic animals, higher ovulation rates (P = 0.026) were recorded for the CIDR + eCG (81%) than for the CIDR cows (47.4%). Our results indicate that the addition of eCG to a progesterone-based estrous synchronization regimen substantially improves the ovulation rate in non-cyclic buffaloes. When this treatment is followed by timed AI, pregnancy rates achieved in anestrous buffaloes, whether cyclic and non-cyclic, may approach the rates observed in cows inseminated at natural estrus.  相似文献   

16.
The objective of this study was to examine cytological changes of cervical mucus following the induction of estrus with intra-vaginal drug release (CIDR) devices in dairy cows. Sixty healthy Holstein Frisian cows, averaging 80 (+/-10) days post-partum, were selected from a commercial dairy farm around Shiraz. Cows in the control group were synchronized by the Ovsynch protocol. Cows in the second group (OV+CIDR) were subjected to the same Ovsynch protocol but in addition were administered a progesterone-releasing CIDR. Cows in the third group (OV+S-CIDR) were subjected to Ovsynch procedures but received the skeleton of a CIDR device, which did not release progesterone. Cows in the fourth group (E2+CIDR) received a progesterone releasing CIDR but were injected with estradiol benzoate. Cows in group 5 (E2+S-CIDR) received a CIDR skeleton and estrodial benzoate. CIDR devices were removed from cows in groups 2-4 and all cows were injected with PGF2alpha on day -3. Blood samples and cervical mucus discharges were collected from all cows on days -10, -3, 0 and 12 relative to AI. On the day of AI, the mean+/-S.D. percentage of neutrophils was significantly higher (p<0.05) in the S-CIDR+OV and S-CIDR+E2 groups than in Ovsynch group. Comparing the percentage of neutrophils in cervical mucus of Ovsynch group (less than 1%) with that of other treatment groups on the day of AI (from 5 to 39%) revealed the influential effect of a CIDR device on the reproductive tract. Results of the current study did not reveal hormonal effects but did identify mechanical effects of CIDRs on cell percentages in cervical mucus. The hormonal effects were probably masked by mechanical effects. Therefore, we were not able to confirm hormonal effects on proportions of different cells in cervical mucus. Consequently, additional research on hormonal effects and the mechanical effects of CIDR on the uterus is required.  相似文献   

17.
Two experiments were conducted to investigate the effects of timing of prostaglandin F2(alpha) (PGF2(alpha)) administration, controlled internal drug release device (CIDR) removal and second gonodotropin releasing hormone (GnRH) administration on the pregnancy outcome in CIDR-based synchronization protocols. In Experiment 1, suckled Angus crossbred beef cows (n = 580) were given 100 microg of GnRH+a CIDR on Day 0. Cows in Group 1 (modified Ovsynch-P) received 25 mg of dinoprost (PGF2(alpha)) and CIDR device removal on Day 8 (AM), 100 microg of GnRH 36 h later on Day 9 (p.m.), and fixed-time AI (FTAI) 16 h later on Day 10 (47.5+/-1.1 h after PGF2(alpha)). Cows in Group 2 (Ovsynch-P) received 25mg of PGF2(alpha) and CIDR device removal on Day 7 (p.m.), 100 microg of GnRH 48 h later on Day 9 and FTAI 16 h later on Day 10 (66.6+/-1.2 h after PGF2(alpha)). Pregnancy rates were 56.5% (170/301) for Group 1 and 55.6% (155/279) for Group 2, respectively (P = 0.47). In Experiment 2, beef cows (n=734) were synchronized with 100 microg of GnRH+CIDR on Day 0, 25 mg of PGF2(alpha) and CIDR device removal on Day 7 and either 100 microg of GnRH 48 h later on Day 9 (Ovsynch-P) and FTAI 16 h later on Day 10 (64.9+/-3.3 h from PGF2(alpha)) or 100 microg of GnRH on Day 10 (CO-Synch-P) at the time of AI (63.2+/-4.2 h from PGF2(alpha)). Pregnancy rates were 48.8% (180/369) for Ovsynch-P and 44.7% (163/365) for CO-synch-P groups, respectively (P = 0.11). In both experiments, there was a locationxtreatment interaction (P<0.05); pregnancy rates between locations were different (P < 0.05) in the Ovsynch-P group. In conclusion, in a CIDR-based Ovsynch synchronization protocol, delaying administration of prostaglandin and CIDR removal by 12 h, or timing of the second GnRH by 16 h, did not affect pregnancy rates to FTAI. Therefore, there may be an opportunity to make changes in synchronization protocols with out adversely affecting FTAI pregnancy rates.  相似文献   

18.
The objective of this study was to compare the effectiveness of the Ovsynch and controlled internal drug releasing (CIDR) protocols under commercial conditions for the treatment of cystic ovarian disease in dairy cattle. A total of 401 lactating dairy cows with ovarian cysts were alternatively allocated to two treatment groups on the day of diagnosis. Cows in the Ovsynch group were treated with GnRH on Day 0, PGF2alpha on Day 7, GnRH on Day 9, with timed insemination 16-20 h later. Cows in the CIDR group were treated with a CIDR insert on Day 0 for 7 days; on Day 7, the CIDR was removed, and cows were treated with PGF2alpha. All cows in the CIDR group were observed for estrus and cows exhibiting estrus within 7 days following removal of the CIDR and PGF2alpha administration were inseminated. The outcomes of interest for this experiment were the likelihood to be inseminated, return to cyclicity (determined by a CL on Day 21), conception and pregnancy rates. Data for these variables were analyzed using logistic regression. The percentage of cows inseminated in the Ovsynch and CIDR groups were 82 and 44%, respectively. Cows in the Ovsynch group were 5.8 times more likely to be inseminated than cows in the CIDR group. Cows with a low BCS were 0.48 times less likely to be inseminated than cows with a high BCS. The percentage of cows with a CL on Day 21 for the Ovsynch and CIDR groups was 83 and 79%, respectively (P > 0.05). Cows with a low BCS were 0.49 times less likely to have CL on Day 21 than cows with a high BCS. Conception and pregnancy rates for cows in the Ovsynch group were 18.3 and 14.4%, respectively. Conception and pregnancy rates for cows in the CIDR group were 23.1 and 9.5%, respectively. There was no significant differences between conception or pregnancy rates in cows in both groups. Primiparous cows were 2.6 times more likely to conceive than multiparous cows. In conclusion, the results of this study suggested that fertility was not different between cows with ovarian cysts treated with either the Ovsynch or the CIDR protocols in this dairy herd. In addition, primiparous cows had an increased likelihood for conception compared to multiparous cows, and cows with a low BCS were less likely to be inseminated or have a CL on Day 21, regardless of treatment.  相似文献   

19.
This is the very first report that suggests high pregnancy rates can be obtained with use of the Doublesynch protocol in anestrous dairy cows. Recently, a new synchronization method has been developed (Doublesynch) that resulted in synchronized ovulations both after the first and second gonadotropin-releasing hormone (GnRH) treatments. It was suggested that this protocol has the potential to increase the pregnancy rates in primiparous dairy cows. The aim of the current study was to confirm the success of the Doublesynch protocol and further to investigate the effect of this method on pregnancy rates in anestrous cows. Lactating primiparous Holstein (Bos taurus) cows (n = 165) between 60 and 172 d postpartum were monitored twice with 10-d intervals (on Days -10 and 0) by ultrasonography, and blood samples were collected. Cows were classified as anestrous if both blood samples had progesterone (P4) concentration <1 ng/mL and as cyclic if at least one of the two samples had P4 concentration ≥1 ng/mL. Cyclic cows were classified again as cyclic-high P4 (having an active corpus luteum) if the second blood samples had P4 concentrations ≥1 ng/mL and as cyclic-low P4 if P4 concentrations were <1 ng/mL on Day 0. Then, the cows classified as anestrous (n = 51), cyclic-high P4 (n = 63), or cyclic-low P4 (n = 51) were put into two treatment groups (Ovsynch or Doublesynch) randomly to establish six groups. Cows in the Ovsynch group were administered a GnRH (lecirelin 50 μg, im) on Day 0, PGF (Prostaglandin F2 alpha, D-cloprostenol 0.150 mg, im) on Day 7, and a second dose of GnRH 48 h later. Cows in the Doublesynch group were administered a PGF on Day 0, GnRH on Day 2, a second PGF on Day 9, and a second GnRH on Day 11. Timed artificial insemination (TAI) was performed 16 to 20 h after the second GnRH in both treatment groups. Pregnancy diagnosis was conducted (by ultrasonography) 45 ± 5 d after TAI. In anestrous cows and those with high and low progesterone concentration at treatment onset, Doublesynch treatment led to markedly increased pregnancy rates with respect to Ovsynch treatment (P < 0.05). On the overall analysis of data, it was revealed that the Doublesynch method increased pregnancy rates by 43 percentage units (29.8% vs. 72.8%, P < 0.0001) in relation to Ovsynch. Pregnancy rates of cows having small, medium, or large follicles at the day of second GnRH administration were similar in the Doublesynch group (70.4%, 85.2%, and 63.0%, respectively; P > 0.05), whereas pregnancy rates reduced dramatically as follicle size increased in the Ovsynch group, particularly in cows with follicles greater than 16 mm (45.5%, 28.1%, and 5.3%, respectively; P < 0.05). Our results confirm and support observations that the Doublesynch protocol increases the pregnancy rates in postpartum primiparous cows as reported previously. Our data also demonstrate that the Doublesynch method increases the pregnancy rates in anestrous cows. Thus, these data suggest that the Doublesynch protocol can be used to obtain satisfactory pregnancy rates after TAI in both anestrous and cycling primiparous dairy cows regardless of stage of estrous cycle.  相似文献   

20.
The aim of this study was to evaluate the effect of presynchronization with or without the detection of estrus on first service pregnancy per artificial insemination (P/AI) and on Ovsynch outcome in lactating dairy cows. A total of 511 cows were divided randomly but unevenly into 3 treatment groups at 44 to 50 days in milk (DIM). Ovsynch was started at the same time (69 to 75 DIM) in all three groups. Cows in the Ovsynch group (CON, N = 126) received no presynchronization before Ovsynch, and all cows were bred by timed AI (TAI). Cows in the presynchronization with estrus detection (PED) and the presynchronization with only TAI (PTAI) groups received two doses of prostaglandin F (PGF) 14 days apart, starting at 44 to 50 DIM. Ovsynch was initiated 11 days after the second PGF treatment. Cows in the PED group (N = 267) received AI if estrus was detected after either PGF injection. Cows that were not determined to be in estrus after PGF injection received Ovsynch and TAI. Cows in the PTAI group (N = 118) were not inseminated to estrus, with all cows receiving TAI after Ovsynch. The ovulatory response to the first GnRH injection administered as part of Ovsynch differed (P = 0.002) among treatment groups (83.1% in PTAI, 72.6% in PED, and 62.7% in CON). However, the ovulatory response to the second injection of GnRH during Ovsynch did not differ among treatment groups. Of the 267 PED cows, a total of 132 (49.4%) exhibited estrus and were inseminated. The P/AI at the 31-day pregnancy diagnosis was similar between the cows in the PED group with AI after estrus detection (37.9%; 50/132) and those bred with TAI (34.1%; 46/135). The P/AI in the CON group (46.8%; 59/126) was greater (P < 0.05) than that in the PED group (36.0%; 96/267). In addition, the P/AI in the CON group was greater (P = 0.04) than that in the PED cows receiving TAI (34.1%; 46/135) but less than that in the PED cows bred to estrus (37.9%; 50/132) (P = 0.16). At the 31-day pregnancy diagnosis, the cows in the PTAI group had greater P/AI (55.9%; 66/118) than both those in the PED group (P < 0.01; either estrus or TAI) and those in the CON group (P = 0.08). Thus, presynchronization with PGF (PTAI) increased the ovulatory response to Ovsynch and improved P/AI in dairy cows. Interestingly, the breeding of cows to estrus during presynchronization reduced fertility to the TAI and overall fertility, including cows bred to estrus and TAI. These results indicate that maximal fertility is obtained when all cows receive TAI after the presynchronization protocol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号