首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Patients with atopic dermatitis (AD) have superficial skin colonization with Staphylococcus aureus and an increased number of T helper (Th)2 cells in their peripheral blood. The purpose of this study was to clarify the involvement of interleukin (IL)‐10 secretion from Langerhans cells (LCs) in staphylococcal peptidoglycan (PEG)‐induced Th2 immune responses in mice. Mice were primed with LCs pulsed with PEG (or LPS) and ovalbumin (OVA) and then given a booster OVA injection 2 days later in the hind footpad. Five days after the OVA injection, cytokine responses in the draining popliteal lymph nodes were investigated by RT‐PCR and ELISA. Production of both IL‐10 and IL‐12 by cultured LCs was detected by ELISA. Administration of PEG‐ or LPS‐stimulated LCs into the hind footpads of the mice induced Th2‐prone and Th1‐prone immune responses, respectively, as represented by expression of IL‐4 and interferon ‐γ . In vitro experiments showed that PEG induced greater production of IL‐12 p40 from LCs than did LPS, whereas LPS induced greater production of IL‐12 p70 from LCs than did PEG. Furthermore, it was found that PEG‐stimulated LCs induced greater production of IL‐10 than did LPS‐stimulated LCs, and that neutralization of IL‐10 augmented IL‐12 p70 production and inhibited Th2 development by PEG‐stimulated LCs. These results suggest that PEG can induce Th2 development through down‐regulation of IL‐12 p70 production by LCs in an IL‐10 production‐dependent manner and would explain the role of S. aureus colonization in patients with AD.  相似文献   

2.
The antimicrobial activity of five samples of Taxandria fragrans essential oil was evaluated against a range of Gram‐positive (n= 26) and Gram‐negative bacteria (n= 39) and yeasts (n= 10). The majority of organisms were inhibited and/or killed at concentrations ranging from 0.06–4.0% v/v. Geometric means of MIC were lowest for oil Z (0.77% v/v), followed by oils X (0.86%), C (1.12%), A (1.23%) and B (1.24%). Despite differences in susceptibility data between oils, oils A and X did not differ when tested at 2% v/v in a time kill assay against Staphylococcus aureus. Cytotoxicity assays using peripheral blood mononuclear cells demonstrated that T. fragrans oil was cytotoxic at 0.004% v/v but not at 0.002%. Exposure to one or more of the oils at concentrations of ≤0.002% v/v resulted in a dose responsive reduction in the production of proinflammatory cytokines IL‐6 and TNF‐α, regulatory cytokine IL‐10, Th1 cytokine IFN‐γ and Th2 cytokines IL‐5 and IL‐13 by PHA stimulated mononuclear cells. Oil B inhibited the production of all cytokines except IL‐10, oil X inhibited TNF‐α, IL‐6 and IL‐10, oil A inhibited TNF‐α and IL‐6, oil C inhibited IL‐5 and IL‐6 and oil Z inhibited IL‐13 only. IL‐6 production was significantly inhibited by the most oils (A, B, C and X), followed by TNF‐α (oils A, B and X). In conclusion, T. fragrans oil showed both antimicrobial and anti‐inflammatory activity in vitro, however, the clinical relevance of this remains to be determined.  相似文献   

3.
Staphylococcus aureus, a versatile Gram‐positive bacterium, is the main cause of bone and joint infections (BJI), which are prone to recurrence. The inflammasome is an immune signaling platform that assembles after pathogen recognition. It activates proteases, most notably caspase‐1 that proteolytically matures and promotes the secretion of mature IL‐1β and IL‐18. The role of inflammasomes and caspase‐1 in the secretion of mature IL‐1β and in the defence of S. aureus‐infected osteoblasts has not yet been fully investigated. We show here that S. aureus‐infected osteoblast‐like MG‐63 but not caspase‐1 knock‐out CASP1 ?/?MG‐63 cells, which were generated using CRISPR‐Cas9 technology, activate the inflammasome as monitored by the release of mature IL‐1β. The effect was strain‐dependent. The use of S. aureus deletion and complemented phenole soluble modulins (PSMs) mutants demonstrated a key role of PSMs in inflammasomes‐related IL‐1β production. Furthermore, we found that the lack of caspase‐1 in CASP1 ?/?MG‐63 cells impairs their defense functions, as bacterial clearance was drastically decreased in CASP1 ?/? MG‐63 compared to wild‐type cells. Our results demonstrate that osteoblast‐like MG‐63 cells play an important role in the immune response against S. aureus infection through inflammasomes activation and establish a crucial role of caspase‐1 in bacterial clearance.  相似文献   

4.
5.
We investigated the mechanism underlying the inhibitory effect of rat mesenchymal stem cells (MSCs) on non‐specific mitogen‐stimulated lymphocytes (LCs) and lymphoblasts (LBs). We used MSCs of passages 2–8 prepared from Sprague–Dawley (SD) rats. LCs were isolated from the spleens of SD rats. Mixed LCs reactions of mitomycin C‐treated MSCs with concanavalin A (ConA)‐stimulated LCs or LBs were performed, and the proliferation inhibition effect was tested by MTS assay. The cytotoxicity of MSCs against naïve and ConA‐stimulated LBs was detected, after co‐culturing for 24 h, by lactate dehydrogenase release assay. The rate of apoptosis of ConA‐stimulated LBs was measured by flow cytometry after incubation with MSCs for 9 h in the ratio 10:1. The MSCs were treated with Fas ligand (FasL), transforming growth factor (TGF)‐β, and interleukin (IL)‐10 blocking antibodies and co‐cultured with ConA‐stimulated LBs to observe the apoptosis and growth inhibitory effect. The main outcomes were bone marrow‐derived adherent CD29+, CD44+, CD45, CD54+, CD95+, and SH‐2+ MSCs. FasL, TGF‐β, and IL‐10 production by MSCs were visualized by immunocytochemical analysis. MSCs exhibited a dose‐dependent growth inhibitory effect on ConA‐stimulated LCs and LBs. When treated with anti‐FasL and anti‐IL‐10 blocking antibodies, the inhibitory effect of MSCs on LBs proliferation, and the effect of apoptosis induction on LBs decreased. Anti‐TGF‐β blocking antibody treatment did not significantly influence MSCs. Therefore, the inhibitory effects of MSCs against activated LBs were significantly stronger than that against naïve LCs. FasL and IL‐10, rather than TGF‐β, play important roles in the immunosuppressive effects of MSCs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

6.
The pathogen Staphylococcus aureus causes a wide range of serious infections, necessitating urgent development of a vaccine against this organism. However, currently developed vaccines are relatively ineffective because of the limited antigenic component that is contained in the vaccine formulations. To develop an effective S. aureus candidate vaccine, overlapping PCR was used to add the truncated immunodominant antigen iron‐regulated surface determinant B (IsdB)(N126–P361) (tIsdB) to the N‐terminal of intact antigen target of RNAIII activating protein (TRAP) and thus construct a tIsdB‐TRAP chimera. The humoral and cellular immune responses against tIsdB‐TRAP were compared with those against single or combined formulations. tIsdB‐TRAP elicited significantly stronger humoral responses in mice (P < 0.05). As to cellular immune responses in mice, the tIsdB‐TRAP group resulted in a greater IL‐4 response than did other groups (P < 0.05). Greater amounts of IL‐2 and IFN‐γ were found in the tIsdB‐TRAP group. Mouse challenge also showed that tIsdB‐TRAP provided better protection against S. aureus than did the control groups. These results suggest that this chimeric protein may be a promising pathogen target for further vaccine development.  相似文献   

7.
8.
9.
Cholangiocarcinoma (CCA) associated with liver fluke infection involves inflammatory and immune processes; however, whether these involve the proinflammatory cytokine IL‐17A and proliferative cytokine IL‐22 remains unclear. Here, numbers of IL‐22‐ and IL‐17A‐producing Th cells and cytokine concentrations in 30 patients with CCA and long‐term liver fluke infection, 40 patients with liver‐fluke infection but not CCA, and 16 healthy controls were compared. Analyses were performed using immunohistochemistry, flow cytometry, ELISA and RT‐PCR. Immunohistochemical staining showed weaker expression of IL‐22 and IL‐17A in patients with CCA with than in those without liver fluke infection (P < 0.01). Flow cytometry revealed significantly greater median proportions of IL‐22‐producing T helper cells in patients with CCA (2.2%) than in those without it (0.69%) or controls (0.4%, P < 0.001). Similar results were obtained for IL‐17A‐producing T helper cells. ELISA revealed plasma concentrations of IL‐22 were 1.3‐fold higher in patients with CCA than in those without it and 4.6‐fold higher than in controls (P < 0.001). Plasma concentrations of IL‐17A were 2.5‐fold higher in patients with CCA than in those without it, and 21‐fold higher than in controls (P < 0.001). Amounts of IL‐22 and IL‐17A mRNAs in blood were significantly higher in patients with CCA than in the other two groups. Proportions of CD4+CD45RO+ T cells producing IL‐22 correlated with proportions producing IL‐17A (r = 0.759; P < 0.001), and plasma concentrations of IL‐22 correlated with those of IL‐17A (r = 0.726; P < 0.001). These results suggest that both IL‐17A and IL‐22 affect development of CCA related to liver fluke infection.
  相似文献   

10.
3β,6β‐Dihydroxyolean‐12‐en‐27‐oic acid ( 1 ) is a pentacyclic triterpenoid isolated from the rhizomes of Astilbe chinensis. To evaluate the in vivo antitumor potential and to elucidate its immunological mechanisms, effect of 1 on the growth of mouse‐transplantable tumors, and the immune response in naive and tumor‐bearing mice were investigated. The mice inoculated with mouse tumor cell lines were orally treated with 1 at the doses of 40, 60, and 80 mg/kg for 10 days. The effects of 1 on the growth of mouse‐transplantable S180 sarcoma and H22 hepatoma, splenocyte proliferation, cytotoxic T lymphocyte (CTL) activity, natural killer (NK) cell activity, and production of interleukin‐2 (IL‐2) from splenocytes in S180‐bearing mice were measured. Furthermore, the effect of 1 on 2,4‐dinitrofluorobenzene (DNFB)‐induced delayed‐type hypersensitivity (DTH) reactions and the sheep red blood cell (SRBC)‐induced antibody response in naive mice were also studied. Compound 1 could not only significantly inhibit the growth of mouse transplantable S180 sarcoma and H22 hepatoma, increase splenocytes proliferation, CTL and NK cell activity, and the level of IL‐2 secreted by splenocytes in tumor‐bearing mice, but also remarkably promote the DTH reaction and enhance anti‐SRBC antibody titers in naive mice. These results suggested that 1 could improve both cellular and humoral immune response, and could act as antitumor agent with immunomodulatory activity.  相似文献   

11.
12.
Although non‐segmental vitiligo (NSV) results from the autoimmune destruction of melanocytes, the detailed immune mechanisms have not yet been fully elucidated. Th17 cells have been identified to be implicated in human autoimmune diseases. In this study, the frequencies of peripheral blood Th17 cells and serum levels of IL‐17A and Th17 cell‐related cytokines were examined in 45 patients with active NSV compared to 45 race‐, gender‐, and age‐matched healthy controls. Our results showed increased circulating Th17 cell frequencies and elevated serum IL‐17A, TGF‐β1, and IL‐21 levels in patients with NSV. Meanwhile, the increased Th17 cell frequencies are positively correlated with serum TGF‐β1 level, and the body surface area of lesions is positively correlated with elevated TGF‐β1 and IL‐21 levels and Th17 cell frequencies. Furthermore, positive correlation was identified between Th17 and Th1 cell frequencies in patients with NSV. These results further indicate the potential involvement of Th17 cells and the collaborative contribution of Th17 and Th1 in NSV development, and suggest that the elevated serum TGF‐β1 and IL‐21 levels could contribute to enhanced Th17 cell differentiation in NSV.  相似文献   

13.
The inflammasome is a multiprotein complex that mediates caspase‐1 activation with subsequent maturation of the proinflammatory cytokines IL‐1β and IL‐18. The NLRP3 inflammasome is known to be activated by Staphylococcus aureus, one of the leading causes of bacteremia worldwide. Inflammasome activation and regulation in response to bacterial infection have been found to be of importance for a balanced host immune response. However, inflammasome signaling in vivo in humans initiated by S. aureus is currently sparsely studied. This study therefore aimed to investigate NLRP3 inflammasome activity in 20 patients with S. aureus bacteremia (SAB), by repeated measurement during the first week of bacteremia, compared with controls. Caspase‐1 activity was measured in monocytes and neutrophils by flow cytometry detecting FLICA (fluorescent‐labeled inhibitor of caspase‐1), while IL‐1β and IL‐18 was measured by Luminex and ELISA, respectively. As a measure of inflammasome priming, messenger RNA (mRNA) expression of NLRP3, CASP1 (procaspase‐1), and IL1B (pro‐IL‐1β) was analyzed by quantitative PCR. We found induced caspase‐1 activity in innate immune cells with subsequent release of IL‐18 in patients during the acute phase of bacteremia, indicating activation of the inflammasome. There was substantial interindividual variation in caspase‐1 activity between patients with SAB. We also found an altered inflammasome priming with low mRNA levels of NLRP3 accompanied by elevated mRNA levels of IL1B. This increased knowledge of the individual host immune response in SAB could provide support in the effort to optimize management and treatment of each individual patient.  相似文献   

14.
Expression of surface NKG2D ligands on tumour cells, which activates nature killer (NK) cells and CD8+ T cells, is crucial in antitumour immunity. Some types of tumours have evolved mechanisms to suppress NKG2D‐mediated immune cell activation, such as tumour‐derived soluble NKG2D ligands or sustained NKG2D ligands produced by tumours down‐regulate the expression of NKG2D on NK cells and CD8+ T cells. Here, we report that surface NKG2D ligand RAE1ε on tumour cells induces CD11b+Gr‐1+ myeloid‐derived suppressor cell (MDSC) via NKG2D in vitro and in vivo. MDSCs induced by RAE1ε display a robust induction of IL‐10 and arginase, and these MDSCs show greater suppressive activity by inhibiting antigen‐non‐specific CD8+ T‐cell proliferation. Consistently, upon adoptive transfer, MDSCs induced by RAE1ε significantly promote CT26 tumour growth in IL‐10‐ and arginase‐dependent manners. RAE1ε moves cytokine balance towards Th2 but not Th1 in vivo. Furthermore, RAE1ε enhances inhibitory function of CT26‐derived MDSCs and promotes IL‐4 rather than IFN‐γ production from CT26‐derived MDSCs through NKG2D in vitro. Our study has demonstrated a novel mechanism for NKG2D ligand+ tumour cells escaping from immunosurveillance by facilitating the proliferation and the inhibitory function of MDSCs.  相似文献   

15.
Silicosis is an occupational lung disease caused by the inhalation of silica dust and characterized by lung inflammation and fibrosis. Interleukin (IL)‐1β is induced by silica and functions as the key pro‐inflammatory cytokine in this process. The Th17 response, which is induced by IL‐1β, has been reported very important in chronic human lung inflammatory diseases. To elucidate the underlying mechanisms of IL‐1β and IL‐17 in silicosis, we used anakinra and an anti‐IL‐17 monoclonal antibody (mAb) to block the receptor of IL‐1β (IL‐RI) and IL‐17, respectively, in a mouse model of silicosis. We observed increased IL‐1β expression and an enhanced Th17 response after silica instillation. Treatment with an IL‐1 type I receptor (IL‐1RI) antagonist anakinra substantially decreased silica‐induced lung inflammation and the Th17 response. Lung inflammation and the accumulation of inflammatory cells were attenuated in the IL‐17‐neutralized silicosis group. IL‐17 may promote lung inflammation by modulating the differentiation of Th1 and regulatory T cells (Tregs) and by regulating the production of IL‐22 and IL‐1β during the lung inflammation of silicosis. Silica may induce IL‐1β production from alveolar macrophages and promote inflammation by initiating a Th17 response via an IL‐1β/IL‐1RI‐dependent mechanism. The Th17 response could induce lung inflammation during the pathogenesis of silicosis by regulating the homoeostasis of the Th immune responses and affecting the production of IL‐22 and IL‐1β. This study describes a potentially important inflammatory mechanism of silicosis that may bring about novel therapies for this inflammatory and fibrotic disease.  相似文献   

16.
17.
IL‐18 modulates immune functions by inducing IFN‐γ production and promoting Th1 immune responses. In the present study, we amplified and cloned the sequence (582 bp) encoding full‐length bovine IL‐18 from PBMC stimulated with PHA. The nucleotide and the deduced amino acid sequence of Bos indicus IL‐18 showed an identity of 86–98% compared with IL‐18 sequences of other ruminants. The insert was subcloned into a pET 32a vector and expressed in Escherichia coli as a fusion protein and the matured protein was obtained by caspase I treatment. The specificity of these proteins was confirmed by western blotting. The biological activity of the purified protein was analyzed by its ability to induce IFN‐γ production in PBMC measured by ELISA and qPCR.  相似文献   

18.
Reports describing the effect of interferon‐γ (IFNγ) on interleukin‐1β (IL‐1β) production are conflicting. We resolve this controversy by showing that IFNγ potentiates IL‐1β release from human cells, but transiently inhibits the production of IL‐1β from mouse cells. Release from this inhibition is dependent on suppressor of cytokine signalling 1. IL‐1β and Th17 cells are pathogenic in mouse models for autoimmune disease, which use Mycobacterium tuberculosis (MTB), in which IFNγ and IFNβ are anti‐inflammatory. We observed that these cytokines suppress IL‐1β production in response to MTB, resulting in a reduced number of IL‐17‐producing cells. In human cells, IFNγ increased IL‐1β production, and this might explain why IFNγ is detrimental for multiple sclerosis. In mice, IFNγ decreased IL‐1β and subsequently IL‐17, indicating that the adaptive immune response can provide a systemic, but transient, signal to limit inflammation.  相似文献   

19.
T helper (Th) 17 cells are reportedly effector T cells that produce interleukin (IL)‐17A and play a significant role in the development of autoimmune diseases and immune responses for antimicrobial host defense. Production of IL‐17A in chronic active Epstein–Barr virus infection (CAEBV) was studied to investigate its contribution to pathogenesis of this disease. Significantly more IL‐17A‐producing cells were detected in the peripheral blood of CAEBV patients than in that of healthy controls, although a significant difference in serum IL‐17A production was not confirmed. Of the IL‐17A‐producing cells, 91.8% were cluster of differentiation (CD)4‐positive Th17 cells. Moreover, there were significantly more IL‐17A‐producing cells among CD4+ cells in peripheral blood of CAEBV patients than in that of controls (1.97 ± 0.69% vs. 1.09 ± 0.53%, P = 0.0073). These data suggest that IL‐17A‐producing cells may influence the pathophysiology of CAEBV.  相似文献   

20.
Bacterial super‐infections are a major complication in influenza virus‐infected patients. In response to infection with influenza viruses and bacteria, a complex interplay of cellular signalling mechanisms is initiated, regulating the anti‐pathogen response but also pathogen‐supportive functions. Here, we show that influenza viruses replicate to a higher efficiency in cells co‐infected with Staphylococcus aureus (S. aureus). While cells initially respond with increased induction of interferon beta upon super‐infection, subsequent interferon signalling and interferon‐stimulated gene expression are rather impaired due to a block of STAT1‐STAT2 dimerization. Thus, S. aureus interrupts the first line of defence against influenza viruses, resulting in a boost of viral replication, which may lead to enhanced viral pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号