首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Mutants of E. coli, completely devoid of nitrite reductase activity with glucose or formate as donor were studied. Biochemical analysis indicates that they are simultaneously affected in nitrate reductase, nitrite reductase, fumarate reductase and hydrogenase activities as well as in cytochrome c552 biosynthesis. The use of an antiserum specific for nitrate reductase shows that the nitrate reductase protein is probably missing. A single mutation is responsible for this phenotype: the gene affected, nir R, is located close to tyr R i.e. at 29 min on the chromosomal map.Abbreviations BV Benzyl-Viologen - NTG N-methyl-N-nitro-N-nitrosoguanidine - NR nitrate reductase - NIR nitrite reductase - FR fumarate reductase - HYD hydrogenase - CYT c552 cytochrome c552  相似文献   

2.
Neisseria gonorrhoeae is a microaerophile that, when oxygen availability is limited, supplements aerobic respiration with a truncated denitrification pathway, nitrite reduction to nitrous oxide. We demonstrate that the cccA gene of Neisseria gonorrhoeae strain F62 (accession number NG0292) is expressed, but the product, cytochrome c2, accumulates to only low levels. Nevertheless, a cccA mutant reduced nitrite at about half the rate of the parent strain. We previously reported that cytochromes c4 and c5 transfer electrons to cytochrome oxidase cbb3 by two independent pathways and that the CcoP subunit of cytochrome oxidase cbb3 transfers electrons to nitrite. We show that mutants defective in either cytochrome c4 or c5 also reduce nitrite more slowly than the parent. By combining mutations in cccAc2), cycAc4), cycBc5), and ccoP (ccoP-C368A), we demonstrate that cytochrome c2 is required for electron transfer from cytochrome c4 via the third heme group of CcoP to the nitrite reductase, AniA, and that cytochrome c5 transfers electrons to nitrite reductase by an independent pathway. We propose that cytochrome c2 forms a complex with cytochrome oxidase. If so, the redox state of cytochrome c2 might regulate electron transfer to nitrite or oxygen. However, our data are more consistent with a mechanism in which cytochrome c2 and the CcoQ subunit of cytochrome oxidase form alternative complexes that preferentially catalyze nitrite and oxygen reduction, respectively. Comparison with the much simpler electron transfer pathway for nitrite reduction in the meningococcus provides fascinating insights into niche adaptation within the pathogenic neisseriae.  相似文献   

3.
Exposure of aerobically-grown wild-type cells of Paracoccus denitrificans to a decreased aeration caused parallel increases in both PMS/ascorbate and succinate-linked activities of nitrite reductase. By contrast, the expression of the succinate-linked activity was considerably delayed in an insertion mutant specifically lacking the periplasmic 15 kDa cytochrome c-550. In this case the observed activity followed very closely the content of a 40 kDa cytochrome c. A subcellular fraction enriched in a haemoprotein of a similar apparent molecular weight showed the activity of cytochrome c peroxidase and was able to restore the antimycin-sensitive electron transport from membrane vesicles to nitrite reductase. It is concluded that P. denitrificans possesses an alternative nitrite-reducing pathway involving the 40 kDa cytochrome c instead of cytochrome c-550. This pathway branches from the respiratory chain after the cytochrome bc 1 segment.Abbreviations PAGE polyacrylamide gel electrophoresis - PMS phenazine methosulphate  相似文献   

4.
Mutants with defective respiratory nitrite utilization (Nir- phenotype) were obtained by transposon Tn5 insertion into genomic DNA of the ZoBell strain of Pseudomonas stutzeri. Three representative mutants were characterized with respect to their activities of nitrite and nitric oxide reduction, cytochrome cd 1 content, and pattern of soluble c-type cytochromes. Mutant strain MK201 over-produced cytochrome c 552 about fourfold by comparison with the wild type, but possessed an in vitro functional cytochrome cd 1. Mutant strain MK202 lacked cytochrome cd 1 and, simultaneously, had low amounts of cytochrome c 552 and the split -peak c-type cytochrome. Strain MK203 synthesized nitrite reductase defective in the heme d 1 prosthetic group. Irrespective of these biochemically distinct Nir- phenotypes, all mutants preserved the nitric oxidereducing capability of the wild type. The mutant characteristics demonstrate that cytochrome cd 1 is essential for nitrite respiration of P. stutzeri and establish the presence of a nitric oxide-reducing system distinct from cytochrome cd 1. They also indicate the functional or regulatory interdependence of c-type cytochromes.  相似文献   

5.
The reactivity of cytochromesc derived from various organisms withPseudomonas aeruginosa nitrite reductase and cow cytochrome oxidase has been studied.Generally, cytochromesc isolated from primitive organisms react very rapidly with the bacterial nitrite reductase but do not react with cow cytochrome oxidase while those from higher organisms react poorly with the nitrite reductase but react very rapidly with the animal oxidase. The reactivity of cytochromec with the bacterial nitrite reductase reflects very well the evolutionary position of the organism from which it is isolated, while that with cow cytochrome oxidase seems to be related to the extent of adaptation of the parent organism to molecular oxygen. The results obtained in the present investigation suggests that cytochromec molecule which reacts very rapidly with the bacterial nitrite reductase but does not react with cow cytochrome oxidase has evolved to that which reacts very poorly with the nitrite reductuase but reacts very rapidly with the animal oxidase. It is also inferred that the evolution of cytochromec molecule may be caused by the evolution of cytochrome oxidase, and that the latter may be intimately related to genesis of molecular oxygen in the biosphere.Special Symposium on Photochemistry and the Origins of Life, Sixth International Congress on Photobiology, Bochum, Germany.  相似文献   

6.
Cytochrome c552 is the terminal component of the formate-dependent nitrite reduction pathway of Escherichia coli. In addition to four ‘typical’ haem-binding motifs, CXXCH-, characteristic of c-type cytochromes, the N-terminal region of NrfA includes a motif, CWSCK. Peptides generated by digesting the cytochrome from wild-type bacteria with cyanogen bromide followed by trypsin were analysed by on-line HPLC MS/MS in parent scanning mode. A strong signal at mass 619, corresponding to haem, was generated by fragmentation of a peptide of mass 1312 that included the sequence CWSCK. Neither this signal nor the haem-containing peptide of mass 1312 was detected in parallel experiments with cytochrome that had been purified from a transformant unable to synthesize NrfE, NrfF and NrfG: this is consistent with our previous report that NrfE and NrfG (but not NrfF) are essential for formate-dependent nitrite reduction. Redox titrations clearly revealed the presence of high and low mid-point potential redox centres. The best fit to the experimental data is for three n = 1 components with mid-point redox potentials (pH 7.0) of +45 mV (21% of the total absorbance change), ?90 mV (36% of the total) and ?210 mV (43% of the total). Plasmids in which the lysine codon of the cysteine–lysine motif, AAA, was changed to the histidine codon CAT (to create a fifth ‘typical’ haem c-binding motif), or to the isoleucine and leucine codons, ATT and CTT, were unable to transform a Nrf? deletion mutant to Nrf+ or to restore formate-dependent nitrite reduction to the transformants. The presence of a 50 kDa periplasmic c-type cytochrome was confirmed by staining proteins separated by SDS–PAGE for covalently bound haem, but the methyl-viologen-dependent nitrite reductase activities associated with the mutated proteins, although still detectable, were far lower than that of the native protein. The combined data establish not only that there is a haem group bound covalently to the cysteine–lysine motif of cytochrome c552 but also that one or more products of the last three genes of the nrf operon are essential for the haem ligation to this motif.  相似文献   

7.
Cytochrome a 1 c 1 was highly purified from Nitrobacter agilis. The cytochrome contained heme a and heme c of equimolar amount, and its reduced form showed absorption peaks at 587, 550, 521, 434 and 416 nm. Molecular weight per heme a of the cytochrome was estimated to be approx. 100,000–130,000 from the amino acid composition. A similar value was obtained by determining the protein content per heme a. The cytochrome molecule was composed of three subunits with molecular weights of 55,000, 29,000 and 19,000, respectively. The 29 kd subunit had heme c.Hemes a and c of cytochrome a 1 c 1 were reduced on addition of nitrite, and the reduced cytochrome was hardly autoxidizable. Exogenously added horse heart cytochrome c was reduced by nitrite in the presence of cytochrome a 1 c 1; K m values of cytochrome a 1 c 1 for nitrite and N. agilis cytochrome c were 0.5 mM and and 6 M, respectively. V max was 1.7 mol ferricytochrome c reduced/min·mol of cytochrome a 1 c 1 The pH optimum of the reaction was about 8. The nitrite-cytochrome c reduction catalyzed by cytochrome a 1 c 1 was 61% and 88% inhibited by 44M azide and cyanide, respectively. In the presence of 4.4 mM nitrate, the reaction was 89% inhibited. The nitrite-cytochrome c reduction catalysed by cytochrome a 1 c 1 was 2.5-fold stimulated by 4.5 mM manganous chloride. An activating factor which was present in the crude enzyme preparation stimulated the reaction by 2.8-fold, and presence of both the factor and manganous ion activated the reaction by 7-fold.Cytochrome a 1 c 1 showed also cytochrome c-nitrate reductase activity. The pH optimum of the reaction was about 6. The nitrate reductase activity was also stimulated by manganous ions and the activating factor.  相似文献   

8.
Members of the multihaem cytochrome c family such as pentahaem cytochrome c nitrite reductase (NrfA) or octahaem hydroxylamine oxidoreductase (Hao) are involved in various microbial respiratory electron transport chains. Some members of the Hao subfamily, here called εHao proteins, have been predicted from the genomes of nitrate/nitrite‐ammonifying bacteria that usually lack NrfA. Here, εHao proteins from the host‐associated Epsilonproteobacteria Campylobacter fetus and Campylobacter curvus and the deep‐sea hydrothermal vent bacteria Caminibacter mediatlanticus and Nautilia profundicola were purified as εHao‐maltose binding protein fusions produced in Wolinella succinogenes. All four proteins were able to catalyze reduction of nitrite (yielding ammonium) and hydroxylamine whereas hydroxylamine oxidation was negligible. The introduction of a tyrosine residue at a position known to cause covalent trimerization of Hao proteins did neither stimulate hydroxylamine oxidation nor generate the Hao‐typical absorbance maximum at 460 nm. In most cases, the εHao‐encoding gene haoA was situated downstream of haoC, which predicts a tetrahaem cytochrome c of the NapC/NrfH family. This suggested the formation of a membrane‐bound HaoCA assembly reminiscent of the menaquinol‐oxidizing NrfHA complex. The results indicate that εHao proteins form a subfamily of ammonifying cytochrome c nitrite reductases that represents a ‘missing link’ in the evolution of NrfA and Hao enzymes.  相似文献   

9.
Respiratory nitrite reductase (NIR) has been purified from the soluble extract of denitrifying cells of Alcaligenes eutrophus strain H16 to apparent electrophoretic homogeneity. The enzyme was induced under anoxic conditions in the presence of nitrite. Purified NIR showed typical features of a cytochrome cd 1-type nitrite reductase. It appeared to be a dimer of 60 kDa subunits, its activity was only weakly inhibited by the copper chelator diethyldithiocarbamate, and spectral analysis revealed absorption maxima which were characteristic for the presence of heme c and heme d 1. The isoelectric point of 8.6 was considerably higher than the pI determined for cd 1 nitrite reductases from pseudomonads. Eighteen amino acids at the N-terminus of the A. eutrophus NIR, obtained by protein sequencing, showed no significant homology to the N-terminal region of nitrite reductases from Pseudomonas stutzeri and Pseudomonas aeruginosa.  相似文献   

10.
Melanie Kern 《BBA》2009,1787(6):646-656
Recent phylogenetic analyses have established that the Epsilonproteobacteria form a globally ubiquitous group of ecologically significant organisms that comprises a diverse range of free-living bacteria as well as host-associated organisms like Wolinella succinogenes and pathogenic Campylobacter and Helicobacter species. Many Epsilonproteobacteria reduce nitrate and nitrite and perform either respiratory nitrate ammonification or denitrification. The inventory of epsilonproteobacterial genomes from 21 different species was analysed with respect to key enzymes involved in respiratory nitrogen metabolism. Most ammonifying Epsilonproteobacteria employ two enzymic electron transport systems named Nap (periplasmic nitrate reductase) and Nrf (periplasmic cytochrome c nitrite reductase). The current knowledge on the architecture and function of the corresponding proton motive force-generating respiratory chains using low-potential electron donors are reviewed in this article and the role of membrane-bound quinone/quinol-reactive proteins (NapH and NrfH) that are representative of widespread bacterial electron transport modules is highlighted. Notably, all Epsilonproteobacteria lack a napC gene in their nap gene clusters. Possible roles of the Nap and Nrf systems in anabolism and nitrosative stress defence are also discussed. Free-living denitrifying Epsilonproteobacteria lack the Nrf system but encode cytochrome cd1 nitrite reductase, at least one nitric oxide reductase and a characteristic cytochrome c nitrous oxide reductase system (cNosZ). Interestingly, cNosZ is also found in some ammonifying Epsilonproteobacteria and enables nitrous oxide respiration in W. succinogenes.  相似文献   

11.
Respiratory reduction of nitrate and nitrite is encoded in Thermus thermophilus by the respective transferable gene clusters. Nitrate is reduced by a heterotetrameric nitrate reductase (Nar) encoded along transporters and regulatory signal transduction systems within the nitrate respiration conjugative element (NCE). The nitrite respiration cluster (nic) encodes homologues of nitrite reductase (Nir) and nitric oxide reductase (Nor). The expression and role of the nirSJM genes in nitrite respiration were analyzed. The three genes are expressed from two promoters, one (nirSp) producing a tricistronic mRNA under aerobic and anaerobic conditions and the other (nirJp) producing a bicistronic mRNA only under conditions of anoxia plus a nitrogen oxide. As for its nitrite reductase homologues, NirS is expressed in the periplasm, has a covalently bound heme c, and conserves the heme d1 binding pocket. NirJ is a cytoplasmic protein likely required for heme d1 synthesis and NirS maturation. NirM is a soluble periplasmic homologue of cytochrome c552. Mutants defective in nirS show normal anaerobic growth with nitrite and nitrate, supporting the existence of an alternative Nir in the cells. Gene knockout analysis of different candidate genes did not allow us to identify this alternative Nir protein but revealed the requirement for Nar in NirS-dependent and NirS-independent nitrite reduction. As the likely role for Nar in the process is in electron transport through its additional cytochrome c periplasmic subunit (NarC), we concluded all the Nir activity takes place in the periplasm by parallel pathways.  相似文献   

12.
In bacteria, the intracellular metal content or metallome reflects the metabolic requirements of the cell. When comparing the composition of metals in phytoplankton and bacteria that make up the macronutrients and the trace elements, we have determined that the content of trace elements in both of these microorganisms is markedly similar. The trace metals consisting of transition metals plus zinc are present in a stoichometric molar formula that we have calculated to be as follows: Fe1Mn0.3Zn0.26Cu0.03Co0.03Mo0.03. Under conditions of routine cultivation, trace metal homeostasis may be maintained by a series of transporter systems that are energized by the cell. In specific environments where heavy metals are present at toxic levels, some bacteria have developed a detoxification strategy where the metallic ion is reduced outside of the cell. The result of this extracellular metabolism is that the bacterial metallome specific for trace metals is not disrupted. One of the microorganisms that reduces toxic metals outside of the cell is the sulfate-reducing bacterium Desulfovibrio desulfuricans. While D. desulfuricans reduces metals by enzymatic processes involving polyhemic cytochromes c 3 and hydrogenases, which are all present inside the cell; we report the presence of chain B cytochrome c nitrite reductase, NrfA, in the outer membrane fraction of D. desulfuricans ATCC 27774 and discuss its activity as a metal reductase.  相似文献   

13.
The complete amino acid sequence of cytochrome c-552 derived from the chemoautotrophic ammonia-oxidizing bacterium Nitrosomonas europaea was determined. The cytochrome consisted of 81 amino acid residues, and its molecular weight was calculated to be 9098 including heme c. Although the sequence of cytochrome c-552 was highly homologous to those of cytochromes c-551, which were known as the electron-donating components to dissimilatory nitrite reductase in pseudomonads, cytochrome c-552 differed from cytochrome c-551 in two points: (1) the sequence of cytochrome c-552 was shorter by two amino acid residues than that of cytochrome c-551 at the N-terminus and (2) one amino acid insertion was present in cytochrome c-552.  相似文献   

14.
The genus Neisseria contains two pathogenic species (N. meningitidis and N. gonorrhoeae) in addition to a number of commensal species that primarily colonize mucosal surfaces in man. Within the genus, there is considerable diversity and apparent redundancy in the components involved in respiration. Here, we identify a unique c‐type cytochrome (cN) that is broadly distributed among commensal Neisseria, but absent in the pathogenic species. Specifically, cN supports nitrite reduction in N. gonorrhoeae strains lacking the cytochromes c5 and CcoP established to be critical to NirK nitrite reductase activity. The c‐type cytochrome domain of cN shares high sequence identity with those localized c‐terminally in c5 and CcoP and all three domains were shown to donate electrons directly to NirK. Thus, we identify three distinct but paralogous proteins that donate electrons to NirK. We also demonstrate functionality for a N. weaverii NirK variant with a C‐terminal c‐type heme extension. Taken together, modular domain distribution and gene rearrangement events related to these respiratory electron carriers within Neisseria are concordant with major transitions in the macroevolutionary history of the genus. This work emphasizes the importance of denitrification as a selectable trait that may influence speciation and adaptive diversification within this largely host‐restricted bacterial genus.  相似文献   

15.
Cytochromes c 3 of different strains of sulfatereducing bacteria have been purified and tested for their capacity to reduce colloidal sulfur to hydrogen sulfide. The results are in good agreement with the activities reported for the whole cells. Cytochrome c 3 is the sulfur reductase of some strains of sulfate-reducing bacteria such as Desulfovibrio desulfuricans Norway 4 and sulfate-reducing bacterium strain 9974 from which the sulfur reductase activity can be purified with the cytochrome c 3. In contrast, Desulfovibrio vulgaris Hildenborough cytochrome c 3 is inhibited by the product of the reaction namely hydrogen sulfide. Chloramphenicol has no effect on the sulfur reductase activity of D. desulfuricans Norway 4 when resting cells grown on lactate-sulfate medium are put in the presence of colloidal sulfur. This shows that the sulfur reductase activity is constitutive and corresponds to the fact that colloidal sulfur grown cells do not contain more cytochrome c 3 (or another sulfur reductase) than lactate-sulfate-grown cells.  相似文献   

16.
The paramagnetic effect due to the presence of a metal center with unpaired electrons is no longer considered a hindrance in protein NMR spectroscopy. In the present work, the paramagnetic effect due to the presence of a metal center with unpaired electrons was used to map the interface of an electron transfer complex. Desulfovibrio gigas cytochrome c3 was chosen as target to study the effect of the paramagnetic probe, Fe-rubredoxin, which produced specific line broadening in the heme IV methyl resonances M21 and M181. The rubredoxin binding surface in the complex with cytochrome c3 was identified in a heteronuclear 2D NMR titration. The identified heme methyls on cytochrome c3 are involved in the binding interface of the complex, a result that is in agreement with the predicted complexes obtained by restrained molecular docking, which shows a cluster of possible solutions near heme IV. The use of a paramagnetic probe in 1HNMR titration and the mapping of the complex interface, in combination with a molecular simulation algorithm proved to be a valuable strategy to study electron transfer complexes involving non-heme iron proteins and cytochromes.  相似文献   

17.
Summary The wild-type line and 14 nitrate reductase-deficient mutant cell lines of Nicotiana tabacum were tested for the presence of nitrate reductase partial activities, and for nitrite reductase and xanthine dehydrogenase activity. Data characterizing the electron donor specificity of nitrate reductase (EC 1.6.6.1., NADH:nitrate oxidoreductase) and nitrite reductase (EC 1.7.7.1., ferredoxin:nitrite oxidoreductase) of the wild-type line are presented. Three lines (designated cnx) simultaneously lack NADH-, FADH2-, red. benzyl viologen-nitrate reductase, and xanthine dehydrogenase activities, but retain the nitrate reductase-associated NADH-cytochrome c reductase activity. These mutants are, therefore, interpreted to be impaired in gene functions essential for the synthesis of an active molybdenum-containing cofactor. For cnx-68 and cnx-101, the sedimentation coefficient of the defective nitrate reductase molecules does not differ from that of the wild-type enzyme (7.6S). In 11 lines (designated nia) xanthine dehydrogenase activity is unaffected, and the loss of NADH-nitrate reductase is accompanied by a loss of all partial activities, including NADH-cytochrome c reductase. However, one line (nia-95) was found to possess a partially active nitrate reductase molecule, retaining its FADH2- and red. benzyl viologen nitrate reductase activity. It is likely that nia-95 is a mutation in the structural gene for the apoprotein. Both, the nia and cnx mutant lines exhibit nitrite reductase activity, being either nitrate-inducible or constitutive. Evidence is presented that, in Nicotiana tabacum, nitrate, without being reduced to nitrite, is an inducer of the nitrate assimilation pathway.  相似文献   

18.
NADPH-cytochrome P450 reductase was purified to electrophoretic homogeneity from detergent-solubilized liver microsomes from the leaping mullet (Liza saliens). The purified reductase was characterized with respect to spectral, electrophoretic, and biocatalytic properties. In addition, effects of pH, ionic strength, and the substrate concentration on the NADPH-dependent cytochrome c reductase activity of the purified fish liver cytochrome P450 reductase were studied. Cytochrome P450 reductase was purified 438-fold with a yield of 17.5% with respect to the initial amount present in the fish liver microsomes. The specific activity of the enzyme was found to be 52.6 μmol cytochrome c reduced per minute per mg protein. The monomer molecular weight of the purified enzyme was calculated to be 77,000 ± 1000 when electrophoresed on polyacrylamide gels under the denaturing conditions in the presence of SDS. The absorption spectrum of fish reductase showed two peaks at 378 and 455 nm. NADPH-dependent cytochrome c reductase activity of the purified Liza saliens liver cytochrome P450 reductase was found to be maximal when pH was between 7.4 and 7.8. The apparent Km of the purified enzyme was found to be 7.69 μM for cytochrome c when the enzyme activity was measured in 0.3 M potassium phosphate buffer, pH 7.7, at room temperature, and the enzyme was fully saturated by its substrate, cytochrome c, when the substrate concentration was at or above the 70 μM. Furthermore, the purified enzyme was biocatalytically active in reconstituting the 7-ethoxyresorufin O-deethylase activity in the reconstituted system containing purified mullet liver cytochrome P4501A1 and lipid. These results suggested that the purified fish liver cytochrome P450 reductase is similar to its mammalian counterparts with respect to spectral, electrophoretic, and biocatalytic properties. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 103–113, 1998  相似文献   

19.
Strain HUUG25 ofParacoccus denitrificans has been frequently thought to be devoid of allc-type cytochromes. We show here by means of enzymological and immunological techniques that the mutant synthesizes active nitrite reductase (cytochromecd 1) upon prolonged exposure to microoxic conditions. The synthesis occurred faster in the presence of exogenous hemin. The time pattern of 5-aminolevulinate synthase activity was also altered by the mutation. These findings suggest a defective regulation of heme supply to the site of nitrite reductase assembly in the periplasm.  相似文献   

20.
The protein composition, cytochrome content, and reductase activity in the dissimilatory selenate-reducing bacterium Geospirillum barnesii strain SeS3, grown with thiosulfate, nitrate, selenate, or fumarate as the terminal electron acceptor, was investigated. Comparison of seven high-molecular-mass membrane proteins (105.3, 90.3, 82.6, 70.2, 67.4, 61.1, and 57.3 kDa) by SDS-PAGE showed that their detection was dependent on the terminal electron acceptor used. Membrane fractions from cells grown on thiosulfate contained a 70.2-kDa c-type cytochrome with absorbance maxima at 552, 522, and 421 nm. A 61.1-kDa c-type cytochrome with absorption maxima at 552, 523, and 423 nm was seen in membrane fractions from cells grown on nitrate. No c-type cytochromes were detected in membrane fractions of either selenate- or fumarate-grown cells. Difference spectra, however, revealed the presence of a cytochrome b 554 (absorption maxima at 554, 523, and 422 nm) in membrane fractions from selenate-grown cells and a cytochrome b 556 (absorption maxima at 556, 520, and 416 nm) in membrane fractions from fumarate-grown cells. Analysis of reductase activity in the different membrane fractions showed variability in substrate specificity. However, enzyme activity was greatest for the substrate on which the cells had been grown (e.g., membranes from nitrate-grown cells exhibited the greatest activity with nitrate). These results show that protein composition, cytochrome content, and reductase activity are dependent on the terminal electron acceptor used for growth. Received: 21 August 1996 / Accepted: 24 October 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号