首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Summary Pancreatic ribonuclease (RNase) and3H-uridine were used to study certain compositional and ontogenetic features of the polysomes of strain L mouse cells. Growing cells were exposed to the radioactive nucleoside,3H-uridine, for brief defined periods, and the sensitivity of the polysomes to digestion by RNase was determined. The RNase-resistant RNA of polysomes is shown to be primarily ribosomal, and the RNase-sensitive material formed during brief pulse labeling studies is largely messenger RNA. Actinomycin D inhibition of RNA synthesis was used to confirm this identification. The technique described here was used to investigate the effects of hydrocortisone on polysome formation. The hormone (10−6 m) lessens the extent of the nucleoside incorporation into polysomal and total RNA and delays the appearance of newly synthesized 18 S and 28 S rRNA into cytoplasmic polysomes. This work was partially supported by grants from the United States Public Health Service (GM 10866), from the National Science Foundation (GB 13924), and from The University of Kansas General Research Fund.  相似文献   

2.
Incorporation studies with 3H-uridine or 3H-adenosine showedthat germinating pea embryos synthesize all types of poly A(+)RNA, rRNA and 4–5S RNA at the early stage of germination.After the pulse labeling for 30 min, only heterodisperse RNAand 4–5S RNA appeared in the cytoplasm as labeled RNAspecies. At this time the radioactivity was associated withcytoplasmic structures heavier than 80S and RNP particles of68–70S, 52–55S, 36–38S and 20–22S whichare presumed to be free mRNP particles in plants. When the pulse-labeledembryos were incubated for a further 60 min in an isotope-freemedium, the labeled 17S and 25S rRNA emerged in the cytoplasm,together with labeled heterodisperse and 4–5S RNAs. Moreradioactivity accumulated in the regions of the polysome, 62–65Sand 38–42S particles. The results of analysis of RNAsextracted from the whole cytoplasm, polysome or subribosomalfractions indicated that small subunits of newly formed ribosomesappear more rapidly in the cytoplasm than new large subunits,which accumulate for a while as free particles in the cytoplasmthen are incorporated into polysomes. The actino-mycin treatmentwhich caused preferential inhibition of rRNA synthesis reducedthe accumulation of free, newly formed ribosome subunits andpartially permitted detection of the presumed mRNP particlesin the subribosomal region even after the chase treatment. (Received June 28, 1976; )  相似文献   

3.
Glycoprotein mRNA (G mRNA) of vesicular stomatitis virus is synthesized in the cytosol fraction of infected HeLa cells. Shortly after synthesis, this mRNA associates with 40S ribosomal subunits and subsequently forms 80S monosomes in the cytosol fraction. The bulk of labeled G mRNA is then found in polysomes associated with the membrane, without first appearing in the subunit or monomer pool of the membrane-bound fraction. Inhibition of the initiation of protein synthesis by pactamycin or muconomycin A blocks entry of newly synthesized G m RNA into membrane-bound polysomes. Under these circumstances, labeled G mRNA accumulates into the cytosol. Inhibition of the elongation of protein synthesis by cucloheximide, however, allows entry of 60 percent of newly synthesized G mRNA into membrane-bound polysomes. Furthermore, prelabeled G mRNA associated with membrane-bound polysomes is released from the membrane fraction in vivo by pactamycin or mucomycon A and in vitro by 1mM puromycin - 0.5 M KCI. This release is not due to nonspecific effects of the drugs. These results demonstrate that association of G mRNA with membrane-bound polysomes is dependent upon polysome formation and initiation of protein synthesis. Therefore, direct association of the 3' end of G mRNA with the membrane does not appear to be the initial event in the formation of membrane-bound polysomes.  相似文献   

4.
Polysomes consisting of two to eight monosomes were isolated from yeast mitochondria by lysing the mitochondria with Triton X-100 and centrifugation in a 20 to 40% linear sucrose gradient. When yeast spheroplasts were pulse-labeled with [3H]-Leucine in the presence of cycloheximide to block cytoplasmic protein synthesis, radioactivity which was trichloroacetic acid-precipitable was present mainly in the polysome region. Incorporation of leucine was blocked by erythromycin, a specific inhibitor of mitochondrial protein synthesis. Release of radioactivity to the top of the gradient resulted from treating labeled polysomes with either puromycin or ribonuclease (in the latter case with the breakdown of polysomes), indicating that the radioactivity was present in nascent polypeptide chains. Yeast cells were grown in chloramphenicol for 3 hours and in fresh medium for 1 hour and then pulse-labeled with either [3H]leucine or [14C]formate. Three parameters showed a 2-fold increase in cells grown in chloramphenicol prior to pulse labeling: the polysome to monosome ratio, the amount of labeled precursor incorporated into proteins, and the rate of polypeptide chain initiation as judged by the formation of fMet-puromycin. Conversely, these parameters were all decreased approximately 50% in cells treated with cycloheximide prior to pulse labeling. Mitochondria were also isolated from cells previously grown in chloramphenicol or cycloheximide and incubated in vitro with [3H]leucine under optimal conditions. Acid-precipitable radioactivity in the polysome region was increased 3-fold in mitochondria from cells grown previously in chloramphenicol and decreased 75% in those grown in cycloheximide. Furthermore, chain initiation was deomonstrated in the isolated mitochondria by formation of fMet-puromycin. The rate of chain initiation in vitro was increased 2-fold in mitochondria isolated from chloramphenicol-treated cells.  相似文献   

5.
A sensitive and quantitative nucleic acid hybridization assay for the detection of radioactively labeled avian tumor virus-specific RNA in infected chicken cells has been developed. In our experiments we made use of the fact that DNA synthesized by virions of avian myeloblastosis virus in the presence of actinomycin D (AMV DNA) is complementary to at least 35% of the sequences of 70S RNA from the Schmidt-Ruppin strain (SRV) of Rous sarcoma virus. Annealing of radioactive RNA (either SRV RNA or RNA extensively purified from SRV-infected chicken cells) with AMV DNA followed by ribonuclease digestion and Sephadex chromatography yielded products which were characterized as avian tumor virus-specific RNA-DNA hybrids by hybridization competition with unlabeled 70S AMV RNA, equilibrium density-gradient centrifugation in Cs(2)SO(4) gradients, and by analysis of their ribonucleotide composition. The amount of viral RNA synthesized during pulse labeling with (3)H-uridine could be quantitated by the addition of an internal standard consisting of (32)P-labeled SRV RNA prior to purification and hybridization. This quantitative assay was used to determine that, in SRV-infected chicken cells labeled for increasing lengths of time with (3)H-uridine, labeled viral RNA appeared first in a nuclear fraction, then in a cytoplasmic fraction, and still later in mature virions. This observation is consistent with the hypothesis that RNA tumor virus RNA is synthesized in the nucleus of infected cells.  相似文献   

6.
Demonstration of Balbiani ring RNA sequences in polysomes   总被引:3,自引:1,他引:2       下载免费PDF全文
A polysome extract from salivary glands of C. tentans was sedimented in a 15-60% sucrose gradient. Fractions from the heavy polysome region (1,000-2,000S) and fractions from the light polysome region (200- 1,000S) were pooled separately, and the long-term labeled RNA was released by Sarkosyl/pronase and analysed by in situ hybridization. The results showed that BR 1 and BR 2 sequences were present in the heavy and the light polysome regions of the sucrose gradient. From control experiments with EDTA-treated extracts, it was concluded that most of the recorded BR 1 and BR 2 sequences were in fact located in polysomes. The finding that BR products enter polysomes suggests that they act as messenger RNA molecules. This study therefore strongly supports the concept that chromosome puffs represent active genes.  相似文献   

7.
Cotyledons of the common bean (Phaseolus vulgaris L.) synthesize large amounts of the reserve protein phaseolin. The polypeptides are synthesized on membrane-bound polysomes, pass through the endoplasmic reticulum (ER) and accumulate in protein bodies. For a study of the biosynthesis and processing of phaseolin, developing cotyledons were labeled with radioactive amino acids, glucosamine and mannose, and isolated fractions (polysomal RNA, polysomes, and rough ER) were used for in vitro protein synthesis. Newly synthesized phaseolin present in the ER of developing cotyledons can be fractioned into four glycopolypeptides by SDS PAGE. In vitro synthesis with polysomal RNA results in the formation of two polypeptides by polysome run-off shows that glycosylation is a co-translational event. The two unglycosylated polypeptides formed by polysome run-off are slightly smaller than the two polypeptides formed by in vitro translation of isolated RNA, indicating that a signal peptide may be present on these polypeptides. Run-off synthesis with rough ER produces a pattern of four polypeptides similar to the one obtained by in vivo labeling. The two abundant glycopolypeptides formed by polysome run-off. This result indicates the existence of a second glycosylation event for the abundant polypeptides. Inhibition of glycosylation by Triton X-100 during chain-completion with rough ER was used to show that these two glycosylation steps normally occur sequentially. Both glycosylation steps are inhibited by tunicamycin. Analysis of carhohydrate to protein ratios of the different polypeptides and of trypsin digests of polypeptides labeled with [(3)H]glucosamine confirmed the conclusion that some glycosylated polypeptides contain two oligosaccharide chains, while others contain only one. An analysis of tryptic peptide maps shows that each of the unglycosylated polypeptides is the precursor for one glycosylated polypeptide with one oligosaccharide chain and one with two oligosaccharide chains.  相似文献   

8.
M. gallisepticum infection of cultured chick embryo cells led to a sharp reduction the rate of 3H-thymidine and 3H-uridine incorporation into DNA and RNA cells, and almost completely suppressed the transposition of uridine label from the nucleus into the cytoplasm, this pointing to the inhibition of escape of RNA synthesized de novo into the infected cells cytoplasm. As suggested, weak labeling of the cytoplasm after prolonged (about several hours) incubation of cultured cells with labeled urine could indicate infection of cell cultures with the mycoplasmae.  相似文献   

9.
The fraction of ribosomes loaded on polysomes is about 95% in logarithmically growing Tetrahymena thermophila, and about 4% in starved cells. Cytoplasmic extracts from cells in these two physiological states were used to develop column chromatographic methods for the purification of polysomes. Bio-Gel A 1.5 m was found to separate total cytoplasmic ribosomes from many soluble proteins, including RNAse, with no detectable change in the polysome size distribution. Polysomes can be separated from monosomes and non-polysomal mRNA by chromatography on Bio-Gel A 15 m without size selection. These methods can easily be adapted to large scale preparations of polysomes, even from cells where a small fraction of the ribosomes is on polysomes. A method is described for reversible precipitation of polysomes and monosomes from dilute solutions at pH 5.3 which greatly facilitates polysome isolation. Hybridization of 3H-labeled polyU to RNA isolated from column fractions has been used to demonstrate that purification of EDTA released polysomal mRNA can be performed using the column chromatography procedures described here. These methods have been employed to demonstrate that most of the cytoplasmic mRNA in log-phase Tetrahymena is loaded onto polysomes while most of the mRNA is starved cells exists in a non-polysomal form.  相似文献   

10.
Analysis of the cytoplasmic fraction of chick embryo cells during the exponential phase of Western equine encephalomyelitis (WEE) virus growth showed that the viral ribonucleic acid (RNA) labeled by a short pulse with 3H-uridine was associated with a structure which sedimented in sucrose density gradients with a coefficient of 65S. The RNA extracted from this structure sedimented in sucrose density gradients at 26S. After a longer period of exposure to 3H-uridine, the radio-active viral RNA was associated with a structure which sedimented in sucrose density gradients as would materials with coefficients of about 140S. The 140S structure contained viral RNA and viral protein. It was shown that the 140S structures are not virus-induced polysomes. The 140S structure contained predominantly the 40S type of viral RNA and some 26S type. Electrophoretic analysis of the disrupted virion revealed that at least two proteins (types I and II) were present in the purified virion. Only type II protein was present in the 140S structure. Unlike the virion, the 140S structure did not contain any lipid which could be detected by the incorporation of 14C-choline. These data suggest that the 140S structure represents the internal nucleoprotein part of the virion. The rate of appearance of labeled virus lags behind that of the formation of the 140S structure in infected cells. Pulse-chase experiments with 3H-leucine suggest that the 140S structure may represent a precursor to the virus particle. The results are discussed in terms of the maturation of WEE virus in the infected cells.  相似文献   

11.
M G Katze  D DeCorato    R M Krug 《Journal of virology》1986,60(3):1027-1039
During influenza virus infection, protein synthesis is maintained at high levels and a dramatic switch from cellular to viral protein synthesis occurs despite the presence of high levels of functional cellular mRNAs in the cytoplasm of infected cells (M. G. Katze and R. M. Krug, Mol. Cell. Biol. 4:2198-2206, 1984). To determine the step at which the block in cellular mRNA translation occurs, we compared the polysome association of several representative cellular mRNAs (actin, glyceraldehyde-3-phosphate dehydrogenase, and pHe7 mRNAs) in infected and uninfected HeLa cells. We showed that most of these cellular mRNAs remained polysome associated after influenza viral infection, indicating that the elongation of the proteins encoded by these cellular mRNAs was severely inhibited. Because the polysomes containing these cellular mRNAs did not increase in size but either remained the same size or decreased in size, the initiation step in cellular protein synthesis must also have been defective. Several control experiments established that the cellular mRNAs sedimenting in the polysome region of sucrose gradients were in fact associated with polyribosomes. Most definitively, puromycin treatment of infected cells caused the dissociation of polysomes and the release of cellular, as well as viral, mRNAs from the polysomes, indicating that the cellular mRNAs were associated with polysomes that were capable of forming at least a single peptide bond. A similar analysis was performed with HeLa cells infected by adenovirus, which also dramatically shuts down cellular protein synthesis. Again, it was found that most of the cellular mRNAs, which were translatable in reticulocyte extracts, remained associated with polysomes and that there was a combined initiation-elongation block to cellular protein synthesis. In cells infected by both adenovirus and influenza virus, influenza viral mRNAs were on larger polysomes than were several late adenoviral mRNAs with comparably sized coding regions. In addition, after influenza virus superinfection of cells infected by the adenovirus mutant dl331, a situation in which there is a limitation in the amount of functional initiation factor eIF-2 (M. G. Katze, B. M. Detjen, B. Safer, and R. M. Krug, Mol. Cell. Biol. 6:1741-1750, 1986), influenza viral mRNAs, but not late adenoviral mRNAs, were on polysomes. These results indicate that influenza viral mRNAs are better initiators of translation than are late adenoviral mRNAs.  相似文献   

12.
The kinetics of labeled histone mRNA entry into polysomes was studied in nuclease-treated reticulocyte lysates. Added mRNA rapidly bound 1 or 2 ribosomes. However, the formation of full size polysomes required at least 16 min. The amount of mRNA bound to ribosomes reached a maximum (73%) within 2 min after mRNA addition and then declined slowly for the remainder of the experiment. Two initiation inhibitors, aurintricarboxylic acid and 7-methylguanosine 5'-triphosphate, were found to affect polysome size and the fraction of mRNA in polysomes in an opposite manner. These results suggest that initiation and reinitiation events may be intrinsically different. The relatively long time period required for the formation of large polysomes can be explained by large polysomes having higher initiation and/or reinitiation rates or slower elongation rates. These possibilities are not mutually exclusive. The results suggest that there exist several levels of control which can regulate polysome size and the fraction of mRNA in polysomes.  相似文献   

13.
Abstract: The intravenous administration of LSD to young adult rabbits resulted in the disaggregation of both free and membrane-bound classes of brain polysomes. Based on the analysis of LSD dosage and the time course of the LSD-induced brain polysome shift, it was found that free polysomes were more sensitive to the drug than the membrane-bound polysome fraction. LSD-induced hyperthermia may be involved in the disaggregation of free and membrane-bound polysomes, since a correlation was found between the extent of LSD-induced hyperthermia and the degree of brain polysome shift. Prevention of LSD-induced hyperthermia by maintaining the animal at 4°C blocked the disaggregation of both polysome classes. Induction of hyperthermia by elevation of ambient temperature also resulted in a shift in free and membrane-bound polysomes. In all cases the disaggregation of polysomes to monosomes was not caused by RNase activation. During polysome disaggregation, polyadenylated mRNA associated with both free and membrane-bound polysomes was not degraded but was relocalized from polysomes to monosomes.  相似文献   

14.
An examination of polyribosome profiles has revealed a distinction between the messenger RNA populations present during the delta, gamma-beta, and alpha1 stages of the follicular epithelium. The delta and gamma-beta stages are both characterized by polysome profiles with no clearly prominent peaks. There is an increase both in the overall activity of the polysome region and in the amount of heavier polysomes in relation to the lighter ones during the transition from the delta to the gamma-beta condition. The alpha1 oöcytes possess polysome profiles which are characterized by several extremely prominent peaks and by a reduction in the amount of single ribosomes in the cell. This is taken to indicate that the alpha1 cells are engaged in the synthesis of large quantities of several different proteins, possibly the chorion precursors.  相似文献   

15.
16.
Intravenous administration of LSD to young adult rabbits induces a transient disaggregation of brain polysomes and a relocalization of mRNA from polysomes to monosomes. To analyze the spectrum of mRNA molecules which were associated with either the residual polysomes or the translationally inactive monosome complex, these two fractions were isolated on sucrose gradients and translated in a reticulocyte cell-free system. Analysis of [35S]methionine labeled translation products by one and two dimensional gel electrophoresis revealed that a full spectrum of mRNA molecules was relocalized from polysomes to monosomes following drug induced polysome disaggregation. The only exception was the mRNA coding for the LSD-induced 74K protein which was associated with the residual polysome fraction and not with the monosome complex. This brain protein is similar in molecular weight to one of the major heat shock proteins which are induced in tissue culture cells following elevation of ambient temperature and disaggregation of existing polysomes. The mRNA coding for the 74K brain protein was not observed in polysomes isolated following blockage of LSD-induced hyperthermia but it was noted when hyperthermia was induced by elevation of ambient temperature. The mRNA species coding for the 74K protein was polyadenylated.  相似文献   

17.
When actinomycin D-treated chick fibroblasts were labeled with (3)H-uridine for varying periods during the log phase of Semliki Forest virus infection, radioactivity was found associated with different cytoplasmic fractions. After a 1-min period of labeling, it appeared in a large cytoplasmic structure which was seen in electron micrographs of infected cells. Sediments of sucrose density gradients of cytoplasmic extracts of these cells also contained these structures. Three forms of viral ribonucleic acid (RNA) were associated with this cytoplasmic structure: a ribonuclease-sensitive 42S form identical to the RNA of the mature virus, a ribonuclease-sensitive 26S form, and a ribonuclease-resistant 20S form. After a 5- to 10-min labeling period, radioactivity was associated with a ribonuclease-sensitive 65S cytoplasmic fraction which contained only the 26S RNA form. Finally, after a 1-hr labeling period, a 140S ribonuclease-resistant particle was the most prominent radioactive structure in the cytoplasm. This particle contained only 42S viral RNA. Negative-contrast electron micrographs of the 140S particle and the virion demonstrated structural differences between them. The base compositions of the 42S and 26S viral RNA forms were not significantly different. The base composition of the 20S form differed significantly from that of the other two viral RNA forms, but the values obtained for the mole fractions of the bases present in the 20S form differed, and depended on the period during the virus growth cycle in which (32)P was present. These results suggested that viral RNA originated in the large cytoplasmic body. The 20S RNA appeared to be a structure engaged in viral RNA replication and the 140S particle appeared to be a virus precursor.  相似文献   

18.
As a prerequisite to examining mRNA metabolism in compensatory renal hypertrophy, polyadenylated RNA has been purified from normal mouse kidney polysomal RNA by selection on oligo(dT)-cellulose. Poly(A)-containing RNA dissociated from polysomes by treatment with 10 mM EDTA and sedimented heterogeneously in dodecyl sulfate-containing sucrose density gradients with a mean sedimentation coefficient of 20 S. Poly(A) derived from this RNA migrated at the rate of 6-7 S RNA in dodecyl sulfate-containing 10% polyacrylamide gels. Coelectrophoresis of poly(A) labeled for 90 min with poly(A) labeled for 24 h indicated the long-term labeled poly(A) migrated faster than pulse-labeled material. Twenty percent of the cytoplasmic poly(A)-containing mRNA was not associated with the polysomes, but sedimented in the 40-80 S region (post-polysomal). Messenger RNA from the post-polysomal region had sedimentation properties similar to those of mRNA prepared from polysomes indicating post-polysomal mRNA was not degraded polysomal mRNA. Preliminary labeling experiments indicated a rapid equilibration of radioactivity between the polysomal and post-polysomal mRNA populations, suggesting the post-polysomal mRNA may consist of mRNA in transit to the polysomes.  相似文献   

19.
Isolated axes of Zea mays L. cvs CiV2 and CUZCO were imbibed for different periods of time, and free polysomes were extracted and analysed by centrifugation in a sucrose gradient. The amount of rRNA per axis was determined at different moments of germination. Polysome reassembly was practically completed by 8 h and 54% of the preformed ribosomes were found in the polysome fraction. An increase in the proportion of large polysomes was also observed during this period of germination. During the following period, the polysome content and the distribution of the various classes of polysomes remained unchanged.
The time of appearance of newly synthesized ribosomes into the polysomes was investigated using axes germinated in the presence of [3H]-uridine. Centrifugal analysis of EDTA-dissociated polysomes and gel electrophoretic analysis of polysomal RNA showed that new ribosomes appeared into polysomes a few hours after completion of the initial polysome assembly. When released into the cytoplasm, the new ribosomes were preferentially incorporated into polysomes rather than stored as free ribosomes.  相似文献   

20.
Identification of Saint Louis encephalitis virus mRNA.   总被引:5,自引:5,他引:0       下载免费PDF全文
Saint Louis encephalitis (SLE) virus-specific RNA was recovered from infected HeLa cells by sodium dodecyl sulfate (SDS)-phenol-chloroform extraction, and the molecular species were resolved by SDS-sucrose gradient centrifugation and agarose gel electrophoresis. Sucrose gradient centrifugation revealed the presence of a 45S species, minor 20 to 30S heterogeneous species, and an 8 to 10 S RNA species in the cytoplasmic extract. Analysis of the same samples by electrophoresis on agarose gels, under both nondenaturing and denaturing conditions, revealed only two virus-specific RNA molecules, the 45S genome-sized RNA and an 8 to 10S species. Varying the gel concentration to facilitate analysis of nucleic acids with molecular weights ranging from 25,000 to 25 X 10(6) failed to reveal additional RNA species, although low levels of a putative double-stranded replicative form could conceivably have escaped detection. From our observations it appears that the heterogeneous RNA species and presumably the 20S RNase-resistant species reported in other investigations of flavivirus RNA are degradation products or conformers of the 45S molecule. Polysomes from SLE virus-infected cells were prepared and separated from contaminating nucleocapsid by centrifugation on discontinuous sucrose gradients. RNA extracted from these polysome preparations was analyzed by sucrose gradient centrifugation and agarose gel electrophoresis. The 45S SLE virus genome-size molecule was found to be the only RNA species associated with the polysomes. This molecule was sensitive to RNase digestion and was released from polysomes by EDTA and puromycin treatment. These findings provide direct evidence that the 45 S SLE virus RNA serves as the messenger during virus replication, in contrast to the 26S RNA species which functions as the predominant messenger during alphavirus replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号