首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
A sulfite oxidase (SO(x)) (EC 1.8.3.1) purified from Syzygium cumini leaves was immobilized onto prussian blue nanoparticles/polypyrrole composite (PBNPs/PPY) electrodeposited onto the surface of indium tin oxide (ITO) electrode. An amperometric sulfite biosensor was fabricated using SO(x)/PBNPs/PPY/ITO electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode connected through a potentiostat. The working electrode was characterized by Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS) before and after immobilization of SO(x). The biosensor showed optimum response within 2s, when operated at 20mVs(-1) in 0.1M Tris-HCl buffer, pH 8.5 and at 35°C. Linear range and minimum detection limit were 0.5-1000μM and 0.12μM (S/N=3) respectively. There was good correlation (r=0.99) between red wine samples sulfite value by standard DTNB method and the present method. The sensor was evaluated with 97% recovery of added sulfite in red wine samples and 2.2% and 4.3% within and between batch coefficients of variation respectively. The sensor was employed for determination of sulfite level in red and white wine samples. The enzyme electrode was used 200 times over a period of 3 months when stored at 4°C.  相似文献   

2.
A molecularly imprinted electrochemical quartz crystal microbalance (EQCM) sensor is fabricated here for taurine, a β ‐amino acid significant for functioning of almost all vital organs. The polymeric film of l ‐methionine was electrochemically deposited on gold‐coated EQCM electrode. Experimental parameters were optimized for controlling the performance of molecularly imprinted polymer (MIP)‐modified sensor such as ratio of monomer and template, number of electropolymerization cycles, mass deposited in each cycle, and pH. Thus, fabricated MIP‐EQCM sensor was successfully applied for estimation of taurine in solutions with varying matrices, such as aqueous, human blood plasma, milk from cow, buffalo, and milk powder. Under optimized parameters, response of MIP sensor to taurine was linearly proportional to its concentration with limit of detection as 0.12μM. Hence, a highly sensitive and selective piezoelectric sensor for taurine has been reported here via imprinting approach.  相似文献   

3.
The surface functionalization of an electrically conductive polypyrrole film (PPY) with a viologen, (N-(2-carboxyl-ethyl)-N'-(4-vinyl-benzyl)-4,4'-bipyridinium dichloride, or CVV) for the covalent immobilization of glucose oxidase (GOD) has been carried out. The viologen was first synthesized and graft polymerized on PPY film. It then served as an anchor via its carboxyl groups for the covalent immobilization of GOD. The surface composition of the as-functionalized substrates was characterized by X-ray photoelectron spectroscopy (XPS). The effects of the CVV monomer concentration on the CVV-graft polymer concentration and the amount of GOD immobilized on the surface were investigated. The activity of the immobilized GOD was compared with that of free GOD and the kinetic effects were also obtained. The cyclic voltammetric (CV) response of the GOD-functionalized PPY substrates was studied in a phosphate buffer solution under an argon atmosphere. The CV results support the mechanism in which CVV acts as a mediator to transfer electron between the electrode and enzyme, and hence regenerating the enzyme in the enzymatic reaction with glucose. High sensitivity and linear response of the enzyme electrode was observed with glucose concentration ranging from 0 to 20 mM.  相似文献   

4.
We constructed a highly responsive ascorbic acid (AA) sensor utilizing over-oxidized polypyrrole (OPPy) and Palladium nanoparticles (PdNPs) composites (OPPy-PdNPs). In the presence of PdNPs, polypyrrole (PPy) was coated on a gold (Au) electrode through cyclic voltammetry (CV) and over-oxidized at a fixed potential in NaOH solution. The PdNPs were characterized using ultraviolet-visible (UV-vis) spectrum and transmission electron microscopy (TEM). The surface of OPPy-PdNPs on the Au electrode was investigated using field-emission scanning electron microscopy (FE-SEM). Results revealed that the OPPy-PdNPs-modified Au electrode (OPPy-PdNPs/Au) has the capacity to catalyze the oxidation of AA by lowering its oxidation potential to 0 V. The OPPy-PdNPs/Au electrode exhibited 2 different linear concentration ranges. In the low concentration range (1-520 μM), OPPy-PdNPs/Au exhibited a direct linear relation with current responses and had high sensitivity (570 μA mM(-1)cm(-2)) and a high correlation coefficient (0.995). In contrast, in the higher concentration range (120-1600 μM), the relationship between current responses and concentration of AA can be represented by a two-parameter sigmoidal equation. In addition, the sensor exhibited a short response time (less than 2s) and a very low limit of detection of 1 μM. The electrochemical AA sensor constructed in this study was simple, inexpensive, reproducible, sensitive, and resistant to interference. Thus, the proposed sensor has great potential for detecting AA in complex biosystems and can be applied in various fields, particularly neuroscience.  相似文献   

5.
In this work, poly(aniline-co-o-aminophenol) (copolymer) was used as an electron transfer mediator in the electrochemical oxidation of catechol due to its reversible redox over a wide range of pH. The experimental results indicate that the anodic peak potential of catechol at the copolymer electrode is lower than that at the platinum electrode in a solution consisting of catechol and sodium sulfate with pH 5.0, and the activation energy for the electrochemical oxidation of catechol at the copolymer electrode is low (23.6 kJ mol(-1)). These are strong evidence for the electrocatalytic oxidation of catechol at the copolymer electrode. The -OH group on the copolymer chain plays an important role in the electron transfer between the copolymer electrode and catechol in the solution. Based on the catalytic oxidation, the copolymer is used as a sensor to determine the concentration of catechol. The response current of the sensor depends on the concentration of catechol, pH, applied potential and temperature. At 0.55 V (versus saturated calomel reference electrode (SCE)) and pH 5.0, the sensor has a fast response (about 10s) to catechol and good operational stability. The sensor shows a linear response range between 5 and 80 microM catechol with a correlation coefficient of 0.997. It was found that phenol and resorcinol cannot be oxidized at the copolymer electrode at potentials < or =0.55 V, so controlling the sensor potential affords a good way of avoiding the effect of phenol and resorcinol on the determination of catechol.  相似文献   

6.
A potentiometric chemosensor for selective determination of dipicolinic acid (2,6-pyridinedicarboxylic acid, DPA) was developed based on the surface imprinting technique coupled with a nanoscale transducer: an indium tin oxide (ITO)-coated glass plate. The sensor fabrication conditions, optimal recognition condition, as well as selectivity, sensitivity, and stability of the DPA sensor have been investigated. The DPA sensor could recognize DPA from 3,5-pyridinedicarboxylic acid. Potentiometric measurements demonstrated selective detection of DPA in a concentration range of 1.5 x 10(-6) to 0.0194 M. The response time of DPA sensor for 4 x 10(-4) M DPA was 25 s. The potentiometric response of the DPA sensor to DPA is at 90% of its initial magnitude after 550 times measurement. The viability of such a modified ITO electrode in the presence of other inorganic, organic, and biological materials was probed.  相似文献   

7.
An amperometric glucose biosensor with glucose oxidase (GOx) immobilized into palladium hexacyanoferrate (PdHCF) hydrogel has been prepared and evaluated. The sensor was based on a two-layer configuration with biocatalytic and electrocatalytic layers separately deposited onto the electrode. To reduce the overpotential for reduction of hydrogen peroxide liberated in the enzyme catalyzed oxidation of glucose, an inner thin layer of nickel hexacyanoferrate (NiHCF) electrodeposited onto the surface of graphite electrode was used as an electrocatalyst. As an outer layer, the hydrogel of palladium hexacyanoferrate with entrapped glucose oxidase was used. Under optimal operating conditions (pH 5.0 and E = -0.075 V versus calomel (3.0 M KCl) reference electrode), sensor showed high sensitivity to glucose (0.3-1.0 microA/mM) and a response time of less than 30s. The linear response to glucose was obtained in the concentration range between 0.05 and 1.0 mM in batch analysis mode and 0-7.0 mM in FIA. During the 32 days testing period, no significant decrease in the sensor sensitivity was observed. The sensor was applied for the determination of glucose concentration in fruit juice and yoghurt drink, and the results obtained showed good correlation with results obtained by reference spectrophotometric enzyme method.  相似文献   

8.
The determination of bile acid concentration in urine is useful for the screening and diagnosis of various hepatobiliary diseases. Currently, there is no concise method to determine bile acid concentration in urine. This study describes a bile acid biosensor fabricated by electrochemical technique for urinalysis. The micro-planar electrodes employed for the study consisted of a working electrode (platinum), a counter electrode (platinum) and a reference electrode (silver/silver chloride (Ag/AgCl)). The sensor chip was coated with Nafion using a spin-coater in order to both eliminate many interference species in urine and achieve long-term stability of the reference electrode. Nafion coating allowed the sensor chip to prevent the electrode reaction from interference species in urine, because it is charged negative strongly (Nafion contains sulfonic acid group). Three enzymes (bile acid sulfate sulfatase: BSS, beta-hydroxysteroid dehydrogenase: beta-HSD, and NADH oxidase: NHO) were immobilized by glutaraldehyde (GA: cross-linker) onto the sensor chip, because the immobilization of enzymes by GA is simple and commonly carried out. The sensor chip was able to detect bile acid in buffer solution. The optimum enzyme ratio immobilized onto the sensor chip was BSS:beta-HSD:NHO=4:4:20 U/1 chip. There was a relationship between the concentration of bile acid and the response current value. The dynamic range of the sensor chip was 2-100 microM for bile acid. Additionally, bile acid in the urine specimen could be detected using this bile acid biosensor. We present a simple and rapid bile acid biosensor with high sensitivity and high reproducibility.  相似文献   

9.
The mixed oxide SiO(2)/SnO(2), containing 25 wt% of SnO(2), determined by X-ray fluorescence, was prepared by the sol-gel method and the porous matrix obtained was then grafted with Sb (V), resulting the solid designated as (SiSnSb). XPS indicated 0.7% of Sb atoms on the surface. Sb grafted on the surface contains Br?nsted acid centers (SbOH groups) that can immobilize Meldola's blue (MB(+)) cationic dye onto the surface by an ion exchange reaction, resulting the solid designated as (SiSnSb/MB). In the present case a surface concentration of MB(+)=2.5×10(-11) mol cm(2) on the surface was obtained. A homogeneous mixture of the SiSnSb/MB with ultra pure graphite (99.99%) was pressed in disk format and used to fabricate a working electrode that displayed an excellent specific electrocatalytic response to NADH oxidation, with a formal potential of -0.05 V at pH 7.3. The electrochemical properties of the resulting electrode were investigated thoroughly with cyclic voltammetric and chronoamperometry techniques. The proposed sensor showed a good linear response range for NADH concentrations between 8×10(-5) and 9.0×10(-4) mol L(-1), with a detection limit of 1.5×10(-7) mol L(-1). The presence of dopamine and ascorbic acid did not show any interference in the detection of NADH on this modified electrode surface.  相似文献   

10.
Despite the increasing number of applications of molecularly imprinted polymers (MIPs) in analytical chemistry, the construction of a biomimetic voltammetric sensor remains still challenging. This work investigates the development of a voltammetric sensor for vanillylmandelic acid (VMA) based on acrylic MIP-modified electrodes. Thin layers of MIPs for VMA have been prepared by spin coating the surface of a glassy carbon electrode with the monomers mixture (template, methacrylic acid, a cross-linking agent and solvent), followed by in situ photopolymerisation. After extraction of the template molecule, the peak current recorded with the imprinted sensor after rebinding was linear with VMA concentration in the range 19-350 microg ml(-1), whereas the response of the control electrode is independent of incubation concentration, and was about one-tenth of the value recorded with the imprinted sensor at the maximum concentration tested. Under the conditions used, the sensor is able to differentiate between VMA and other closely structural-related compounds, such as 3-methoxy-4-hydroxyphenylethylene glycol (not detected), or 3,4- and 2,5-dihydroxyphenilacetic acids, which are adsorbed on the bare electrode surface but not at the polymer layer. Homovanillic acid was detected with the imprinted sensors after incubation, indicating that the presence of both methoxy and carboxylic groups in the same position as in VMA is necessary for effective binding in the imprinted sites. Nevertheless, both species can be differentiated by the oxidation potential. It can be concluded that MIP-based voltammetric electrodes are very promising analytical tool for the development of highly selective analytical sensors.  相似文献   

11.
A method is described for the construction of an amperometric biosensor for detection of phenolic compounds based on covalent immobilization of laccase onto iron oxide nanoparticles (Fe(3)O(4)NPs) decorated carboxylated multiwalled carbon nanotubes (cMWCNTs)/polyaniline (PANI) composite electrodeposited onto a gold (Au) electrode. The modified electrode was characterized by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The biosensor showed optimum response within 3s at pH 6.0 (0.1M sodium acetate buffer) and 35°C, when operated at 0.3V vs. Ag/AgCl. Linear range, detection limit were 0.1-10μM (lower concentration range) and 10-500μM (higher concentration range), and 0.03μM respectively. The sensor measured total phenolic content in tea leaves extract. The enzyme electrode lost 25% of its initial activity after its 150 uses over a period of 4 months, when stored at 4°C.  相似文献   

12.
The research on our flow-injection, label-free, non-faradaic impedimetric immunosensor for interferon-gamma (IFN-gamma) has been extended. The sensor is prepared by immobilization of anti-IFN-gamma antibodies on a self-assembled monolayer (SAM) of acetylcysteine, deposited on polycrystalline gold. A multi-frequency impedance method is described, which allows time-resolved measurement of Nyquist plots. To these plots, an equivalent circuit was fitted, which is discussed in terms of a two-layer structure (inner and outer layer) of the interfacial region. Because binding of IFN-gamma mainly causes a decrease of Q (a constant-phase element), this element is considered as the outer layer. Several aspects of the impedimetric sensor response are studied, including the dependence on detection frequency, target concentration and applied dc potential. For quantitative detection of IFN-gamma, an optimum of the signal-to-noise (S/N) ratio of the out-of-phase impedance component (Z') was found at about 100 Hz. At a dc-potential of +0.2 V versus a saturated calomel reference electrode, the sensor response is higher than at 0.0 V. Logarithmic dose-response curves of IFN-gamma in the concentration range of 10(-18) to 10(-9) M were obtained using two procedures: by successive injections over a single electrode, and by using freshly prepared electrodes for each measurement. Using the latter method, the repeatability is impaired. The need for in situ complementary techniques for a correct interpretation of the studied parameters is discussed.  相似文献   

13.
A chitosan-glutaraldehyde crosslinked uricase was immobilized onto Prussian blue nanoparticles (PBNPs) absorbed onto carboxylated multiwalled carbon nanotube (c-MWCNT) and polyaniline (PANI) layer, electrochemically deposited on the surface of Au electrode. The nanohybrid-uricase electrode was characterized by scanning electron microscopic (SEM), Fourier transform infrared spectroscopy (FTIR) and cyclic voltammetry. An amperometric uric acid biosensor was fabricated using uricase/c-MWCNT/PBNPs/Au electrode as working electrode, Ag/AgCl as standard and Pt wire as auxiliary electrode connected through a potentiostat. The biosensor showed optimum response within 4 s at pH 7.5 and 40 °C, when operated at 0.4 V vs. Ag/AgCl. The linear working range for uric acid was 0.005-0.8 mM, with a detection limit of 5 μM. The sensor was evaluated with 96% recovery of added uric acid in sera and 4.6 and 5.4% within and between batch of coefficient of variation respectively and a good correlation (r = 0.99) with standard enzymic colorimetric method. This sensor measured uric acid in real serum samples. The sensor lost only 37% of its initial activity after its 400 uses over a period of 7 months, when stored at 4 °C.  相似文献   

14.
The amperometric detection of neurotransmitters metabolite of 3,4-dihydroxyphenylacetic acid (DOPAC) was achieved at a tyrosinase-chitosan composite film-modified glassy carbon (GC) electrode. The optimal conditions for the preparation of the biosensor were established. This bio-composite film was characterized by scanning electron microscopy (SEM) and Fourier transformed infrared (FT-IR) spectra, suggesting that chitosan covalently connected to chitosan chains. Electrochemical characterization of the bio-hybrid membrane-covered electrodes were also performed in 0.05 M phosphate buffer solution (pH 6.52) containing neurotransmitters or their derivatives by using cyclic voltammetry (CV), linear sweep voltammetry (LSV), square wave voltammetry (SWV) and amperometry. This simply-prepared protein-polysaccharide hybrid film provides a microenvironment friendly for enzyme loading. The sensor was operated at -0.15 V with a short response time. The current linearly increased with the increasing concentration of DOPAC over the concentration of 6 nM-0.2 mM. The lower detection limit for DOPAC is 3 nM (S/N=3). The sensitivity of the sensor is 40 microA mM(-1). A physiological level of neurotransmitters and their derivatives including dopamine, l-dopa, adrenaline, noradrenaline and homovanillic acid as well as ascorbic acid, uric acid and acetaminophen do not affect the determination of DOPAC.  相似文献   

15.
Yang Y  Yi C  Luo J  Liu R  Liu J  Jiang J  Liu X 《Biosensors & bioelectronics》2011,26(5):2607-2612
A voltammetric glucose sensor was prepared from novel molecularly imprinted polymeric micelles (MIPMs) through direct electrodeposition. The MIPMs, which were photo-crosslinkable and nano-scaled with high specific surface area, were prepared via macromolecule self-assembly of an amphiphilic photo-crosslinkable copolymer, combined with a molecular imprinting technique using glucose as the template molecule. A MIP film was formed in situ on the electrode surface by electrodeposition of the MIPMs, while photo-crosslinking led to a robust film which showed good solvent resistant to dissolution. With these features, the resulting sensor showed good response and selectivity towards glucose. In particular, the linear response of this glucose sensor ranged from 0.2 mM to 8 mM and its comparatively higher detection limit, about 10 mM, indicated numerous effective recognition sites among the polymer matrix due to the large specific surface area of MIPM. In addition, this MIP sensor also showed good stability and reversibility. The contribution of this work lies in not only the invention of a new type of glucose MIP sensor with good performance, but also the creation of a novel strategy to develop advanced MIP sensors for a wide range of templates in viewing of the versatility of the amphiphilic copolymers and the ease of control and applicability of the electrodeposition process.  相似文献   

16.
A highly sensitive molecular-imprinted polymer sensor (MIP sensor) for ultratrace oxytetracycline (OTC) determination was prepared based on the competition reaction between template molecule OTC and glucose oxidase (GOD)-labeled OTC (GOD-OTC). Sensitivity improved dramatically due to the detection of a huge amount of enzyme catalytic production, which was inversely proportional to template molecule concentration. The MIP sensor was characterized by alternating current impedance spectroscopy and cyclic voltammetry, and its voltammetric behavior was also verified. Experimental conditions including isolation, incubation, and competition were optimized. OTC can be determined at concentrations between 0 and 4.0×10(-7) mol/L with a detection limit of 3.30×10(-10) mol/L by the differential pulse voltammetry technique. The MIP sensor showed high sensitivity, selectivity, reproducibility, and good recovery in sample determination.  相似文献   

17.
A novel eggplant tissue homogenate-based membrane electrode with high selective response to catechol (5 x 10(-6)-2.5 x 10(-5) M concentration) has been constructed by immobilizing tissue of eggplant (Solanum melangena L.) at dissolved oxygen probe. In order to optimize the stability of the electrode, general immobilization techniques are used to secure the eggplant tissue section physically in a gelatin-glutaraldehyde cross-linking matrix. The electrode response was maximum when 50 mM phosphate buffer was used at pH 7.0 and 35 degrees C. The sensor is stable for more than 3 months.  相似文献   

18.
Potentiometric sensor for atrazine based on a molecular imprinted membrane   总被引:4,自引:0,他引:4  
A molecular imprinted polymer (MIP) membrane for atrazine, not containing macropores, was synthesized and implemented in a potentiometric sensor. It is expected to work like a solid ISE (where the specific carrier are the imprinted sites) the specific carrier being the imprinted site. The active ion is the protonated atrazine, positively charged. To form this species the determination is carried out in acidic solution at pH lower than 1.8, in which atrazine is prevalently monoprotonated. At these conditions the membrane potential increases with atrazine concentration over a wide concentration range (3 x 10(-5) to 1 x 10(-3)M). The slope of the function E versus logc is about 25 mV/decade, showing that the atrazine form sorbed on MIP is the biprotonated one. The detection limit is determined by the relatively high concentration of atrazine released by the membrane in the sample solution at the considered conditions. It seems to be independent of the atrazine concentration in the internal solution of the sensor, but it depends on the acidity of the solution. The response time is less than 10s and the sensor can be used for more than 2 months without any divergence.  相似文献   

19.
A capacitive sensor for environmental monitoring based on thin films of desmetryn-selective molecularly imprinted polymer (MIP) was developed. The method of modification of gold electrodes with the thin film of herbicide-selective MIP using the grafting polymerization approach was developed. The method of computational modeling was used to optimize the composition of desmetryn-selective MIPs. It was shown that 2-acrylamido-2-methyl-1-propan-sulfonic acid is the optimal functional monomer for desmetryn. Formation of synthetic binding sites in MIPs was demonstrated to be determined by the binding energy between the template and functional monomers as well as the number of functional groups taking part in the recognition of the template molecule. Electrochemical processes occurring at the MIP-modified electrode were analyzed. The detection limit for desmetryn comprised 100 nM. High selectivity of the capacitive sensor towards structural analogues of desmetryn as well as high operational and storage stabilities was demonstrated.  相似文献   

20.
A novel amperometric glucose biosensor was developed using the bio-inspired peptide nanotube (PNT) as an encapsulation template for enzymes. Horseradish peroxidase (HRP) was encapsulated by the PNT and glucose oxidase (GO(x)) was co-immobilized with the PNT on a gold nanoparticle (AuNP)-modified electrode. A binary SAM of 3-mercaptopropionic acid (MPA) and 1-tetradecanethiol (TDT) was formed on the surface of the electrode to immobilize the PNT and GO(x). The resulting electrode appeared to provide the enzymes with a biocompatible nanoenvironment as it sustained the enhanced enzyme activity for an extended time and promoted possible direct electron transfer through the PNT to the electrode. Performance of the biosensor was evaluated in terms of its detection limit, sensitivity, pH, response time, selectivity, reproducibility, and stability in a lab setting. In addition the sensor was tested for real samples. The composite of AuNP-SAM-PNT/HRP-GO(x) to fabricate a sensor electrode in this study exhibited a linear response with glucose in the concentration range of 0.5-2.4mM with a R(2)-value of 0.994. A maximum sensitivity of 0.3mAM(-1)and reproducibility (RSD) of 1.95% were demonstrated. The PNT-encapsulated enzyme showed its retention of >85% of the initial current response after one month of storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号