首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Intact phytoplankton and microzooplankton communities from eutrophicStar Lake were incubated for 4 days with and without Daphniapulex, Daphnia galeaia mendotae, or a natural assemblage ofDaphnia species. They were sampled at the onset and terminationof the experiment for bacterial, phytoplankton, ciliate, rotifer,copepod and cladoceran densities. The cladocerans had variedeffects on the rotifers, ranging from significant suppressionof most rotifer species (Keratella cochlearis, Polyarthra remata,Keratella crassa) in the D.pulex jars, to the suppression ofone (K.crassa) or no species in the D.galeata mendotae and StarLake Daphnia assemblage jars, respectively. Small ciliates (<30µm, longest dimension), such as Strobilidium sp. and Pseudo-cyclidiumsp., were adversely affected by most of the cladoceran treatments,while several larger ciliates (>81 µm) were unaffectedin all such treatments. Ciliates were not consistently morevulnerable to cladoceran suppression than similarly sized rotifers.The suppression of ciliates and rotifers was attributable toboth direct effects (predation, interference, or both) and indirecteffects (e.g. resource competition) of the cladocerans. 1Present address: Department of Biology, University of Louisville,Louisville, KY 40292, USA  相似文献   

2.
1. We investigated the potential competition and feeding impact of the common rotifer species, Keratella cochlearis and K. quadrata , on the abundant prostomatid ciliates, Urotricha furcata and Balanion planctonicum, in laboratory batch culture experiments. All four species have similar feeding preferences, co-occur in many freshwater environments, and are thus potential competitors for the same algal food.
2. Two small Cryptomonas species served as food for the ciliates and the rotifers in the experiments. Growth rates of each ciliate species were measured when they grew alone and when they were paired with one of the rotifer species.
3. Both rotifer species reduced the growth rate of U. furcata , probably primarily by direct feeding on the ciliates. Growth rate of B. planctonicum was unaffected by K. cochlearis , but was drastically reduced by grazing and/or mechanical interference of K. quadrata .
4. These results suggest niche partitioning of the sympatric ciliates with respect to their rotifer competitors/predators.  相似文献   

3.
SUMMARY. 1. Even at high population densities (300–2000 ind. 1−1), only one of five small cladoceran species (adult body length <1 mm) significantly suppressed population growth of the rotifer Keratella cochlearis through interference (encounter) competition. At 500 ind. H, adults of D. ambigua (0.96 mm body length) imposed an instantaneous per capita death rate of 0.21 day−1 on this rotifer. These short-term experiments may have underestimated cladoceran interference because newborn rotifers were rarely present.
2. Newborn rotifers (<12 h old) were much more susceptible than adult rotifers (> 24 h old) to interference from Ceriodaphnia dubia. All of the small cladoceran species tested were very much less likely than large Daphnia (body lengths >1.2 mm) to interfere with K. cochlearis , but perhaps at high population densities they could suppress population growth of susceptible rotifer species by damaging, and possibly eating, relatively small and soft-bodied newborn individuals.
3. K. cochlearis of the tecta form, without a posterior spine, produced offspring of the typica form, with a posterior spine, in the presence of C. dubia. This developmental response is stimulated by at least several, and possibly all, cladocerans and probably reduces the susceptibility of the rotifer to cladoceran interference.  相似文献   

4.
Summary Field distribution patterns and laboratory feeding experiments have suggested that blooms of colonial blue-green algae strongly inhibit relatively large-bodied daphnid cladocerans. We conducted laboratory experiments to test the hypothesis that blooms of the colonial blue-green alga Microcystis aeruginosa would shift competitive dominance away from large-bodied daphnid cladocerans toward smaller-bodied cladocerans, copepods, and rotifers. In laboratory competition experiments, increasing the proportion of M. aeruginosa in the algal food supply resulted in a shift from dominance by the relatively largebodied cladoceran Daphnia ambigua to dominace by the copepod Diaptomus reighardi. The small-bodied cladoceran Bosmina longirostris was always numerically heavily dominant over D. ambigua, but its estimated population biomasses were only slightly higher than those of D. ambigua. Daphnia ambigua consistently outcompeted the rotifer Brachionus calyciflorus. Our results demonstrate that blooms of M. aeruginosa can alter zooplankton competitive relations in laboratory experiments, favoring small-bodied cladocerans and copepods at the expense of large-bodied cladocerans. However, contrary to predictions, blooms of M. aeruginosa did not improve the competitive ability of rotifers.  相似文献   

5.
Competition between rotifers and cladocerans of different body sizes   总被引:7,自引:0,他引:7  
Summary We conducted laboratory experiments to test the hypothesis that rotifers could coexist with small (<1.2 mm) but not large (>1.2 mm) cladocerans. Keratella cochlearis was excluded in <8 days by the large cladocerans Daphnia pulex and D. magna, probably through both interference and exploitative competition. On the other hand, K. cochlearis persisted for 8 weeks with two small cladocerans (Bosmina longirostris and Ceriodaphnia dubia) and excluded a third small cladoceran (D. ambigua). Similarly, Synchaeta oblonga coexisted with B. longirostris for >7 weeks, and K. testudo coexisted with D. ambigua for >4 weeks. Coexistence of small cladocerans and rotifers was always accompanied by suppression of one or both populations, probably primarily if not exclusively by exploitative competition for limiting food resources. These results indicate that the competitive dominance of cladocerans over rotifers decreases markedly with cladoceran body size and that factors other than body size may determine the competitive outcome between rotifers and small cladocerans. Our study provides a mechanistic explanation for a commonly observed pattern in natural zooplankton communities: planktonic rotifers often are abundant when only small cladocerans occur but typically are rare when large cladocerans are present.  相似文献   

6.
Iyer  Nandini  Ramakrishna Rao  T. 《Hydrobiologia》1993,255(1):325-332
Using population densities and growth rates as criteria, we studied interactions between the epizoic rotifer Brachionus rubens and each of three cladoceran species differing in size and reproductive rates — Daphnia carinata, Moina macrocopa and Ceriodaphnia rigaudi. In all mixed — species experiments, B. rubens existed in both the epizoic mode, attached to the cladoceran host, and in the free-swimming mode. Rotifer population growth rates were significantly depressed in the presence of M. macrocopa, presumably as a consequence of exploitative and interference competition. The largest cladoceran, D. carinata probably did not suppress B. rubens, because the epizoic component of the rotifer population escaped from the deleterious effects of mechanical interference. Peak population numbers and initial population growth rates reached by all three cladocerans were lower in the presence of B. rubens, probably because of the adverse effects of the epizoic infestation, which was maximal on D. carinata and least on C. rigaudi. In mixed-species cultures of D. carinata and M. macrocopa, the presence of B. rubens helped D. carinata coexist with M. macrocopa, which otherwise would have suppressed the Daphnia.  相似文献   

7.
  • 1 Laboratory experiments compared the susceptibilities of six ciliates and the rotifer Keratella cochlearis to predation and interference from Daphnia pulex and Bosmina longirostris.
  • 2 Susceptibilities of the ciliates to D. pulex were similar to or less than that of the rotifer, and decreased with increasing ciliate size. Most ciliates were just as susceptible to B. longirostris as to the much larger D. pulex. The jumping response of the oligotrich Strobilidium gyrans appeared to be an effective defence against B. longirostris.
  • 3 Clearance rates of B. longirostris and D. pulex on different ciliate species at a density of 1,3 ciliates ml?1 ranged from 1–30 to 5–24ml ind.?1 day?1, respectively. In natural plankton communities, cladocerans could impose high mortality rates on ciliates and shift the size structure of ciliate assemblages towards larger and less susceptible species.
  相似文献   

8.
SUMMARY. 1. Population growth rates and relative competitive abilities of the rotifer Keratella cochlearis f. tecta and the small-bodied cladoceran Daphnia ambigua were studied under different schedules of food addition but equal total food quantity (per 4-day interval). The initial population growth rate of Keratella was significantly affected by the feeding schedule and by the presence of competitors, while that of Daphnia was affected by neither factor. Population densities of both species tended to increase as the frequency of food addition increased.
2. Daphnia suppressed and excluded Keratella from mixed-species cultures when food was provided intermittently at a high concentration, but it failed to exclude the rotifer when food was provided in a near-continuous supply at low concentration. Keratella had only a minor suppressive effect on Daphnia in all mixed-species treatments.
3. Starvation experiments indicate that Daphnia is able to withstand food shortages for significantly longer periods of time than Keratella . These and other results indicate that the outcome of interspecific competition between these species may be influenced by me frequency and concentration at which food is supplied. Daphnia ambigua is competitively superior to K. cochlearis when food is concentrated or 'pulsed', but much less so when ambient food levels are chronically low. Patterns of food availability may have important effects in determining the relative abundance of rotifers and small cladocerans in natural zooplankton communities.  相似文献   

9.
Arndt  Hartmut 《Hydrobiologia》1993,255(1):231-246
Recent investigations have shown that processes within the planktonic microbial web are of great significance for the functioning of limnetic ecosystems. However, the general importance of protozoans and bacteria as food sources for rotifers, a major component of planktonic habitats, has seldom been evaluated. Results of feeding experiments and the analysis of the food size spectrum of rotifers suggest that larger bacteria, heterotrophic flagellates and small ciliates should be a common part of the food of most rotifer species. About 10–40 per cent of rotifers' food can consist of heterotrophic organisms of the microbial web. Field experiments have indicated that rotifer grazing should generally play a minor role in bacteria consumption compared to feeding by coexisting protozoans. However, according to recent experiments regarding food selection, rotifers should be efficient predators on protozoans. Laboratory experiments have revealed that even nanophagous rotifers can feed on ciliates. Preliminary microcosm and chemostat experiments have indicated that rotifers, due to their relatively low community grazing rates compared to the growth rates of bacteria and protozoans, should generally not be able (in contrast to some cladocerans) to suppress the microbial web via grazing, though they may structure it. Filter-feeding nanophagous rotifers (e.g. brachionids) seem to be significant feeders on the smaller organisms of the microbial web (bacteria, flagellates, small ciliates), whereas grasping species (e.g. synchaetids and asplanchnids) seem to be efficient predators on larger organisms (esp. ciliates). Another important role of rotifers is their feedback effect on the microbial web. Rotifers provide degraded algae, bacteria and protozoans to the microbial web and may promote microbial activity. Additional experimental work is necessary for a better understanding of the function of rotifers in aquatic ecosystems.  相似文献   

10.
We investigated the potential impact of four isolates of smallciliates of the genus Urotricha on the common rotifer speciesKeratella cochlearis and Keratella quadrata in laboratory batchculture experiments. Two small Cryptomonas species served asfood for the ciliates and the rotifers in the experiments. Populationgrowth rates of the rotifers were measured when they grew aloneand when they were paired with one of their potential ciliatecompetitors. Growth rates of K. cochlearis were enhanced andtheir mortality rates reduced in the presence of Urotricha furcata,most likely because the rotifers preyed upon the ciliates. Thelarger rotifer species, K. quadrata, also feeds upon small Urotricha,yet their population growth rates were negatively affected byUrotricha. This was because the mortality rate of K. quadrataincreased in the presence of all three isolates of U. furcataand the one isolate of Urotricha farcta. It needs to be investigatedwhether this effect is chemically mediated and ecologicallyrelevant.  相似文献   

11.
In the shallow and eutrophic subtropical aquatic ecosystems, which it generally inhabits, the omnivorous copepod Mesocyclops thermocyclopoides encounters a wide variety of animal prey types including ciliates, rotifers, and cladocerans. We studied prey selectivity in laboratory-reared adult females of this species given a choice of (i) prey types belonging to different taxa (ciliates, rotifers, cladocerans, and cyclopoid nauplii), and (ii) different prey species within a taxonomic group differing in body size, morphology or behaviour. We also tested the effect of different proportions of prey species on its selectivity. Prey type proportion had no significant effect on selectivity of the copepod, nor was there any evidence of switching based on the relative abundance of prey. Among the ciliate prey species tested, the largest species, Stylonychia mytilus was positively selected regardless of its relative abundance, while the smallest, S. notophora was selected only when its density was higher. Offered a choice of three species of a brachionid rotifer differing in size, the copepod selected the largest of them, Brachionus calyciflorus, and avoided the smallest B. angularis. The evasive rotifer Hexarthra mira was also avoided. When prey choice included three cladoceran species Daphnia similoides, Moina macrocopa and Ceriodaphnia cornuta, the copepod selected the intermediate-sized M. macrocopa regardless of the abundance of the other two species. Although it fed on Mesocyclops nauplii when there was no choice, M. thermocyclopoides avoided them when alternative food was available. In a multispecies prey choice test, the copepod selected predominantly the rotifer B. calyciflorus and the cladoceran M. macrocopa. We suggest that the prey selectivity patterns shown by M. thermocyclopoides are adaptive in that they lead to ingestion of the most profitable prey.  相似文献   

12.
The ontogenetic diet shifts and age specific ability of the two cladoceran species Moina macrocopa and Ceriodaphnia cornuta to derive energy from ciliated protists have been investigated in laboratory. The postembryonic developmental rates and life table demography (longevity, age and size at first reproduction, fecundity and intrinsic rate of natural increase) of the cladocerans have been elucidated on algae (Chlorella vulgaris) and the ciliated protists (Tetrahymena pyriformis, Colpoda (c.f.) steini) as food. For either of the cladoceran, the somatic growth rate and average body size at first reproduction were higher with algal diet. During initial stages of development (0–5 days), either cladoceran realized higher rate of somatic growth on algal diet, subsequently ciliated protists supported significantly higher growth rate than the alga. Algal and ciliate diets did not differ in maximum body size (C. cornuta: 539–554 μm; M. macrocopa: 1274.8–1309 μm) reached by either of the cladocerans. The maximum body sizes were larger than size at first reproduction with either of the ciliated protists, however, with algal diet the maximum body sizes did not differ from the size at first reproduction in each case. In case of C. cornuta the generation time (20.5 ± 0.3 days on ciliate; 15.6 ± 0.17 days on algal diet), reproductive rates (net reproductive rate: 20.05 ± 3.2 on ciliate; 15.5 ± 1.2 on algal diet), and average life expectancy at hatching (27 ± 0.8 days on ciliate; 22.7 ± 0.71 days on alga) were higher, whereas the size at first reproduction (482 μm on ciliate; 521 μm on alga) was smaller with the ciliate than with an algal diet. The algal and the ciliate diets did not differ in survival (life expectancy at hatching: 9.2 ± 0.7 days) and fecundity (NRR: 23.6 ± 2.4) for M. macrocopa. The two ciliates used in the experiment did not differ in their performance as food source for either cladoceran species. Our results suggest that both the cladoceran species are able to utilize smaller ciliate (e.g., T. pyriformis, C. (c.f.) steini) as food; however with differential ability to derive energy from the ciliate diet and this ability is size and age structured in both cases. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Fradkin  Steven C. 《Hydrobiologia》1995,313(1):387-393
I examined the effects of a graded density of the large-bodied cladoceran Daphnia pulicaria upon a natural rotifer assemblage to assess the relative magnitudes of interference and exploitative competition. An in situ, 5-day, bag-enclosure experiment was conducted to test the hypothesis that populations of the rotifers Anuraeopsis spp., Keratella cochlearis typica and Polyarthra spp. are differentially suppressed by interference competition. Rotifer density decreases and observed vs. expected mortality rates for all three rotifer taxa were consistent with the hypothesis of suppression via interference competition. Evidence of exploitative effects were also apparent, though interference effects appeared more important at higher cladoceran densities.  相似文献   

14.
Effects of micrometazoa on the protistan assemblage of a littoral food web   总被引:3,自引:0,他引:3  
SUMMARY. 1. Effects of two size-classes of micrometazoa (assemblages of rotifers and of rotifers/cladocerans/copepods) on the abundance and composition of a co-occurring, substrate-associated protistan assemblage were assessed by selectively transferring these groups from a small pond to laboratory microcosms.
2. Addition of micrometazoa to the microcosms resulted in significant changes in the dominance of different protistan groups within 7 days, including a substantial decrease in the abundance of larger omnivorous and bactivorous Protozoa, mostly ciliates, and dominant algal taxa, and an increase in the abundance of heterotrophic microflagellates.
3. Mechanisms whereby micrometazoa reduce the abundance of larger heterotrophic protists may include competition for overlapping resources, but probably involves interference and predation as well. Positive effects of Metazoa on the abundance of heterotrophic microflagellates may result from the elimination of ciliates that prey on and compete with smaller Protozoa.
4. Interactions indicated in this study may alter both quantitative and qualitative aspects of energy flow and mineral cycling in benthic food-webs and be part of a larger trophic cascade involving other Metazoa such as fish.  相似文献   

15.
SUMMARY 1. The nutritional value of the bacterivorous ciliate Tetrahymena pyriformis and the algivorous ciliate Coleps sp., as well as the heterotrophic flagellate Chilomonas paramecium and the autotrophic flagellate Cryptomonas ovata , were investigated in population growth experiments using the rotifer B. calyciflorus . The two ciliates, both flagellates, which were of similar size, shape and mobility, were each offered as a sole diet and as a supplement to the alga Monoraphidium minutum , known to support reproduction of B. calyciflorus .
2. To further test nutritional differences between the prey organisms, prey selection experiments were conducted in which B. calyciflorus was able to select between the bacterivorous and algivorous ciliate, and between the heterotrophic and autotrophic flagellate.
3. The results demonstrated that both ciliates and the heterotrophic flagellate were not sufficient to support reproduction of B. calyciflorus when offered as a sole diet. They were, however, a good supplement to algal prey (except for the bacterivorous ciliate T. pyriformis ). In the prey selection experiments, B. calyciflorus positively selected for the algivorous Coleps sp. and the autotrophic C. ovata.
4. Overall, ciliates and heterotrophic flagellates may enhance survival of B. calyciflorus , but reproduction of the rotifer is likely to rely on algal prey. Both higher population growth of B. calyciflorus when fed the algivorous Coleps and the autotrophic Cryptomonas, along with their positive selection, give evidence for prey specific differences in nutrition, with algivorous or autotrophic prey species tending to be of higher nutritional value.  相似文献   

16.
The ability of cladocerans and rotifers to utilise the cyanobacterium Microcystis aeruginosa was tested by comparing the somatic and population growth in cultures using Chlorella and Microcystis as food types. Five species of cladocerans (Ceriodaphnia cornuta, Scapholeberis kingi, Moina macrocopa, Daphnia carinata, Simocephalus vetulus) and two species of rotifers (Brachionus calyciflorus, Hexarthra mira) were used in this study. In order to exclude the possibility of poor utilisation of Microcystis due to mechanical interference, single cells of Microcystis, (obtained by sonicating large colonies) were also offered. Experiments were done at 20 °Cs and 30 °C . In all the treatments tested, the population growth rate per day of the cladocerans ranged from -0.715 to 0.612 and that of the rotifers from -1.15 to 0.781. While C. cornuta, S. kingi and S. vetulus could utilise Microcystis, M. macrocopa and D. carinata were extremely susceptible to its toxins. The ability of the cladoceran populations to grow on Microcystis single cells was not related to the body length or gut length alone but to their ratio. The toxic effects of Microcystis were mitigated at the higher temperature. A strain of C. cornuta, collected from a Microcystis-dominated lake, had a higher growth rate on the toxic cyanobacteria suggesting that the tolerance to Microcystis could be a heritable trait. Of the two rotifer species, only H. mira survived and reproduced in some treatments of Microcystis. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Daily and annual production rates of eight cladoceran and two rotifer species, and their seasonal variation and trophic role in the large, turbid, tropical Lake Tana, Ethiopia, were assessed in 2003–2005. Laboratory cultures were used to infer cladoceran development times, and secondary production was estimated using the growth increment summation and recruitment methods. Production for both taxa was highest in October–November, after the rainy season, and lowest in January–April during the dry season. Cladocerans and rotifers comprised 24% of the metazoan zooplankton biomass of 45.1 mg DW m?3, but comprised 53% of its production. Daily production for cladocerans and rotifers, respectively, was 1.23 and 0.94 mg DW m?3 d?1, and annual production was 447.9 and 353.5 mg DW m?3 y?1. Energy transfer efficiency from producers to zooplankton was 1.3% and 4.4% from zooplankton to planktivores. Herbivores consumed 3.4% of primary production and planktivores 36% of zooplankton production. High biomass turnover rates of cladocerans and rotifers sustain planktivores and, after a month's delay, decomposed Microcystis provides their main food source during the pre- and post-rainy months in Lake Tana.  相似文献   

18.
Competition experiments showed that the small cladoceran Scapholeberis kingi rapidly excluded the rotifer Synchaeta oblonga from mixed-species cultures, but was itself unaffected by the presence of S. oblonga. Short-term experiments testing the effect of S. kingi on the survivorship and reproduction of S. oblonga showed that the former imposed a high mortality on the latter, even though shared food resources were abundant. These results indicate that adult S. kingi mechanically interferes with S. oblonga either by ingesting, or by rejecting in a damaged condition, individuals swept into its branchial chamber. In contrast to many other small species of cladocerans, and like large species of Daphnia, S. kingi has the potential to markedly suppress populations of some rotifer species through a combination of interference and exploitative competition.  相似文献   

19.
Competition among cladocerans and rotifers is of considerable interest not only due to their close similarity in life history strategies, but also due to the considerable overlap they exhibit in their feeding habits. In tropical waterbodies, several genera of cladocerans, including Ceriodaphnia and Moina occur, simultaneously with rotifers. We tested over a period of 3 weeks the combined effects of food (0.5×106 and 1.5×106 cells ml–1 of Chlorella) level and rotifer density on the competition between B. patulus and C. dubia and M. macrocopa using population growth experiments. For each cladoceran species we used 30 test jars of 50 ml capacity. The initial density of cladocerans was 0.2 ind ml–1, while for B. patulus it was either 1 ind ml–1 or 5 ind ml–1. Neither the maximal population density nor the rate of population increase (r) of C. dubia was significantly affected by B. patulus. However, for M. macrocopa, both these variables were negatively affected by the rotifers. The combined effects of low food level and high initial density of B. patulus resulted in a 50% reduction in the peak population density of M. macrocopa. The population growth of B. patulus was negatively influenced by the presence of C. dubia and M. macrocopa. The results of the competition experiments conducted in the present study between cladocerans and rotifers suggest the existence of a more complex and delicate interaction than is generally thought.  相似文献   

20.
1. Benthic organisms can have a strong effect on the plankton in rivers, although normally only members of the macrofauna are considered as important consumers. In the present study we conducted experiments on four different dates (in December, March, June and September) to assess the potential role of periphytic heterotrophic flagellates (HF), ciliates and rotifers in the control of potamoplankton (bacteria, algae, HF and ciliates). 2. Natural periphyton was established on the walls of circular flow channels by exposing them to river water (River Rhine, Germany). The experimental channels (with periphyton) and control channels (without periphyton) were filled with riverine water and the increase rates of planktonic bacteria, algae, HF and oligotrich ciliates were determined for the two treatments. 3. The abundance of periphytic ciliates and rotifers at the beginning of the four experiments showed large differences with low values in December and March, and high values in June and September. Dominant potential consumers of plankton were the heterotrich ciliate Stentor sp. and bdelloid rotifers. 4. The rates of increase of planktonic algae, HF and ciliates were significantly smaller in the presence of periphyton compared with those in their absence. Significant interactions between the treatment (with and without periphyton) and the time of experiment were found for the planktonic HF and algae, indicating that the impact of the periphyton varied temporarily. The planktonic groups responded differently to the periphyton with the planktonic HF showing the highest loss rate. Significant differences were also found among the loss rates of different HF groups and different diatom size classes. 5. These laboratory experiments demonstrate that periphytic ciliates and rotifers are potentially important consumers of different planktonic groups. The quantitative impact of periphyton on plankton with respect to the selective feeding needs further attention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号