首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Phytohemagglutinin (PHA) is a family of tetrameric isolectins which accumulate in the protein bodies of developing Phaseolus vulgaris cotyledons. Each tetramer contains erythroagglutinating (E) or lymphocyte-mitogenic (L) subunits, or a combination of both. The subunits have Mr around 33000, E being slightly larger than L. Phytohemagglutinin is a glycoprotein, and its carbohydrate moiety contains N-acetylglucosamine, mannose, fucose and xylose, indicating that this protein has complex oligosaccharide sidechains. Several steps in the biosynthesis and in the cotranslational and post-translational processing of the glycopolypeptides of PHA have been identified. The polypeptides of PHA are synthesized by polysomes attached to the endoplasmic reticulum. The glycosylation of the polypeptides is a cotranslational process, in which each PHA polypeptide usually acquires two oligosaccharide sidechains. The oligosaccharides of PHA isolated from the endoplasmic reticulum are susceptible to digestion with alpha-mannosidase and endo-beta-N-acetylglucosaminidase H indicating that they are of the high-mannose type. In the presence of tunicamycin two unglycosylated polypeptides of PHA are synthesized, indicating that the differences in Mr between the E and L subunits of PHA are not due to differences in glycosylation alone. Transport of PHA to the protein bodies is mediated by the Golgi apparatus where at least part of the oligosaccharide chains of PHA are modified [ Chrispeels , M. J. (1983) Planta ( Berl .) 157, 454-461, and 158, 140-151]. The modified oligosaccharide chains of PHA are then gradually trimmed to a smaller size when the protein is already in the protein bodies. This processing results in an increase in the mobility of the PHA subunits in denaturing polyacrylamide gels.  相似文献   

2.
Developing cotyledons of Phaseolus vulgaris L. were labeled for 30 min with [3H] amino acids, homogenized, and the proteins fractionated on sodium dodecylsulfate (SDS) polyacrylamide gels. Fluorographs of these gels showed that the polypeptides of phaseolin, the major reserve protein of P. vulgaris, were synthesized as precursors which could be distinguished from the polypeptides of mature phaseolin by their slightly lower mobility. When extracts of cotyledons labeled for 45 min with [3H] amino acids were fractionated on isopynic sucrose gradients, radioactive phaseolin banded at the same density (1.14 g cm-3) as the endoplasmic reticulum (ER)-marker enzyme NADH-cytochrome c reductase. Fractionation in the presence of 3 mM MgCl2 indicated that the newly-synthesized phaseolin was associated with the rough ER. Pulse-chase experiments showed that phaseolin was transiently associated with the ER, and later accumulated in the protein bodies. Treatment of isolated ER with proteinase K showed that phaseolin polypeptides were degraded only if Triton X-100 was present, indicating that phaseolin was membrane-protected, probably enclosed within the vesicles. ER-associated phaseolin associated to an 18S form at pH 4.5 in the presence of 0.3 M NaCl and 100 mM sodium acetate. The polypeptides of ER-associated phaseolin had a slightly lower mobility on SDS-gels than polypeptides of protein body phaseolin. ER-associated phaseolin had a carbohydrate content of 6.8%, while protein body-derived phaseolin had a carbohydrate content of 6.2%. When cotyledons were labeled simultaneously with [14C] amino acids and [3H] glucosamine or with [14C] amino acids and [3H] mannose, the [3H]/[14C] ratio of ER-derived phaseolin was similar to that of protein body derived phaseolin, indicating that the faster mobility on SDS-gels was not due to the detachment of carbohydrate. Experiments in which the carbohydrate side chains were removed with endoglycosidase H, and the resulting polypeptides subjected to electrophoresis in SDS-gels showed that the differential mobility of the glycopolypeptides of phaseolin resided in their polypeptide chains.  相似文献   

3.
Phaseolin and lectin-related polypeptides, the abundant oligomeric glycoproteins of bean seeds, are synthesized on the endoplasmic reticulum (ER) and then transported to the storage vacuole via the Golgi apparatus. Glycosylation and folding are among the major modifications these proteins undergo in the ER. Although a recurrent role of N-glycosylation is on protein folding, in previous studies on common bean (Phaseolus vulgaris) seeds we demonstrated that the oligosaccharide side-chains are not required for folding, intracellular transport and activity of storage glycoproteins. We show here that in lima bean (Phaseolus lunatus), incubation of the developing cotyledon with tunicamycin to prevent glycosylation has a dramatic effect on the intracellular transport of the storage glycoproteins. When lacking their glycans, phaseolin and lectin-related polypeptides misfold and are retained in the ER as mixed aggregates to which the chaperone BiP irreversibly associates. The lumen of the ER becomes enlarged to accommodate the aggregated polypeptides. Intracellular transport of legumin, a naturally unglycosylated storage protein, is mostly unaffected by the inhibitor, indicating that the observed phenomenon specifically occurs on glycoproteins. Furthermore, recombinant lima bean phaseolin synthesized in tobacco protoplasts is also correctly folded and matured in the presence of tunicamycin. To our knowledge, this is the first report that describes in detail the block of intracellular transport of vacuolar glycoproteins in plant cells due to aggregation following glycosylation inhibition.  相似文献   

4.
Cytyledons of the common bean, Phaseolus vulgaris L., were incubated with radioactive amino acids at different stages of seed development. The proteins were fractionated by ion-exchange chromatography, sucrose gradients, and sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis. From 16 to 28 d after flowering about 40% of the incorporated radioactivity was associated with the polypeptides of vicilin and 10% with those of phytohemagglutinin.Polysomes were isolated from developing cotyledons 20–25 d after flowering and free polysomes were separated from membrane-bound polysomes. Aurintricarboxylic acid, an inhibitor of initiation in cell-free translation systems, did not inhibit the incorporation of amino acids into in-vitro synthesized proteins, indicating that synthesis was limited to the completion of already initiated polypeptides. Autofluorography of SDS-polyacrylamide gels showed that the two classes of polysomes made two different sets of polypeptides and that there was little overlap between these two sets.Four polypeptides similar in size to the 4 polypeptides of vicilin were made by membrane-bound polysomes and not by free polysomes. Antibodies specific for vicilin bound to those 4 polypeptides. Free polysomes made only polypeptides which did not bind to antibodies specific for vicilin. Antibodies against phytohemagglutinin did not bind to any of the invitro synthesized polypeptides.The membranes to which the polysomes were bound were characterized on sucrose gradients and by electron microscopy. Polysomes recovered from membranes which banded on top of 35 and 50% sucrose synthesized the vicilin polypeptides most rapidly. These membrane fractions were rich in vesicles of rough endoplasmic reticulum (ER). The ER marker-enzyme NADH-cytochrome-c reductase banded with an average density of 1.18 g/cm3 (40% w/w sucrose) on continuous gradients. These experiments demonstrate that the ER is the site of vicilin synthesis in developing bean cotyledons. Quantitative determinations of several ER parameters (RNA and lipid-phosphate content, NADH-cytochrome-c-reductase activity) show that expansion of the cotyledons is accompanied by a 4-6-fold increase in ER.  相似文献   

5.
Developing pea (Pisum sativum L.) cotyledons were labeled with radioactive amino acids, glucosamine, and mannose in pulse an pulse- chase experiments to study the synthesis, glycosylation, and transport of the reserve proteins vicilin and legumin to the protein bodies. Tissue extracts were fractionated on sucrose gradients to isolate either the endoplasmic reticulum (ER) or the protein bodies. Immunoaffinity gels were used to determine radioactivity in the reserve proteins (legumin and vicilin). After pulse-labeling for 45 min with amino acids, about half the total incorporated radioactivity coincided closely with the position of the ER marker enzyme NADH-cytochrome c reductase at a density of 1.13 g . cm-3 on the sucrose gradient. Both radioactivity and enzyme activity shifted to a density of 1.18 g . cm-3 in the presence of 3 mM MgCl2 indicating that the radioactive proteins were associated with the rough ER. Approximately half of the incorporated radioactivity associated with the rough ER was in newly synthesized reserve protein and this accounted for 80% of the reserve protein synthesized in 45 min. Trypsin digestion experiments indicated that these proteins were sequestered within the ER. In pulse-chase experiments, the reserve proteins in the ER became radioactive without appreciable lag and radioactivity chased out of the ER with a half-life of 90 min. Radioactive reserve proteins became associated with a protein body-rich fraction 20-30 min after their synthesis and sequestration by the ER. Pulse-chase experiments with radioactive glucosamine and mannose in the presence and absence of tunicamycin indicated that glycosylation of vicilin occurs in the ER. However, glycosylation is not a prerequisite for transport of vicilin from ER to protein bodies. Examination of the reserve protein polypeptides by SDS PAGE followed by fluorography showed that isolated ER contained legumin precursors (Mr 60,000-65,000) but not the polypeptides present in mature legumin (Mr 40,000 and 19,000) as well as the higher molecular weight polypeptides of vicilin (Mr 75,000, 70,000, 50,000, and 49,000). The smaller polypeptides of vicilin present in vicilin extracted from protein bodies (Mr 12,000-34,000) were absent from the ER. The results show that newly synthesized reserve proteins are preferentially and transiently sequestered within the ER before they move to the protein bodies, and that the ER is the site of storage protein glycosylation.  相似文献   

6.
Concanavalin A (ConA) is a tetrameric lectin which is synthesized in the developing cotyledons of jack bean (Canavalia ensiformis L.) as a glycosylated precursor, pro-concanavalin A (pro-ConA). The processing of pro-ConA involves the excision of a small glycopeptide from the center of the pro-ConA molecule, and the ligation of the two polypeptides. In this paper, we show that pro-ConA is associated with the endoplasmic reticulum/Golgi fraction of the cells, and that the processing of pro-ConA occurs in the protein bodies. Processing is a complex process and different intermediate-sized polypeptides appear at different times during cotyledon development. The ConA-related polypeptides which accumulate during seed development may be the products of alternate processing events or breakdown products of ConA, rather than precursors of ConA. When glycosylation is prevented by tunicamycin, there is very little transport of pro-ConA out of the endoplasmic reticulum/Golgi system to the protein bodies; the unglycosylated pro-ConA which is transported is slowly processed. Tunicamycin does not prevent the transport of canavalin (a protein which is not glycosylated) or the transport and processing of the small amounts of glycosylated pro-ConA synthesized in the presence of the drug. This is, to our knowledge, the first demonstration that the transport of a glycoprotein in plant cells is dependent on the presence of the glycan.Abbreviations ConA concanavalin A - ER endoplasmic reticulum - GlcN glucosamine - Mr relative molecular mass - SDS-PAGE sodium dodecyl sulfate-polyacrylamide gel electrophoresis supported by a grant from NATO  相似文献   

7.
During synthesis in vivo the castor bean lectin precursors initially appear in the endoplasmic reticulum as a group of core glycosylated polypeptides of relative molecular mass 64 000-68 000. Pretreatment of intact castor bean endosperm tissue with tunicamycin partially inhibits the cotranslational core glycosylation step and results in the accumulation of a single sized unglycosylated precursor polypeptide of relative molecular mass 59 000. The glycosylated precursors in the endoplasmic reticulum were enzymically converted to the 59 000-Mr form by incubation with endoglucosaminidase H. Intracellular transport of the glycosylated lectin precursors from the endoplasmic reticulum to a denser vesicle fraction was accompanied by modifications to the oligosaccharide moieties which conferred resistance to the action of endoglucosaminidase H. The post-translational addition of fucose to the carbohydrate chain was identified as one of the oligosaccharide modification steps. Fucose addition was catalysed by a glycosyltransferase associated with a smooth-surfaced membrane fraction which was distinct from the endoplasmic reticulum and which was tentatively identified as the Golgi apparatus. Glycosylation was not essential for intracellular transport of the lectin precursors: unglycosylated precursor synthesized in the presence of tunicamycin gave rise to unglycosylated lectin subunits in the protein bodies.  相似文献   

8.
Summary The subcellular localization and characterization of some of the components involved in the glycosylation of asparagine type glycoproteins was attempted using dolichyl diphosphate [14c]mannose oligosaccharide as precursor of the glycosylation reaction in vitro. Isolated rough and smooth microsomel fractions were able to carry out the transfer of the carbohydrate moiety from lipid oligosaccharide to endogenous protein acceptors. The protein glycosylating activity remained practically the same after stripping the vesicles from their ribosomes or partially releasing their vesicular content. Isolation of polysomes from rough microsomes after glycosylation has taken place, reveals that a large proportion of mannose labeled glycoproteins is in the membranous fraction. The remaining labeled glycoproteins co-sediment with the polysomal fraction. If the isolation is carried out before glycosylation only the membranous fraction shows enzyme activity, whereas the polysomes alone are not able to carry out glycosylation. All these results taken together indicate that the protein glycosylating enzyme is a structural component of the rough and smooth microsomes of rat liver.  相似文献   

9.
Treatment of developing bean cotyledons with the inhibitor of N-glycosylation tunicamycin enhanced the synthesis of at least two polypeptides with molecular mass 78 kDa and 97 kDa. Pulse-chase experiments and subcellular fractionation indicated that these are endoplasmic reticulum (ER) residents. The 78 kDa protein is a major component of the ER protein fraction and, by N-terminal sequencing, was identified as a bean homolog of the mammalian 78 kDa glucose-regulated protein (GRP78). This is a molecular chaperone that is probably involved in the folding and oligomerization of several animal and yeast proteins in the ER. When newly synthesized storage glycoproteins phaseolin, phytohemagglutinin or alpha-amylase inhibitor were immunoprecipitated from an ER preparation of tunicamycin-treated tissue, the GRP78 homolog was always co-precipitated. Bound GRP78 homolog could be released by ATP treatment. These results suggest that, at least when glycosylation is inhibited, this protein plays a role in the early stages of the synthesis of vacuolar storage proteins.  相似文献   

10.
The poly(A+)RNA of the free mRNP of mouse Taper ascites cell contains a very reduced number of different mRNA sequences compared to the polysome poly(A+)RNA. By the technique of mRNA:cDNA hybridization we have determined that the free mRNP contains approximately 400 different mRNA sequences while the polysomes contain about 9000 different mRNAs. The free mRNP poly(A+)RNA sequences are present in two abundance classes, the abundant free mRNP class containing 15 different mRNA sequences and the less abundant free mRNP class containing 400 different mRNAs. The polysome poly(A+)RNA consists of three abundance classes of 25, 500 and 8500 different mRNA sequences.Despite its intracellular location in RNP structures not directly involved in protein synthesis the poly(A+)RNA purified from the free RNP of these cells was a very effective template for protein synthesis in cell-free systems. Cell-free translation products of free mRNP and polysome poly(A+)RNAs were analyzed by two-dimensional gel electrophoresis. This analysis confirmed the hybridization result that the free mRNP poly(A+)RNA contained fewer sequences than polysomal poly(A+)RNA. The abundant free RNP-mRNA directed protein products were a subset of the polysome mRNA-directed protein products. The numbers of more abundant products of cell-free protein synthesis directed by the free RNP-mRNA and polysomal mRNA were in general agreement with the hybridization estimates of the number of sequences in the abundant classes of these two mRNA populations.  相似文献   

11.
Polysomes isolated from a susceptible variety of wheat leaves (cultivar W2691) and those inoculated with the wheat stem rust fungus (f. sp. tritici, race 126-ANZ-6, 7) were incubated in a cell-free protein-synthesizing system. Under these conditions, different size classes of polypeptides, ranging in molecular weight from 10,000 to 80,000, are radiolabeled. Using double-isotope labeling technique, we show that some discrete size classes of polypeptides are synthesized in significantly greater quantitites by polysomes from inoculated leaves compared to the corresponding size classes synthesized by polysomes from healthy leaves. These results confirm our previous observation that there are significant changes in the wheat leaf polysomal messenger RNA populations at 3 days after inoculation with the rust fungus.The effects of the organelle-specific inhibitors of protein synthesis, chloramphenicol and lincomycin, on in vitro polysomal messenger RNA translation were investigated. The polypeptides synthesized by polysomes from healthy and inoculated leaves in the presence of chloramphenicol were compared. The results show that, even in the presence of this antibiotic, the polysomes from inoculated leaves synthesize greater quantities of some size classes of polypeptides. These data indicate that changes in polysomal messenger RNA populations involve, at least in part, cytoplasmic messenger RNA.  相似文献   

12.
Sequestration of pea reserve proteins by rough microsomes   总被引:1,自引:1,他引:0       下载免费PDF全文
Free polysomes, polysomes released from membranes, and rough microsomal vesicles isolated from developing cotyledons of Pisum sativum L. cv. Burpeeana were used to direct cell-free protein synthesis in a wheat germ system. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis demonstrated that the polypeptide products had molecular weights ranging from 12,000 to 74,000. Some of the polypeptides migrated during electrophoresis with the same mobility as polypeptides present in legumin and vicilin preparations. By the use of rabbit antibodies raised against pea reserve proteins it was established that polysomes released from membranes and rough microsomes directed the synthesis of polypeptides that were related to reserve proteins whereas free polysomes did not.  相似文献   

13.
The formation and in vitro translational activity of total, free and membrane-bound polysomes from various stages of developing cotyledons of yellow lupin seeds (Lupinus luteus L. cv. Iryd) has been investigated. The early stages of seed formation were characterized by a low level of polysomes that progressively increased. The main features of the cotyledons at the middle phase of development were full expansion growth and the highest amount of polysomes observed in all three poly so me fractions. In The final stages of emhryogenesis. the seed dehydration was accompanied by-gradual loss of all types of polysomes, at which the membrane-attached formations were degraded earlier than the free ones. By means of a wheat germ-derived cell-free system for protein synthesis, a correlation was demonstrated between cotyledon growth, polysome formation and their capacity for protein synthesis in vitro. As compared to the free polysomes, both the total and membrane-bound formations were more active in protein synthesis in vitro. Analysis of the translational products by means of immunoprecipitation and gel electrophoresis followed by fluorography showed that only membrane-bound polysomes produced polypeptides of higher molecular weight, including subunits of a legumin-like protein.  相似文献   

14.
Polysomes prepared from frozen rat brain powder were fractionated by centrifugation in a sucrose gradient. Individual fractions were used to program a reticulocyte lysate in a run-off reaction. The products of cell-free synthesis were assayed for the brain-specific enolase (14.3.2 protein) and S100 protein by immunoprecipitation with specific antisera and for tubulin by two-dimensional electrophoresis in polyacrylamide slab gels. The relative synthesis of these proteins by unfractionated free brain polysomes were 0.1 per cent, 0.05 per cent and 0.7 per cent respectively. After centrifugation in a sucrose gradient polysomes synthesizing S100 protein were separated from those synthesizing the other two markers. There was a threefold enrichment in the specific messenger RNA activity for each of the three proteins studied in their respective peak fractions of polysomes.  相似文献   

15.
A method was developed using sucrose gradients containing acrylamide which greatly simplifies the measurement of the polysomal distribution of messages. After centrifugation, the acrylamide was polymerized, forming a "polysome gel". RNA gel blots of polysome gels were used to determine the polysomal distributions of alpha-tubulin and total polyadenylated mRNA in growing, starved (nongrowing) and starved-deciliated Tetrahymena and the number of messages loaded onto polysomes was calculated. These measurements indicated that the translational efficiencies of alpha-tubulin mRNA and total polyadenylated mRNA are largely unaffected when the rates of tubulin and total protein synthesis vary dramatically. Thus, differential regulation of alpha-tubulin mRNA translation initiation does not contribute to the greater than 100-fold induction of tubulin synthesis observed during cilia regeneration and in growing cells. The major translation-level process regulating tubulin synthesis in Tetrahymena appears to be a change in message loading mediated by a non-specific message recruitment or unmasking factor.  相似文献   

16.
Approximately 10% of the total protein contained in Phaseolus vulgaris L. cv. Greensleeves seeds is composed of the glycoprotein lectin, phytohemagglutinin. We have investigated whether the presence of N-linked oligosaccharide side chains is a prerequisite for the correct intracellular transport of this protein and whether unglycosylated phytohemagglutinin maintains its biological activities. Excised developing cotyledons were incubated in the presence of tunicamycin to prevent glycosylation "in vivo", and the fate of the unglycosylated protein synthesized in such cotyledons determined. It was found that unglycosylated phytohemagglutinin reaches its normal site of accumulation, the protein bodies, and maintains erythro-agglutinating and mitogenic activities.  相似文献   

17.
18.
Abstract: The biosynthesis of brain intermediate filament proteins [neurofilament proteins and glial fibrillary acidic protein (GFA)] was studied with cell-free systems containing either rat spinal cord polysomes (free polysomes or rough microsomes) and rabbit reticulocyte factors or wheat germ homogenate containing spinal cord messenger RNA. The products of translation were isoated by immunoaffinity chromatography and then analyzed by two-dimensional gel electrophoresis (2DGE) followed by fluorography. The free polysome population was found to synthesize two neurofilament proteins (MW 145K, p15.4, and MW 70K, pl 5.3) and three isomers of GFA (α, β, and γ) that differ in isoelectric point. Wheat germ homogenate containing messenger RNA extracted from free cord polysomes synthesized two proteins that comigrated with neurofilament protein standards at 145K 5.4 and 70K 5.3; these proteins were partially purified by neurofilament affinity chromatography. The wheat germ system also synthesized the α, β, and γ isomers of GFA as characterized by immunoaffinity chromatographic purification and comigration with standards in 2DGE analysis. Our data are consistent with the conclusion that synthesis of neurofilament proteins requires multiple messenger RNAs. Also, synthesis of intermediate filament proteins occurs in the free polysome population; detectable amounts of these proteins were not synthcsized by the rough microsomes.  相似文献   

19.
By in vitro translation of mRNA’s isolated from free and membrane-bound polysomes, direct evidence was obtained for the synthesis of two lysosomal hydrolases, β-glucuronidase of the rat preputial gland and cathespin D of mouse spleen, on polysomes bound to rough endoplasmic reticulum (ER) membranes. When the mRNA’s for these two proteins were translated in the presence of microsomal membranes, the in vitro synthesized polypeptides were cotranslationally glycosylated and transferred into the microsomal lumen. Polypeptides synthesized in the absence of microsomal membranes were approximately 2,000 daltons larger than the respective unglycosylated microsomal polypeptides found after short times of labeling in cultured rat liver cells treated with tunicamycin. This strongly suggests that nascent chains of the lysosomal enzymes bear transient amino terminal signals which determine synthesis on bound polysomes and are removed during the cotranslational insertion of the polypeptides into the ER membranes. In the line of cultured rat liver cells used for this work, newly synthesized lysosomal hydrolases showed a dual destination; approximately 60 percent of the microsomal polypeptides detected after short times of labeling were subsequently processed proteolytically to lower molecular weight forms characteristic of the mature enzymes. The remainder was secreted from the cells without further proteolytic processing. As previously observed by other investigations in cultured fibroblasts (A. Gonzalez-Noriega, J.H. Grubbs, V. Talkad, and W.S. Sly, 1980, J Cell Biol. 85: 839-852; A. Hasilik and E.F. Neufeld, 1980, J. Biol. Chem., 255:4937-4945.) the lysosomotropic amine chloroquine prevented the proteolytic maturation of newly synthesized hydrolases and enhanced their section. In addition, unglycosylated hydrolases synthesized in cells treated with tunicamycin were exclusively exported from the cells without undergoing proteolytic processing. These results support the notions that modified sugar residues serve as sorting out signals which address the hydrolases to their lysosomal destination and that final proteolytic cleavage of hydrolase precursors take place within lysosome itself. Structural differences in the carbohydrate chains of intracellular and secreted precursors of cathespin D were detected from their differential sensitivity to digestion with endoglycosidases H and D. These observations suggest that the hydrolases exported into the medium follow the normal secretory route and that some of their oligosaccharides are subject to modifications known to affect many secretory glycoproteins during their passage through the Golgi apparatus.  相似文献   

20.
It has become evident during recent years that a wide variety of proteins are synthesized on membrane-bound polysomes, very many of which are not ultimately secreted from the cell. The majority of proteins appear to go through some form of post-translational modification before the final appearance of an 'active' product, and in some cases the polypeptide chain may be modified before the completed protein molecule is released from the ribosome. This then raises the question concerning the possibility of the organization of the rough endoplasmic reticulum into individual domains, or compartments, each of which may have the responsibility of performing definite and well defined functions. During recent years the behaviour of two subfractions of the rough endoplasmic reticulum in a variety of cell types and under a variety of conditions has been studied in order to gain insight into a possible compartmentation of this organelle. Throughout the studies disruption of cells has been performed by nitrogen cavitation. This technique was chosen in order to provide conditions of homogenization which were extremely reproducible since shearing forces, mechanical damage and the effects of local heating were eliminated. Endoplasmic reticulum (ER) membranes isolated from the post-mitochondrial supernatant have been separated into subfractions by centrifugation on discontinuous sucrose gradients. By virtue of their high density imparted by the association of ribosomes, rough ER (RER) membranes penetrate 1.4 M sucrose accumulating above either 2.0 M sucrose (light rough -LR membranes) or a cushion of 2.3 M sucrose (heavy rough -HR membranes). Smooth (S) membranes, which are virtually devoid of ribosomes, collect above 1.4 M sucrose. The HR, LR and S subfractions in MPC-11 cells differ in a number of respects: RNA/protein and RNA/phospholipid ratios, polysome profiles and marker enzymes. When cells were homogenized in buffer containing 25 mM KCl then all three ER subfractions were observed, however, when the buffer contained 100 mM KCl then only the LR and S subfractions were observed in gradients, radioactivity equivalent to that in the HR fraction was not recovered in the other two subfractions. Four times as many light chain immunoglobulin polypeptides were found associated with polysomes of HR membranes compared to LR membranes. The nuclear associated ER (NER), though very active in protein synthesis, was only 20% as active in the synthesis of light chain as the combined LR/HR fraction. Studies with MPC-11 cells showed that the relative amounts of the three ER subfractions were related to the phase of the cell cycle.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号