首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The recognition of the critical involvement of oxidative and electrophilic stress in cardiac disorders has led to extensive investigation of the protective effects of exogenous antioxidants on cardiac injury. On the other hand, another strategy for protecting against oxidative/electrophilic cardiac injury may be through induction of the endogenous antioxidants and phase 2 enzymes in myocardium by chemical inducers. However, our understanding of the chemical inducibility of cardiac antioxidants/phase 2 enzymes in vivo is very limited. In addition, careful studies on the basal levels of a scope of endogenous antioxidants/phase 2 enzymes in myocardium as compared with other tissues, such as liver, are lacking. Accordingly, this study was undertaken to determine the basal levels of endogenous antioxidants/phase 2 enzymes, including superoxide dismutase (SOD), catalase, reduced glutathione (GSH), GSH peroxidase (GPx), glutathione reductase (GR), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase 1 (NQO1), and investigate the inducibility of the above antioxidants/phase 2 enzymes by the chemoprotectant, 1,2-dithiole-3-thione (D3T), in cardiac as well as hepatic tissues in C57BL/6 mice. Our results demonstrated that in C57BL/6 mice, the levels of catalase, GSH, GPx, GR, and GST were significantly lower in cardiac tissue than in hepatic tissue. The level of total SOD did not differ significantly between mouse heart and liver. Notably, heart contained a much higher NQO1 activity than liver. Immunoblotting and RT-PCR analyses further demonstrated the high expression of NQO1 protein and mRNA in myocardium. Oral administration of D3T at 0.25 and 0.5 mmol/kg body weight for 3 consecutive days resulted in a significant induction of cardiac SOD, catalase, GR, GST, and NQO1. No significant induction of cardiac GSH and GPx was observed with the above D3T treatment. Only GR, GST, and NQO1 in mouse liver were induced by the D3T treatment. Unexpectedly, we observed a significant D3T dose-dependent decrease in hepatic GPx activity. Taken together, this study demonstrates for the first time that: (1) the expression of NQO1 is remarkably high in mouse myocardium though other cardiac antioxidants/phase 2 enzymes are relatively lower as compared with liver; (2) a number of endogenous antioxidants/phase 2 enzymes in mouse cardiac tissue can be significantly induced by D3T following oral administration; and (3) the inducibility of endogenous antioxidants/phase 2 enzymes by D3T differs between mouse cardiac and hepatic tissues. This study provides a basis for future investigation of the cardioprotection of chemically induced endogenous antioxidants and phase 2 enzymes in myocardium in animal models of oxidative/electrophilic cardiac disorders.  相似文献   

2.
The increasing recognition of the role for oxidative stress in cardiac disorders has led to extensive investigation on the protection by exogenous antioxidants against oxidative cardiac injury. On the other hand, another strategy for protecting against oxidative cardiac injury may be through upregulation of the endogenous antioxidants and phase 2 enzymes in the myocardium by chemical inducers. However, our current understanding of the chemical inducibility of cardiac cellular antioxidants and phase 2 enzymes is very limited. In this study, using rat cardiac H9c2 cells we have characterized the concentration- and time-dependent induction of cellular antioxidants and phase 2 enzymes by 3H-1,2-dithiole-3-thione (D3T), and the resultant chemoprotective effects on oxidative cardiac cell injury. Incubation of H9c2 cells with D3T resulted in a marked concentration- and time-dependent induction of a number of cellular antioxidants and phase 2 enzymes, including catalase, reduced glutathione (GSH), GSH peroxidase, glutathione reductase (GR), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase-1 (NQO1). D3T treatment of H9c2 cells also caused an increase in mRNA expression of catalase, gamma-glutamylcysteine ligase catalytic subunit, GR, GSTA1, M1 and P1, and NQO1. Moreover, both mRNA and protein expression of Nrf2 were induced in D3T-treated cells. D3T pretreatment led to a marked protection against H9c2 cell injury elicited by various oxidants and simulated ischemia-reperfusion. D3T pretreatment also resulted in decreased intracellular accumulation of reactive oxygen in H9c2 cells after exposure to the oxidants as well as simulated ischemia-reperfusion. This study demonstrates that a series of endogenous antioxidants and phase 2 enzymes in H9c2 cells can be induced by D3T in a concentration- and time-dependent fashion, and that the D3T-upregulated cellular defenses are accompanied by a markedly increased resistance to oxidative cardiac cell injury.  相似文献   

3.
In view of the crucial involvement of oxidative and electrophilic stress in various kidney disorders, this study was undertaken to test the hypothesis that pharmacologically-mediated coordinated upregulation of endogenous renal antioxidants and phase 2 enzymes is an effective strategy for renal protection. Notably, studies on the pharmacological inducibility of a series of antioxidants and phase 2 enzymes in renal tubular cells are lacking. Here we reported that incubation of normal rat kidney (NRK-52E) proximal tubular cells with low micromolar concentrations (10-50 microM) of the cruciferous nutraceutical, 1,2-dithiole-3-thione (D3T), led to a significant concentration-dependent induction of a wide spectrum of antioxidants and phase 2 enzymes, including catalase (CAT), reduced form of glutathione (GSH), glutathione peroxidase (GPx), glutathione reductase (GR), glutathione S-transferase (GST), NAD(P)H:quinone oxidoreductase 1 (NQO1), and heme oxygenase (HO). We further observed that D3T treatment also increased the protein and mRNA expression for CAT, gamma-glutamylcysteine ligase, GR, GST-A, GST-M, NQO1, and HO-1. Incubation of the renal tubular cells with H(2)O(2), SIN-1-derived peroxynitrite, or 4-hydroxy-2-nonenal led to concentration-dependent decreases in cell viability. Pretreatment of the renal tubular cells with 10-50 microM D3T afforded remarkable protection against the nephrocytotoxicity elicited by the above oxidative and electrophilic species. The D3T-mediated cytoprotection showed a concentration-dependent relationship. Taken together, this study for the first time comprehensively characterized the inducibility by a unique nutraceutical of a wide spectrum of antioxidative and phase 2 defenses in renal tubular cells at the levels of enzyme activity as well as protein and mRNA expression, and demonstrated that such a coordinated upregulation of cellular defenses led to remarkable protection of renal tubular cell from oxidative and electrophilic stress. Because of the crucial role of oxidative and electrophilic stress in inflammatory injury, D3T-mediated coordinated induction of endogenous antioxidative and phase 2 defenses may also serve as an important anti-inflammatory mechanism in kidneys.  相似文献   

4.
Macrophages play important roles in immunity and other physiological processes. They are also target cells of various toxic agents, including oxidants and electrophiles. However, little is known regarding the molecular regulation and chemical inducibility of a spectrum of endogenous antioxidants and phase 2 enzymes in normal macrophages. Understanding the molecular pathway(s) controlling the coordinated expression of various macrophage antioxidants and phase 2 defenses is of importance for developing strategies to protect against macrophage injury induced by oxidants and electrophiles. Accordingly, this study was undertaken to determine the role of the nuclear factor E2-related factor 2 (Nrf2) in regulating both constitutive and chemoprotectant-inducible expression of various antioxidants and phase 2 enzymes in mouse macrophages. The constitutive expression of a series of antioxidants and phase 2 enzymes was significantly lower in macrophages derived from Nrf2-null (Nrf2(-/-)) mice than those from wild-type (Nrf2(+/+)) littermates. Incubation of wild-type macrophages with 3H-1,2-dithiole-3-thione (D3T) led to significant induction of various antioxidants and phase 2 enzymes, including catalase, glutathione, glutathione peroxidase (GPx), glutathione reductase, glutathione S-transferase, and NAD(P)H:quinone oxidoreductase 1. The inducibility of the above cellular defenses except for GPx by D3T was completely abolished in Nrf2(-/-) macrophages. As compared with wild-type cells, Nrf2(- /-) macrophages were much more susceptible to cell injury induced by reactive oxygen/nitrogen species, as well as two known macrophage toxins, acrolein and cadmium. Up-regulation of the antioxidants and phase 2 enzymes by D3T in wild-type macrophages resulted in increased resistance to the above oxidant-and electrophile-induced cell injury, whereas D3T treatment of Nrf2(- /-) macrophages provided only marginal or no cytoprotec-tion. This study demonstrates that Nrf2 is an indispensable factor in controlling both constitutive and inducible expression of a wide spectrum of antioxidants and phase 2 enzymes in macrophages as well as the susceptibility of these cells to oxidative and electrophilic stress.  相似文献   

5.
This study was undertaken to determine if 4-hydroxy-2-nonenal (HNE) could upregulate antioxidants and phase 2 enzymes in rat H9c2 myocardiac cells, and if the upregulated defenses led to cytoprotection against oxidative and electrophilic injury. Incubation of H9c2 cells with HNE at noncytotoxic concentrations resulted in significant induction of cellular catalase, glutathione (GSH), GSH S-transferase (GST), and NAD(P)H:quinone oxidoreductase 1 (NQO1), as determined by enzyme activity and/or protein expression. HNE treatment caused increased mRNA expression of catalase, γ-glutamylcysteine ligase, GST-A1, and NQO1. Pretreatment of H9c2 cells with HNE led to significant protection against cytotoxicity induced by reactive oxygen and nitrogen species. HNE-pretreated cells also exhibited increased resistance to injury elicited by subsequent cytotoxic concentrations of HNE. Taken together, this study demonstrates that several antioxidants and phase 2 enzymes in H9c2 cells are upregulated by HNE and that the increased defenses afford protection against overt oxidative and electrophilic cardiac cell injury.  相似文献   

6.
Antioxidant enzymes, total glutathione (GSH), and ascorbic acid (ASA) were determined in whole body homogenates of nondiapausing larvae, diapausing larvae during the diapausing period (October, December, and February), and in pupae emerged from both diapausing and nondiapausing larvae of the European corn borer (Ostrinia nubilalis, Hubn., Lepidoptera: Pyralidae). The activities of catalase, selenium nondependent glutathione peroxidase (GPx), and glutathione-S-transferase (GST), as well as the content of GSH and ASA, were found to vary throughout the larval diapause. Compared to diapausing larvae, nondiapausing larvae were higher in levels of catalase, GPx, GST, and dehydroascorbate reductase (DHAR) activity. GSH content was also increased. However, nondiapausing larvae contained less ASA than diapausing ones. Pupae had higher GPx and GST activity and an increased ASA content compared to larvae. The pupae emerged from nondiapausing larvae had higher GST, glutathione reductase (GR), and DHAR activities, but lower GPx activity and ASA content than those emerged from diapausing larvae. Correlation analysis revealed differences in the way the antioxidant level is equilibrated for a particular stage and developmental pattern. The results suggest that cellular antioxidants are involved in both the protection of cells and the regulation of redox levels during the pre-adult stages of Ostrinia nubilalis. Arch. Insect Biochem. Physiol. 55:79-89, 2004.  相似文献   

7.
This study was undertaken to investigate the inducibility of glutathione (GSH), glutathione reductase (GR) and glutathione peroxidase (GPx) by 3H-1,2-dithiole-3-thione (D3T) in beta-cells, and the resultant cytoprotection against oxidant injury. Incubation of the insulin-secreting RINm5F cells with D3T led to significant induction of GSH, GR and GPx. D3T-mediated induction of GSH was abolished by buthionine sulfoximine (BSO), suggesting a critical involvement of γ-glutamylcysteine ligase (γGCL). Consistently, incubation of RINm5F cells with D3T resulted in increased expression of γGCL protein and mRNA. Pretreatment of RINm5F cells with D3T provided remarkable protection against oxidant-elicited cytotoxicity. On the other hand, depletion of cellular GSH by BSO sensitized RINm5F cells to oxidant injury. Furthermore, cotreatment of RINm5F cells with BSO to reverse D3T-mediated GSH induction abolished the cytoprotective effects of D3T on oxidant injury. Taken together, this study demonstrates that upregulation of glutathione system by D3T is effective for protecting against oxidative beta-cell injury.  相似文献   

8.
The following parameters related to oxygen free radicals (OFR) were determined in erythrocytes and the epidermis of hairless rats: catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), reduced (GSH) and oxidized (GSSG) glutathione, glutathione S-transferase (GST), superoxide dismutase (SOD) and thiobarbituric acid reactive substances (TBARS). GSH, GSSG and TBARS were also analyzed in plasma. In erythrocytes, the Pearson correlation coefficients (r) were significant (p < 0.001) between glutathione and other parameters as follows: GSH correlated negatively with GSSG (r = -0.665) and TBARS (r = -0.669); GSSG correlated positively with SOD (r = 0.709) and TBARS (r = 0.752). Plasma GSSG correlated negatively with erythrocytic thermostable GST activity (r = -0.608; p=0.001) and with erythrocytic total GST activity (r = -0.677; p < 0.001). In epidermis (p < 0.001 in all cases), GSH content correlated with GSSG (r = 0.682) and with GPx (r = 0.663); GSSG correlated with GPx (r = 0.731) and with GR (r = 0.794). By multiple linear regression analysis some predictor variables (R(2)) were found: in erythrocytes, thermostable GST was predicted by total GST activity and GSSG, GSSG content was predicted by GSH and by the GSH/GSSG ratio and GPx activity was predicted by GST, CAT and SOD activities; in epidermis, GSSG was predicted by GR and SOD activities and GR was predicted by GSSG, TBARS and GPx. It is concluded that the hairless rat is a good model for studying OFR-related parameters simultaneously in blood and skin, and that it may provide valuable information about other animals under oxidative stress.  相似文献   

9.
This study was undertaken to investigate the inducibility of glutathione (GSH), glutathione reductase (GR) and glutathione peroxidase (GPx) by 3H-1,2-dithiole-3-thione (D3T) in beta-cells, and the resultant cytoprotection against oxidant injury. Incubation of the insulin-secreting RINm5F cells with D3T led to significant induction of GSH, GR and GPx. D3T-mediated induction of GSH was abolished by buthionine sulfoximine (BSO), suggesting a critical involvement of γ-glutamylcysteine ligase (γGCL). Consistently, incubation of RINm5F cells with D3T resulted in increased expression of γGCL protein and mRNA. Pretreatment of RINm5F cells with D3T provided remarkable protection against oxidant-elicited cytotoxicity. On the other hand, depletion of cellular GSH by BSO sensitized RINm5F cells to oxidant injury. Furthermore, cotreatment of RINm5F cells with BSO to reverse D3T-mediated GSH induction abolished the cytoprotective effects of D3T on oxidant injury. Taken together, this study demonstrates that upregulation of glutathione system by D3T is effective for protecting against oxidative beta-cell injury.  相似文献   

10.
Understanding the molecular pathway(s) controlling the expression of stromal cellular antioxidants and phase 2 enzymes is of importance for developing strategies to protect against bone marrow toxicity induced by oxidants and electrophiles. Accordingly, this study was undertaken to determine the role of the nuclear factor E2-related factor 2 (Nrf2) in regulation of both constitutive and chemoprotectant-inducible expression of antioxidants and phase 2 enzymes in mouse bone marrow stromal cells. The constitutive expression of a series of antioxidants and phase 2 enzymes was significantly lower in stromal cells derived from Nrf2 knockout (Nrf2(-/-)) mice than those from wild-type littermates (Nrf2(+/+)). Incubation of Nrf2(+/+) stromal cells with 3H-1,2-dithiole-3-thione (D3T) led to a significant induction of various antioxidants and phase 2 enzymes. The inducibility of the above cellular defenses by D3T was abolished in Nrf2(-/-) cells. As compared to wild-type cells, Nrf2(-/-) cells were much more susceptible to cytotoxicity induced by reactive oxygen or nitrogen species, 4-hydroxy-2-nonenal, 1,4-hydroquinone, or 1,4-benzoquinone. Upregulation of the antioxidants and phase 2 enzymes by D3T in Nrf2(+/+) stromal cells resulted in increased resistance to the above oxidant- and electrophile-induced cytotoxicity, whereas D3T treatment of Nrf2(-/-) cells only provided a marginal cytoprotection. Taken together, this study demonstrates that Nrf2 is crucial in controlling the expression of bone marrow stromal antioxidants and phase 2 enzymes as well as the susceptibility of these cells to oxidative and electrophilic stress.  相似文献   

11.
4-hydroxy-2-nonenal (HNE) plays an important role in the pathogenesis of cardiac disorders. While conjugation with glutathione (GSH) catalyzed by GSH S-transferase (GST) has been suggested to be a major detoxification mechanism for HNE in target cells, whether chemically upregulated cellular GSH and GST afford protection against HNE toxicity in cardiac cells has not been investigated. In addition, the differential roles of chemically induced GSH and GST as well as other cellular factors in detoxifying HNE in cardiomyocytes are unclear. In this study, we have characterized the induction of GSH and GST by 3H-1,2-dithiole-3-thione (D3T) and the protective effects of the D3T-elevated cellular defenses on HNE-mediated toxicity in rat H9C2 cardiomyocytes. Treatment of cardiomyocytes with D3T resulted in a significant induction of both GSH and GST as well as the mRNA expression of gamma-glutamylcysteine ligase catalytic subunit and GSTA. Both GSH and GST remained elevated for at least 72 h after removal of D3T from the culture media. Treatment of cells with HNE led to a significant decrease in cell viability and an increased formation of HNE-protein adducts. Pretreatment of cells with D3T dramatically protected against HNE-mediated cytotoxicity and protein-adduct formation. HNE treatment caused a significant decrease in cellular GSH level, which preceded the loss of cell viability. Either depletion of cellular GSH by buthionine sulfoximine (BSO) or inhibition of GST by sulfasalazine markedly sensitized the cells to HNE toxicity. Co-treatment of cardiomyocytes with BSO was found to completely block the D3T-mediated GSH elevation, which however failed to reverse the cytoprotective effects of D3T, suggesting that other cellular factor(s) might be involved in D3T cytotprotection. In this regard, D3T was shown to induce cellular aldose reductase (AR). Surprisingly, inhibition of AR by sorbinil failed to potentiate HNE toxicity in cardiomyocytes. In contrast, sorbinil dramatically augmented HNE cytotoxicity in cells with GSH depletion induced by BSO. Similarly, in BSO-treated cells, D3T cytoprotection was also largely reversed by sorbinil, indicating that AR played a significant role in detoxifying HNE only under the condition of GSH depletion in cardiomyocytes. Taken together, this study demonstrates that D3T can induce GSH, GST, and AR in cardiomyocytes, and that the above cellular factors appear to play differential roles in detoxification of HNE in cardiomyocytes.  相似文献   

12.
The equilibrium between antioxidant function and oxidative stress is implicated in brain pathology. However, human studies on oxidant and antioxidant markers rely on postmortem tissue that might be affected by pre and postmortem factors. To evaluate the effect of these variables, we tested whether antioxidant enzymes [superoxide dismutase (SOD), catalase] glutathione (GSH) and related enzymes [gamma glutamylcysteine ligase (GCL), GSH peroxidase (GPx), GSH reductase (GR), GSH-S-transferase (GST)] and malondialdehyde (MDA, marker of lipid peroxidation) are affected in postmortem human brains (n = 50) by increase in postmortem interval (2.5–26 h), gender difference and agonal state [based on Glasgow coma scale (GCS): range: 3–15] in different anatomical regions-frontal cortex (FC), cerebellum (CB) medulla oblongata (MO), substantia nigra (SN) and hippocampus (HC). While SOD and catalase activities were relatively unaltered, GR and GPx activities were affected by agonal state (GR in CB, p < 0.05; GPx in MO, p < 0.05) indicating altered GSH dynamics during the secondary events following neuronal injury. MO, SN and HC displayed low GSH compared to FC and CB. Total GSH level was decreased with PMI (MO, p = 0.02) which could be partly attributed to increase in MDA levels with increasing PMI in MO (p < 0.05). Total GSH level was higher in CB (p < 0.017) and MO (p < 0.04) in female brains compared to males. Interestingly, HC and SN regions showed significant stability in most of the markers tested. We suggest that while SOD and catalase were relatively unaffected by the pre and postmortem factors, GSH and its metabolic enzymes were significantly altered and this was more pronounced in MO of postmortem human brains. These data highlight the influence of pre and postmortem factors on GSH dynamics and the inherent differences in brain regions, with implications for studies on brain pathophysiology employing human samples.  相似文献   

13.
Burak Kaptaner 《Cytotechnology》2016,68(4):1577-1583
The present study was conducted to determine cytotoxic effects of 4-octylphenol (4-OP) on primary cultured hepatocytes of pearl mullet (Alburnus tarichi). Lactate dehydrogenase (LDH) release, malondialdehyde (MDA) level, antioxidant enzymes [superoxide dismutase (SOD), glutathione peroxidase (GPx), glutathione-S-transferase (GST)] and glutathione (GSH) content were measured after 24-h exposure to 4-OP. 4-OP caused dose- and time-dependent increases in LDH release. Significant induction of MDA level and decrease in GSH content were found. SOD and GPx activities were decreased while GST activity was increased. These findings suggest that 4-OP leads to cytotoxicity by depressing antioxidant defenses in fish hepatocytes.  相似文献   

14.
This study aimed to estimate reactive oxygen species (ROS) production, antioxidants activity, and biomarkers level of oxidative damage to protein and DNA in the cerebrospinal fluid (CSF) of C57BL/6 mice infected with Angiostrongylus cantonensis. The mean ROS concentration in the CSF of infected mice increased gradually, and the increase in ROS in CSF became statistical significance at days 12-30 post-infection compared to that before infection (< 0.001), and then ROS returned to normal level at day 45 after infection. In parallel with the increase in ROS in the CSF, infected mice showed similar of changes in reduced glutathione (GSH), glutathione reductase (GR), glutathione peroxidase (GPx), and glutathione S-transferase (GST) as that in ROS in the CSF. GSH, GR, GPx, and GST in the CSF of infected mice were all significantly higher than they were before infection during days 12-30 post-infection. However, protein carbonyl content and 8-hydroxy-2′-deoxyguanosine, biomarkers of oxidative damage to protein and DNA, respectively, were also significantly higher in the CSF of infected mice during this period. These results suggest that oxidative stress occur in the cells of central nervous system of mice infected with A. cantonensis during days 12-30 after infection due to ROS overproduction in CSF despite the increase in antioxidants during this period.  相似文献   

15.
16.
Amelioration of cadmium-induced cardiac impairment by taurine   总被引:1,自引:0,他引:1  
The present study has been designed to investigate the protective role of taurine (2-aminoethanesulfonic acid), a sulfur containing conditionally essential amino acid, against cadmium-induced cardiac dysfunction in mice. Cadmium chloride (CdCl(2)) was used as the source of cadmium and it was administered orally at a dose of 4mg/kg body weight for 6 days. Cadmium exposure caused significant accumulation of the cadmium and iron in mice hearts tissue. Levels of serum specific markers related to cardiac impairments, e.g. total cholesterol, HDL cholesterol and triglyceride were altered due to cadmium toxicity. Reduction in the activities of antioxidant enzymes, namely, superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR), glutathione peroxidase (GPx) and glucose-6-phosphate dehydrogenase (G6PD) have been observed in cadmium exposed mice. Cadmium intoxication also decreased the cardiac glutathione (GSH) and total thiols contents and increased the levels of oxidized glutathione (GSSG), lipid peroxidation end products, protein carbonyl content and the extent of DNA fragmentation. Oral administration of taurine at a dose of 100mg/kg body weight for 5 days, however, prevented all the toxin-induced oxidative impairments mentioned above. "Ferric Reducing/Antioxidant Power (FRAP) assay" showed that taurine could protect the cardiac tissue by preventing cadmium-induced reduction of the intracellular antioxidant power. Histological examination of cardiac segments also supported the beneficial role of taurine against cadmium-induced damages in the murine hearts. Effect of a well established antioxidant, vitamin C has been included in the study as a positive control. Combining all, results suggest that taurine attenuates cadmium-induced impairment in mice hearts.  相似文献   

17.
18.
Oxidative damage and antioxidant properties have been studied in Perna viridis subjected to short-term exposure to Hg along with temperature (72h) and long-term temperature exposures (14 days) as pollution biomarkers. The elevated thiobarbituric acid reactive substances (TBA-RS) levels observed in gills and digestive gland under exposure to Hg, individually and combined with temperature, as also long-term temperature stress have been assigned to the oxidative damage resulting in lipid peroxidation (LPX). Increased activities of antioxidants such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR) and glutathione-S-transferase (GST) both in gills and digestive glands under long-term exposures to temperatures are more prominent to heat rather than cold stress suggesting activation of physiological mechanism to scavenge the ROS produced during heat stress. Also decreased values of reduced glutathione (GSH) on long exposures to temperature stress indicate utilisation of this antioxidant, either to scavenge oxiradicals or act in combination with other enzymes, was more than its production capacity under heat stress. The results suggest that temperature variation does alter the active oxygen metabolism by modulating antioxidant enzyme activities, which can be used as biomarker to detect sublethal effects of pollution.  相似文献   

19.
We have previously reported that ropinirole, a non-ergot dopamine agonist, has neuroprotective effects against 6-hydroxydopamine in mice based on in vivo antioxidant properties such as the glutathione (GSH)-activating effect. In the present study, we determined that the effects of ropinirole on the level of expression of GSH-related enzyme mRNA, these enzymes were shown to regulate GSH contents in the brain. This study focused on the mechanism of GSH enhancement by ropinirole. Striatal GSH contents were significantly increased by 7-day daily administration of ropinirole. Furthermore, the expression levels of -glutamylcysteine synthetase (-GCS), glutathione peroxidase (GPx), glutathione reductase (GR) and glutathione S-transferase (GST) mRNA increased following daily injections of ropinirole for 7 days. In addition, ropinirole treatment for 7 days suppressed auto-oxidation in mouse striatal homogenates, in contrast to the vehicle treatment. In conclusion, ropinirole was able to suppress auto-oxidation, most probably by increasing GSH levels due to an increase of GSH synthesis. In addition, it is likely that auto-oxidation was also suppressed by the activation of GSH-regulating enzymes such as GPx, GR, and GST in the mouse striatum. Thus, our results indicate that the GSH-activating effect of ropinirole may render this dopamine agonist beneficial as a neuroprotective drug.  相似文献   

20.
The aim of this work was to investigate as to how neurons and glial cells separated from the brain cortex respond to oxidative stress induced by aluminum. Female SD rats were exposed to aluminum at the dose level of 100 mg/kg b.w. for 8 weeks. Neuronal and glial cell-enriched fractions were obtained from rat cerebral cortex by sieving the trypsinated homogenate through a series of nylon meshes, followed by centrifugation on ficoll density gradient. Total glutathione content, glutathione peroxidase (GPx), glutathione reductase (GR), and glutathione-s-transferase (GST) along with antioxidant enzymes superoxide dismutase (SOD), catalase were estimated in neuronal and glial-enriched fractions in both control (N-c and G-c) and aluminum exposed animals (N-a and G-a). Secondary products of lipid peroxidation that is MDA levels were estimated by measuring the (TBARS) levels. Our results indicate that TBARS levels were significantly higher in glial cell fraction of unexposed controls (Gc) than the neuronal cells (Nc). Correspondingly the glial cells had higher levels of GSH, GSSG, GPx and GST where as neurons had higher levels of catalase, SOD and GR. Following aluminum exposures significant increase in the TBARS levels was observed in neurons as compared to glial cells which also showed a significant decrease in SOD and catalase activity. The decrease in the TBARS levels in the glial cells could be related to the increase in the GSH levels, GR activity, and GST activity which were found to be increased in glial enriched fractions following aluminum exposure. The increase in activity of various enzymes viz GR, GST in glial cells as compared to neurons suggests that glial cells are actively involved in glutathione homeostasis. Our conclusion is that glial and neurons isolated from rat cerebral cortex show a varied pattern of important antioxidant enzymes and glial cells are more capable of handling the oxidative stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号