首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alzheimer's disease (AD) represents the most common form of dementia in the elderly, characterized by progressive loss of memory and cognitive capacity severe enough to interfere with daily functioning and the quality of life. Rare, fully penetrant mutations in three genes (APP, PSEN1 and PSEN2) are responsible for familial forms of the disease. However, more than 90% of AD is sporadic, likely resulting from complex interactions between genetic and environmental factors. Increasing evidence supports a role for epigenetic modifications in AD pathogenesis. Folate metabolism, also known as one-carbon metabolism, is required for the production of S-adenosylmethionine (SAM), which is the major DNA methylating agent. AD individuals are characterized by decreased plasma folate values, as well as increased plasma homocysteine (Hcy) levels, and there is indication of impaired SAM levels in AD brains. Polymorphisms of genes participating in one-carbon metabolism have been associated with AD risk and/or with increased Hcy levels in AD individuals. Studies in rodents suggest that early life exposure to neurotoxicants or dietary restriction of folate and other B vitamins result in epigenetic modifications of AD related genes in the animal brains. Similarly, studies performed on human neuronal cell cultures revealed that folate and other B vitamins deprivation from the media resulted in epigenetic modification of the PSEN1 gene. There is also evidence of epigenetic modifications in the DNA extracted from blood and brains of AD subjects. Here I review one-carbon metabolism in AD, with emphasis on possible epigenetic consequences.  相似文献   

2.
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders whose etiology is multifactorial including both hereditary and environmental factors. Currently, pathogenic mutations in at least five genes have been implicated in familial PD generally accounting for less than 10 % of all PD cases in most populations. It has been suggested that polymorphisms in other genes such as those encoding enzymes involved in oxidative metabolism and detoxification could be involved in predisposition to PD since oxidative stress in dopaminergic neurons is thought to be of central importance in the pathogenesis of the disease. The aim of our work was to study the association of genetic polymorphisms in genes involved in oxidative metabolism and detoxification mechanism, namely GSTM1, GSTT1, GSTP1, and those involved in DNA damage repair, OGG1 and XRCC1, in an Italian cohort of sporadic PD patients. We did not detect any association between GSTT1 and GTTM1 null polymorphisms and PD, whereas the 104GSTP1 polymorphism was associated with PD in male patients but not in females. Furthermore, we detected a protective effect of wild type genotype of XRCC1 in women.  相似文献   

3.
Alzheimer's disease (AD) and Parkinson's disease (PD) are the two most common neurodegenerative diseases that occur either in relatively rare, familial forms or in common, sporadic forms. The genetic defects underlying several monogenic familial forms of AD and PD have recently been identified, however, the causes of other AD and PD cases, particularly sporadic cases, remain unclear. To gain insights into the pathogenic mechanisms involved in AD and PD, we used a proteomic approach to identify proteins with altered expression levels and/or oxidative modifications in idiopathic AD and PD brains. Here, we report that the protein level of ubiquitin carboxyl-terminal hydrolase L1 (UCH-L1), a neuronal de-ubiquitinating enzyme whose mutation has been linked to an early-onset familial PD, is down-regulated in idiopathic PD as well as AD brains. By using a combination of two-dimensional gel electrophoresis and mass spectrometry, we have identified three human brain UCH-L1 isoforms, a full-length form and two amino-terminally truncated forms. Our proteomic analyses reveal that the full-length UCH-L1 is a major target of oxidative damage in AD and PD brains, which is extensively modified by carbonyl formation, methionine oxidation, and cysteine oxidation. Furthermore, immunohistochemical studies show that prominent UCH-L1 immunostaining is associated with neurofibrillary tangles and that the level of soluble UCH-L1 protein is inversely proportional to the number of tangles in AD brains. Together, these results provide evidence supporting a direct link between oxidative damage to the neuronal ubiquitination/de-ubiquitination machinery and the pathogenesis of sporadic AD and PD.  相似文献   

4.
Progress in the pathogenesis and genetics of Parkinson's disease   总被引:3,自引:0,他引:3  
Recent progresses in the pathogenesis of sporadic Parkinson's disease (PD) and genetics of familial PD are reviewed. There are common molecular events between sporadic and familial PD, particularly between sporadic PD and PARK1-linked PD due to alpha-synuclein (SNCA) mutations. In sporadic form, interaction of genetic predisposition and environmental factors is probably a primary event inducing mitochondrial dysfunction and oxidative damage resulting in oligomer and aggregate formations of alpha-synuclein. In PARK1-linked PD, mutant alpha-synuclein proteins initiate the disease process as they have increased tendency for self-aggregation. As highly phosphorylated aggregated proteins are deposited in nigral neurons in PD, dysfunctions of proteolytic systems, i.e. the ubiquitin-proteasome system and autophagy-lysosomal pathway, seem to be contributing to the final neurodegenerative process. Studies on the molecular mechanisms of nigral neuronal death in familial forms of PD will contribute further on the understanding of the pathogenesis of sporadic PD.  相似文献   

5.
Idiopathic Parkinson's disease (PD) is an age dependent, neurodegenerative disorder and is predominantly a sporadic disease. A minority of patients has a positive family history for PD and the majority of those families exhibit a complex mode of inheritance. The monoamine oxidases A and B (MAO-A and -B) genes, which are involved in serotonin and dopamine metabolism, are possible candidate genes for susceptibility to PD. Previous association studies of MAO-A and -B in PD have been inconclusive. To determine the role of MAO-A and -B in the development of PD, we screened a sample of 96 patients with familial PD, 164 with sporadic PD, and 180 matched normal controls with dinucleotide repeat markers in these genes. MAO-A and -B gene polymorphisms were strongly associated with total PD (p < 0.00001), familial PD (p < 0.00001), and sporadic PD (p < 0.00001). There were no significant differences between familial or sporadic PD with age of onset younger than 50 years compared to those with age of onset older than 51 years for both MAO-A and -B genes. There was no linkage disequilibrium between these genes in male PD and control groups. The frequency of common haplotypes from MAO-A and -B was different in PD and control group (p = 0.02). Our data indicate that MAO-A and -B may play a role in susceptibility to PD in our sample.  相似文献   

6.
ABSTRACT: BACKGROUND: Secreted frizzled-related proteins (SFRPs) are antagonists of the Wnt signaling pathway, which plays a central role in stem cell maintenance and differentiation of stem cells and hematopoietic progenitors. Epigenetic downregulation of SFRPs by promoter hypermethylation has been described to be involved in the pathogenesis of hematopoietic malignancies. There is an association between aberrant Wnt signaling and the established cancer stem cell concept. In contrast to BCR-ABL1-positive chronic myeloid leukemia, BCR-ABL1-negative myeloproliferative neoplasms (Ph-MPN) are characterized by the frequent occurrence of an autoactivating mutation in the JAK2 tyrosine kinase (JAK2V617F) or other mutations in the JAK-STAT pathway. However, pathogenetic mechanisms of JAK2 mutated or unmutated Ph-MPN remain not completely understood.We determined the promoter methylation status of SFRP-1, -2, -4, and [MINUS SIGN]5 in 57 MPN patient samples by methylation-specific polymerase chain reaction (PCR) (MSP). JAK2V617F was assessed by allele-specific PCR. RESULTS: Aberrant methylation among primary MPN samples was 4% for SFRP-1, 25% for SFRP-2, 2% for SFRP-4, and 0% for SFRP-5. Hypermethylation of SFRP-2, which was the most frequently hypermethylated gene in our study, could not be correlated to any specific MPN subtype. However, we detected a significant correlation between SFRP-2 methylation and presence of a JAK2V617F mutation (P = 0.008). None of the 10 CML samples showed any SFRP-methylation. CONCLUSIONS: Our data indicate that epigenetic dysregulation of the Wnt signaling pathway is a common event in MPN with aberrant methylation of at least one SFRP being detected in 25% of the primary patient samples and in 30% if only accounting for Ph-MPN. A significant correlation between SFRP-2 methylation and presence of JAK2V617F in our data support the hypothesis that epigenetic dysregulation may be a complementary mechanism to genetic aberrations. Aberrant methylation of crucial stem cell maintenance genes seems to contribute to disease pathogenesis in Ph-MPN.  相似文献   

7.
The etiopathogenesis of sporadic Parkinson’s disease (PD) remains elusive although mitochondrial dysfunction has long been implicated. Recent evidence revealed reduced expression of peroxisome proliferator-activated receptor gamma coactivator−1 α (PGC−1α) and downstream regulated nuclear encoded respiratory complex genes in affected brain tissue from PD patients. We sought to determine whether epigenetic modification of the PGC−1α gene could account for diminished expression. In substantia nigra from PD patients but not control subjects, we show significant promoter-proximal non-canonical cytosine methylation of the PGC−1α gene but not an adjacent gene. As neuroinflammation is a prominent feature of PD and a mediator of epigenetic change, we evaluated whether the pro-inflammatory fatty acid, palmitate, would stimulate PGC−1α promoter methylation in different cell types from the CNS. Indeed, in mouse primary cortical neurons, microglia and astrocytes, palmitate causes PGC−1α gene promoter non-canonical cytosine methylation, reduced expression of the gene and reduced mitochondrial content. Moreover, intracerebroventricular (ICV) injection of palmitate to transgenic human α−synuclein mutant mice resulted in increased PGC−1α promoter methylation, decreased PGC−1α expression and reduced mitochondrial content in substantia nigra. Finally we provide evidence that dysregulation of ER stress and inflammatory signaling is associated with PGC−1α promoter methylation. Together, these data strengthen the connection between saturated fatty acids, neuroflammation, ER stress, epigenetic alteration and bioenergetic compromise in PD.  相似文献   

8.
DNA methylation is a major epigenetic modification that regulates gene expression. Dnmt1, the maintenance DNA methylation enzyme, is abundantly expressed in the adult brain and is mainly located in the nuclear compartment, where it has access to chromatin. Hypomethylation of CpG islands at intron 1 of the SNCA gene has recently been reported to result in overexpression of α-synuclein in Parkinson disease (PD) and related disorders. We therefore investigated the mechanisms underlying altered DNA methylation in PD and dementia with Lewy bodies (DLB). We present evidence of reduction of nuclear Dnmt1 levels in human postmortem brain samples from PD and DLB patients as well as in the brains of α-synuclein transgenic mice models. Furthermore, sequestration of Dnmt1 in the cytoplasm results in global DNA hypomethylation in human and mouse brains, involving CpG islands upstream of SNCA, SEPW1, and PRKAR2A genes. We report that association of Dnmt1 and α-synuclein might mediate aberrant subcellular localization of Dnmt1. Nuclear Dnmt1 levels were partially rescued by overexpression of Dnmt1 in neuronal cell cultures and in α-synuclein transgenic mice brains. Our results underscore a novel mechanism for epigenetic dysregulation in Lewy body diseases, which might underlie the decrease in DNA methylation reported for PD and DLB.  相似文献   

9.
Parkinson disease (PD) is a multifactorial neurodegenerative disorder with high incidence in the elderly, where environmental and genetic factors are involved in etiology. In addition, epigenetic mechanisms, including deregulation of DNA methylation have been recently associated to PD. As accurate diagnosis cannot be achieved pre-mortem, identification of early pathological changes is crucial to enable therapeutic interventions before major neuropathological damage occurs. Here we investigated genome-wide DNA methylation in brain and blood samples from PD patients and observed a distinctive pattern of methylation involving many genes previously associated to PD, therefore supporting the role of epigenetic alterations as a molecular mechanism in neurodegeneration. Importantly, we identified concordant methylation alterations in brain and blood, suggesting that blood might hold promise as a surrogate for brain tissue to detect DNA methylation in PD and as a source for biomarker discovery.  相似文献   

10.
Parkinson disease (PD) is the most common age-dependent neurodegenerative movement disorder. Accumulated evidence indicates both environmental and genetic factors play important roles in PD pathogenesis, but the potential interaction between environment and genetics in PD etiology remains largely elusive. Here, we report that PD-related neurotoxins induce both expression and acetylation of multiple sites of histones in cultured human cells and mouse midbrain dopaminergic (DA) neurons. Consistently, levels of histone acetylation are markedly higher in midbrain DA neurons of PD patients compared to those of their matched control individuals. Further analysis reveals that multiple histone deacetylases (HDACs) are concurrently decreased in 1-methyl-4-phenylpyridinium (MPP+)-treated cells and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mouse brains, as well as midbrain tissues of human PD patients. Finally, inhibition of histone acetyltransferase (HAT) protects, whereas inhibition of HDAC1 and HDAC2 potentiates, MPP+-induced cell death. Pharmacological and genetic inhibition of autophagy suppresses MPP+-induced HDACs degradation. The study reveals that PD environmental factors induce HDACs degradation and histone acetylation increase in DA neurons via autophagy and identifies an epigenetic mechanism in PD pathogenesis.  相似文献   

11.
Intensive research over the last 15 years has led to the identification of several autosomal recessive and dominant genes that cause familial Parkinson’s disease (PD). Importantly, the functional characterization of these genes has shed considerable insights into the molecular mechanisms underlying the etiology and pathogenesis of PD. Collectively; these studies implicate aberrant protein and mitochondrial homeostasis as key contributors to the development of PD, with oxidative stress likely acting as an important nexus between the two pathogenic events. Interestingly, recent genome-wide association studies (GWAS) have revealed variations in at least two of the identified familial PD genes (i.e. α-synuclein and LRRK2) as significant risk factors for the development of sporadic PD. At the same time, the studies also uncovered variability in novel alleles that is associated with increased risk for the disease. Additionally, in-silico meta-analyses of GWAS data have allowed major steps into the investigation of the roles of gene-gene and gene-environment interactions in sporadic PD. The emergent picture from the progress made thus far is that the etiology of sporadic PD is multi-factorial and presumably involves a complex interplay between a multitude of gene networks and the environment. Nonetheless, the biochemical pathways underlying familial and sporadic forms of PD are likely to be shared.  相似文献   

12.
Parkinson disease (PD) is the most common movement disorder and is characterized by dopaminergic dysfunction. The majority of PD cases are sporadic; however, the discovery of genes linked to rare familial forms of the disease has provided crucial insight into the molecular mechanisms of disease pathogenesis. Multiple genes mediating familial forms of Parkinson’s disease (PD) have been identified, such as parkin (PARK2) and phosphatase and tensin homologue deleted on chromosome ten (PTEN)-induced putative kinase 1: PINK1 (PARK6). Here, we showed that Parkin directly interacts with PINK1, but did not bind to pathogenic PINK1 mutants. Parkin, but not its pathogenic mutants, stabilizes PINK1 by interfering with its degradation via the ubiquitin-mediated proteasomal pathway. In addition, the interaction between Parkin and PINK1 resulted in reciprocal reduction of their solubility. Our results indicate that Parkin regulates PINK1 stabilization via direct interaction with PINK1, and operates through a common pathway with PINK1 in the pathogenesis of early-onset PD.  相似文献   

13.
The Parkinson disease (PD) is the second most common progressive neurodegenerative disorder that arises due to degeneration of dopaminergic neurons. The causes of this disease are still unknown, but a number of genes involved in pathogenesis of familial and sporadic forms of PD has been identified. According to recent data of genome wide association studies (GWAS), single nucleotide polymorphisms (SNPs) in these genes (including MAPT locus) may play an important role in the development of PD. Therefore, we analyzed distribution of genotype frequencies of SNP rs415430 in the WNT3 gene in the Russian patients with sporadic PD and in the Russian population controls (OR = 0.84, Confidence Interval (95% CI) 0.58-1.23, p = 0.39). It was concluded that SNP rs415430 in the WNT3 gene was not associated with the risk of development of PD.  相似文献   

14.
Although oxidative stress has been strongly implicated in the pathogenesis of Alzheimer disease (AD) and Parkinson disease (PD), the identities of specific protein targets of oxidative damage remain largely unknown. Here, we report that Cu,Zn-superoxide dismutase (SOD1), a key antioxidant enzyme whose mutations have been linked to autosomal dominant neurodegenerative disorder familial amyotrophic lateral sclerosis (ALS), is a major target of oxidative damage in AD and PD brains. By using a combination of two-dimensional gel electrophoresis, immunoblot analysis, and mass spectrometry, we have identified four human brain SOD1 isoforms with pI values of 6.3, 6.0, 5.7, and 5.0, respectively. Of these, the SOD1 pI 6.0 isoform is oxidatively modified by carbonylation, and the pI 5.0 isoform is selectively accumulated in AD and PD. Moreover, Cys-146, a cysteine residue of SOD1 that is mutated in familial ALS, is oxidized to cysteic acid in AD and PD brains. Quantitative Western blot analyses demonstrate that the total level of SOD1 isoforms is significantly increased in both AD and PD. Furthermore, immunohistochemical and double fluorescence labeling studies reveal that SOD1 forms proteinaceous aggregates that are associated with amyloid senile plaques and neurofibrillary tangles in AD brains. These findings implicate, for the first time, the involvement of oxidative damage to SOD1 in the pathogenesis of sporadic AD and PD. This work suggests that AD, PD, and ALS may share a common or overlapping pathogenic mechanism(s) that could potentially be targeted by similar therapeutic strategies.  相似文献   

15.
Understanding the molecular causes of Parkinson's disease   总被引:8,自引:0,他引:8  
Parkinson's disease (PD) is a neurodegenerative disease that is both common and incurable. The majority of cases are sporadic and of unknown origin but several genes have been identified that, when mutated, give rise to rare, familial forms of the disease. The principal genes that have been shown to cause PD are alpha-synuclein (SNCA), parkin, leucine-rich repeat kinase 2 (LRRK2), PTEN-induced putative kinase 1 (PINK1) and DJ-1. Here, we discuss what has been learnt from the study of these genes and what has been elucidated of the molecular pathways that lead to cell degeneration. Of importance is what these molecular events and pathways tell scientists of the common sporadic form of PD. Although complete knowledge of these genes' functions remains elusive, recent work implicates abnormal protein accumulation, protein phosphorylation, mitochondrial dysfunction and oxidative stress as common pathways to PD pathogenesis.  相似文献   

16.
17.
DJ-1 is an antioxidant protein whose loss of function by gene mutations has been linked to familial Parkinson's disease (PD). The main objective of the present study was to determine if this molecule was also involved in the pathogenesis of sporadic PD. For this purpose, quantitative immunoblot assays were performed to evaluate DJ-1 in cerebrospinal fluids (CSF) collected from sporadic PD patients (n=40) and non-PD controls (n=38). The results showed that the CSF DJ-1 levels in PD were significantly higher than those in non-PD controls. Especially, upregulation of CSF DJ-1 in the early stage of PD (Yahr I-II) were distinct compared to those in the advanced stage of PD (Yahr III-IV) and non-PD controls (p<0.001 by ANOVA with post hoc Bonferroni's test), suggesting a protective role of DJ-1 against oxidative stress during the early stage. Thus, we propose that CSF DJ-1 could be a possible biomarker for early sporadic PD.  相似文献   

18.
MicroRNAs (miRNAs) are small noncoding RNAs that contribute to tumorigenesis by acting as oncogenes or tumor suppressor genes and may be important in the diagnosis, prognosis and treatment of cancer. Many miRNA genes have associated CpG islands, suggesting epigenetic regulation of their expression. Compared with sporadic cancers, the role of miRNAs in hereditary or familial cancer is poorly understood. We investigated 96 colorectal carcinomas, 58 gastric carcinomas and 41 endometrial carcinomas, occurring as part of inherited DNA mismatch repair (MMR) deficiency (Lynch syndrome), familial colorectal carcinoma without MMR gene mutations or sporadically. Methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) assays were developed for 11 miRNA loci that were chosen because all could be epigenetically regulated through the associated CpG islands and some could additionally modulate the epigenome by putatively targeting the DNA methyltransferases or their antagonist retinoblastoma-like 2 (RBL2). Compared with the respective normal tissues, the predominant alteration in tumor tissues was increased methylation for the miRNAs 1-1, 124a-1, 124a-2, 124a-3, 148a, 152 and 18b; decreased methylation for 200a and 208a; and no major change for 373 and let-7a-3. The frequencies with which the individual miRNA loci were affected in tumors showed statistically significant differences relative to the tissue of origin (colorectal versus gastric versus endometrial), MMR proficiency versus deficiency and sporadic versus hereditary disease. In particular, hypermethylation at miR-148a and miR-152 was associated with microsatellite-unstable (as opposed to stable) tumors and hypermethylation at miR-18b with sporadic disease (as opposed to Lynch syndrome). Hypermethylation at miRNA loci correlated with hypermethylation at classic tumor suppressor promoters in the same tumors. Our results highlight the importance of epigenetic events in hereditary and sporadic cancers and suggest that MS-MLPA is an excellent choice for quantitative analysis of methylation in archival formalin-fixed, paraffin-embedded samples, which pose challenges to many other techniques commonly used for methylation studies.  相似文献   

19.
Parkinson disease (PD) belongs to a heterogeneous group of neurodegenerative disorders with movement alterations, cognitive impairment, and alpha-synuclein accumulation in cortical and subcortical regions. Jointly, these disorders are denominated Lewy body disease. Mutations in the parkin gene are the most common cause of familial parkinsonism, and a growing number of studies have shown that stress factors associated with sporadic PD promote parkin accumulation in the insoluble fraction. alpha-Synuclein and parkin accumulation and mutations in these genes have been associated with familial PD. To investigate whether alpha-synuclein accumulation might be involved in the pathogenesis of these disorders by interfering with parkin solubility, synuclein-transfected neuronal cells were transduced with lentiviral vectors expressing parkin. Challenging neurons with proteasome inhibitors or amyloid-beta resulted in accumulation of insoluble parkin and, to a lesser extent, alpha-tubulin. Similarly to neurons in the brains of patients with Lewy body disease, in co-transduced cells alpha-synuclein and parkin colocalized and co-immunoprecipitated. These effects resulted in decreased parkin and alpha-tubulin ubiquitination, accumulation of insoluble parkin, and cytoskeletal alterations with reduced neurite outgrowth. Taken together, accumulation of alpha-synuclein might contribute to the pathogenesis of PD and other Lewy body diseases by promoting alterations in parkin and tubulin solubility, which in turn might compromise neural function by damaging the neuronal cytoskeleton. These studies provide a new perspective on the potential nature of pathogenic alpha-synuclein and parkin interactions in Parkinson disease.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号