首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously, we showed that the size of the nuclear genome, measured cytophotometrically in Feulgen-stained fusiform cambial cells of Abies balsamea (L.) Mill., oscillates annually between a maximum in spring and a minimum in late summer, the labile, extra DNA being synthesized during the fall. To determine it the oscillation is induced by the concomitant seasonal changes in temperature and photoperiod, genome size was measured in cambial cells obtained from one-year-old branches of 6-year-old potted trees at the beginning and end of 9 weeks of exposure during the fall, spring and summer to either the natural environment or one of 4 controlled environments, viz. (1) WS, warm temperature (24/20°C in day/night) and short photoperiod (8 h). (2) WL, warm temperature (24/20°C) and long photoperiod (8 h + 1 h night break), (3) CS, cold temperature (9/5°C) and short photoperiod (8 h). and (4) CL, cold temperature (9/5°C) and long photoperiod (8 h + 1 h night break). Overall, genome size (2C) varied between 20 and 34 pg. In the fall, when the cambium was initially dormant, the genome size increased in the natural environment, did not change under short days (WS and CS), and decreased under long days (WL and CL). The cambium reactivated in both WS and WL conditions. In the spring, while the cambium reactivated, the size of the genome decreased in the natural, WS and WL conditions, but not in the CS environment. In the CL conditions, the genome size started to decrease at the end of the 9-week exposure period. The decrease apparently occurred between prophase and telophase, which suggests that the extra DNA is extrachromosomal. In the summer, while the cambium ceased activity, the genome size did not change in the WS, WL and natural environments, whereas it decreased in the CS and CL conditions. The results indicate that increasing temperature and lengthening photoperiod in the spring induce the loss of the extra DNA. However, the environmental conditions that promote DNA synthesis in the fall remain unknown. Genome size varied independently of cambial growth potential and frost hardiness measured previously in the same experimental trees, indicating that the regulation of these processes does not directly involve the extra DNA. However, the finding that cambial cells cycled in the CS and CL environments only in the spring, when their genome size was large, suggests that the extra DNA is important for cambial growth at low temperatures.  相似文献   

2.
To manipulate the occurrence of latewood formation and cambial dormancy in Picea abies (L.) Karst. stems, potted seedlings were transferred from the natural environment on 9 July, when tracheids early in the transition between earlywood and latewood were being produced, and cultured for up to 5 weeks in a controlled environment chamber having: (1) Warm LD, (25/15C during day/night) and long (16 h) photoperiod, (2) Warm SD, (25/15C) and short (8 h) photoperiod, or (3) Cold SD, (18/8°C) and short (8 h) photoperiod. In Warm LD trees, the radial enlargement of primary-walled derivatives on the xylem side of the cambium, as well as xylem production, continued at the same magnitude throughout the experiment. In Warm SD and Cold SD trees, the radial enlargement of primary-walled derivatives declined and the cambium entered dormancy, both developments occurring faster in the Warm SD trees. The concentrations of indole-3-acetic acid (IAA) was higher in developing xylem tissue than in cambium+phloem tissues, but did not vary with environmental treatment or decrease during the experimental period. The O2 concentration in the cambial region followed the order of Cold SD>Warm SD>Warm LD trees and was <5%, the threshold for the inhibition of IAA-induced proton secretion, for the first 3 weeks in Warm SD and Warm LD trees. Thus, neither latewood formation nor cambial dormancy can be attributed to decreased IAA in the cambial region. Nor does lower O2 concentration in the cambial region appear to be inhibiting the IAA action that is associated with cambial growth.  相似文献   

3.
Abstract. In controlled environments, the interactive effects of warm (16: 8°C, day: night) and cool (12: 4°C, day: night) temperatures and long (13.5 h) and short (10 h) photoperiods on the dehardening of seedlings of Pinus radiata D. Don were investigated. In another experiment, the effect of four photoperiods from 9 to 14 h was examined. In a third, dehardening at constant temperatures from 5 to 17°C was followed. There was no evidence for an interaction between photoperiod and temperature. Dehardening was temporarily delayed by photoperiods below about 10 h, but there was no other quantitative effect of photoperiod. At constant temperatures, the rate of dehardening was initially constant but declined as the minimum summer frost hardiness was reached. In the initial phase the rate of dehardening was a linear function of temperature, increasing from 0.05°C day−1 at 8°C to 0.30 °C day−1 at 17°C. Temperature controlled the loss of frost hardiness by regulating the rate of dehardening.  相似文献   

4.
BACKGROUND AND AIMS: The timing of cambial reactivation plays an important role in the control of both the quantity and the quality of wood. The effect of localized heating on cambial reactivation in the main stem of a deciduous hardwood hybrid poplar (Populus sieboldii x P. grandidentata) was investigated. METHODS: Electric heating tape (20-22 degrees C) was wrapped at one side of the main stem of cloned hybrid poplar trees at breast height in winter. Small blocks were collected from both heated and non-heated control portions of the stem for sequential observations of cambial activity and for studies of the localization of storage starch around the cambium from dormancy to reactivation by light microscopy. KEY RESULTS: Cell division in phloem began earlier than cambial reactivation in locally heated portions of stems. Moreover, the cambial reactivation induced by localized heating occurred earlier than natural cambial reactivation. In heated stems, well-developed secondary xylem was produced that had almost the same structure as the natural xylem. When cambial reactivation was induced by heating, the buds of trees had not yet burst, indicating that there was no close temporal relationship between bud burst and cambial reactivation. In heated stems, the amount of storage starch decreased near the cambium upon reactivation of the cambium. After cambial reactivation, storage starch disappeared completely. Storage starch appeared again, near the cambium, during xylem differentiation in heated stems. CONCLUSIONS: The results suggest that, in deciduous diffuse-porous hardwood poplar growing in a temperate zone, the temperature in the stem is a limiting factor for reactivation of phloem and cambium. An increase in temperature might induce the conversion of storage starch to sucrose for the activation of cambial cell division and secondary xylem. Localized heating in poplar stems provides a useful experimental system for studies of cambial biology.  相似文献   

5.
A study of seasonal activity of the cambium in Tectona grandis L. f. has shown that the activity initiates in the first week of June, reaches a peak in July and then slowly declines. The length of fusiform cambial initials undergo considerable variations during the activity and dormancy of the cambium. The initiation of cambial activity is closely associated with the opening of the dormant foliar buds in the first week of May. Cambium is more active with high numbers of immature xylem and phloem elements from July to September when the trees are with mature foliage and flowers and dormant from January to April when leaves dry and defoliation takes place. The differentiation of xylem and phloem starts simultaneously and the number of their immature elements reach the maximum in July.  相似文献   

6.

Background and Aims

Cambial reactivation in trees occurs from late winter to early spring when photosynthesis is minimal or almost non-existent. Reserve materials might be important for wood formation in trees. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules in cambium and phloem were examined from cambial dormancy to the start of xylem differentiation in locally heated stems of Cryptomeria japonica trees in winter.

Methods

Electric heating tape was wrapped on one side of the stem of Cryptomeria japonica trees at breast height in winter. The localization and approximate levels of starch and lipids (as droplets) and number of starch granules were determined by image analysis of optical digital images obtained by confocal laser scanning microscopy.

Key Results

Localized heating induced earlier cambial reactivation and xylem differentiation in stems of Cryptomeria japonica, as compared with non-heated stems. There were clear changes in the respective localizations and levels of starch and lipids (as droplets) determined in terms of relative areas on images, from cambial dormancy to the start of xylem differentiation in heated stems. In heated stems, the levels and number of starch granules fell from cambial reactivation to the start of xylem differentiation. There was a significant decrease in the relative area occupied by lipid droplets in the cambium from cambial reactivation to the start of xylem differentiation in heated stems.

Conclusions

The results showed clearly that the levels and number of storage starch granules in cambium and phloem cells and levels of lipids (as droplets) in the cambium decreased from cambial reactivation to the start of xylem differentiation in heated stems during the winter. The observations suggest that starch and lipid droplets might be needed as sources of energy for the initiation of cambial cell division and the differentiation of xylem in Cryptomeria japonica.  相似文献   

7.
SUMMARY Cambial variants represent a form of secondary growth that creates great stem anatomical diversity in lianas. Despite the importance of cambial variants, nothing is known about the developmental mechanisms that may have led to the current diversity seen in these stems. Here, a thorough anatomical analysis of all genera along the phylogeny of Bignonieae (Bignoniaceae) was carried out in order to detect when in their ontogeny and phylogeny there were shifts leading to different stem anatomical patterns. We found that all species depart from a common developmental basis, with a continuous, regularly growing cambium. Initial development is then followed by the modification of four equidistant portions of the cambium that reduce the production of xylem and increase the production of phloem, the former with much larger sieve tubes and an extended lifespan. In most species, the formerly continuous cambium becomes disjunct, with cambial portions within phloem wedges and cambial portions between them. Other anatomical modifications such as the formation of multiples of four phloem wedges, multiple-dissected phloem wedges, and included phloem wedges take place thereafter. The fact that each novel trait raised on the ontogenetic trajectory appeared in subsequently more recent ancestors on the phylogeny suggests a recapitulatory history. This recapitulation is, however, caused by the terminal addition of evolutionary novelties rather than a truly heterochronic process. Truly heterochronic processes were only found in shrubby species, which resemble juveniles of their ancestors, as a result of a decelerated phloem formation by the variant cambia. In addition, the modular evolution of phloem and xylem in Bignonieae seems to indicate that stem anatomical modifications in this group occurred at the level of cambial initials.  相似文献   

8.
BACKGROUND AND AIMS The effect of heating and cooling on cambial activity and cell differentiation in part of the stem of Norway spruce (Picea abies) was investigated. METHODS: A heating experiment (23-25 degrees C) was carried out in spring, before normal reactivation of the cambium, and cooling (9-11 degrees C) at the height of cambial activity in summer. The cambium, xylem and phloem were investigated by means of light- and transmission electron microscopy and UV-microspectrophotometry in tissues sampled from living trees. KEY RESULTS: Localized heating for 10 d initiated cambial divisions on the phloem side and after 20 d also on the xylem side. In a control tree, regular cambial activity started after 30 d. In the heat-treated sample, up to 15 earlywood cells undergoing differentiation were found to be present. The response of the cambium to stem cooling was less pronounced, and no anatomical differences were detected between the control and cool-treated samples after 10 or 20 d. After 30 d, latewood started to form in the sample exposed to cooling. In addition, almost no radially expanding tracheids were observed and the cambium consisted of only five layers of cells. Low temperatures reduced cambial activity, as indicated by the decreased proportion of latewood. On the phloem side, no alterations were observed among cool-treated and non-treated samples. CONCLUSIONS: Heating and cooling can influence cambial activity and cell differentiation in Norway spruce. However, at the ultrastructural and topochemical levels, no changes were observed in the pattern of secondary cell-wall formation and lignification or in lignin structure, respectively.  相似文献   

9.
The cold stability of microtubules during seasons of active and dormant cambium was analyzed in the conifers Abies firma, Abies sachalinensis and Larix leptolepis by immunofluorescence microscopy. Samples were fixed at room temperature and at a low temperature of 2–3°C to examine the effects of low temperature on the stability of microtubules. Microtubules were visible in cambium, xylem cells and phloem cells after fixation at room temperature during seasons of active and dormant cambium. By contrast, fixation at low temperature depolymerized microtubules in cambial cells, differentiating tracheids, differentiating xylem ray parenchyma and phloem ray parenchyma cells during the active season. However, similar fixation did not depolymerize microtubules during cambial dormancy in winter. Our results indicate that the stability of microtubules in cambial cells and cambial derivatives at low temperature differs between seasons of active and dormant cambium. Moreover, the change in the stability of microtubules that we observed at low temperature might be closely related to seasonal changes in the cold tolerance of conifers. In addition, low-temperature fixation depolymerized microtubules in cambial cells and differentiating cells that had thin primary cell walls, while such low-temperature fixation did not depolymerize microtubules in differentiating secondary xylem ray parenchyma cells and tracheids that had thick secondary cell walls. The stability of microtubules at low temperature appears to depend on the structure of the cell wall, namely, primary or secondary. Therefore, we propose that the secondary cell wall might be responsible for the cold stability of microtubules in differentiating secondary xylem cells of conifers.  相似文献   

10.
Background and Aims Teak forms xylem rings that potentially carry records of carbon sequestration and climate in the tropics. These records are only useful when the structural variations of tree rings and their periodicity of formation are known. Methods The seasonality of ring formation in mature teak trees was examined via correlative analysis of cambial activity, xylem and phloem formation, and climate throughout 1·5 years. Xylem and phloem differentiation were visualized by light microscopy and scanning electron microscopy. Key Results A 3 month dry season resulted in semi-deciduousness, cambial dormancy and formation of annual xylem growth rings (AXGRs). Intra-annual xylem and phloem growth was characterized by variable intensity. Morphometric features of cambium such as cambium thickness and differentiating xylem layers were positively correlated. Cambium thickness was strongly correlated with monthly rainfall (R(2) = 0·7535). In all sampled trees, xylem growth zones (XGZs) were formed within the AXGRs during the seasonal development of new foliage. When trees achieved full leaf, the xylem in the new XGZs appeared completely differentiated and functional for water transport. Two phloem growth rings were formed in one growing season. Conclusions The seasonal formation pattern and microstructure of teak xylem suggest that AXGRs and XGZs can be used as proxies for analyses of the tree history and climate at annual and intra-annual resolution.  相似文献   

11.
Summary The ultrastructure of cells in the cambial region of Salix dasyclados Wim. (clone 78056) was studied during the development of winter hardiness and the onset of cambial activity in spring. Plants were grown at relative growth rates (RG) of 8% and 12% respectively, resulting in different nitrogen content in the stems. Frost hardiness of the plants was estimated by standardized freezing tests. Plants with a higher nitrogen status ceased growth later and started re-growth earlier in spring than plants with lower nitrogen content. Differences in ability to withstand low temperatures during autumn and spring were found between plants grown in the two nutrient treatments. During the development of frost hardiness in the autumn, the number of meristematic cells in the cambial region decreased. The cessation of meristematic activity was accompanied by cell wall thickening and ultrastructural changes in the cells. Frost hardiness increased from the ability to survive -6° C in October to survival of -80° C at the beginning of December. From November to February the cambial region comprised a layer of 2–3 thick-walled cells with conspicuous ultrastructural features. Starch accumulated in plastids in September, decreased during November to March and then increased again in accordance with changes of frost hardiness. Onset of cambial activity began between the end of March and the beginning of April, as shown by increased vacuolization of meristematic cells and mitotic activity. By April, the starch content had increased and lipolysis was observed. Frost hardiness had decreased, and plants with low and high nitrogen content were able to survive -15° C and -10° C, respectively. After budburst, all axillary shoot parts were damaged at temperatures below-3° C.Abbreviations Cz cambial zone - ER endoplasmic reticulum - Lb lipid body - m mitochondrion - Mm multimembraneous structure - Ms myelin-like structure - n nucleus - p plastid - Pb protein body - Pc pit cells - Ph phloem - Pd plasmodesmata - Pl plasmalemma - pl protective layer - Pt plasmatubules - Pw primary wall - Sw secondary wall - s starch - t tannins - v vacuole - K vessel - X xylem - Scale bars 1 urn  相似文献   

12.
Ipomoea hederifolia stems increase in thickness using a combination of different types of cambial variant, such as the discontinuous concentric rings of cambia, the development of included phloem, the reverse orientation of discontinuous cambial segments, the internal phloem, the formation of secondary xylem and phloem from the internal cambium, and differentiation of cork in the pith. After primary growth, the first ring of cambium arises between the external primary phloem and primary xylem, producing secondary phloem centrifugally and secondary xylem centripetally. The stem becomes lobed, flat, undulating, or irregular in shape as a result of the formation of both discontinuous and continuous concentric rings of cambia. As the formation of secondary xylem is greater in one region than in another, this results in the formation of a grooved stem. Successive cambia formed after the first ring are of two distinct functional types: (1) functionally normal successive cambia that divide to form secondary xylem centripetally and secondary phloem centrifugally, like other dicotyledons that show successive rings, and (2) abnormal cambia with reverse orientation. The former type of successive rings originates from the parenchyma cells located outside the phloem produced by previous cambium. The latter type of cambium develops from the conjunctive tissue located at the base of the secondary xylem formed by functionally normal cambia. This cambium is functionally inverted, producing secondary xylem centrifugally and secondary phloem centripetally. In later secondary growth, xylem parenchyma situated deep inside the secondary xylem undergoes de‐differentiation, and re‐differentiates into included phloem islands in secondary xylem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 30–40.  相似文献   

13.
Secondary growth in the stem of Dolichos lablab is achieved by the formation of eccentric successive rings of vascular bundles. The stem is composed of parenchymatous ground tissue and xylem and phloem confined to portions of small cambial segments. However, development of new cambial segments can be observed from the obliterating ray parenchyma, the outermost phloem parenchyma and the secondary cortical parenchyma. Initially cambium develops as small segments, which latter become joined to form a complete cylinder of vascular cambium. Each cambial ring is functionally divided into two distinct regions. The one segment of cambium produces thick-walled lignified xylem derivatives in centripetal direction and phloem elements centrifugally. The other segment produces only thin-walled parenchyma on both xylem and phloem side. In mature stems, some of the axial parenchyma embedded deep inside the xylem acquires meristematic activity and leads to the formation of thick-walled xylem derivatives centrifugally and phloem elements centripetally. The secondary xylem comprises vessel elements, tracheids, fibres and axial parenchyma. Rays are uni-multiseriate in the region of cambium that produces xylem and phloem derivatives, while in some of the regions of cambium large multiseriate, compound, aggregate and polycentric rays can be noticed.  相似文献   

14.
The effects of raised temperature and extended photoperiod onthe dehardening of quiescent and winter-hardy Scots pine saplingswere examined in an open-top-chamber experiment. The saplingswere exposed during winter to natural, square-curve fluctuating(between 1 and 11 °C with a 14 d interval), and constant(6 °C) temperatures with a natural and an extended (17 h)photoperiod. Frost hardiness of needles was determined by controlledfreezing tests and visual damage scoring. The constant 6 °Ctemperature treatment caused a gradual dehardening of needleswhereas under fluctuating temperatures the level of frost hardinessfluctuated. Trees exposed to extended photoperiods were lesshardy than under natural photoperiods after the initiation ofshoot elongation, but before this there were no clear differencesin frost hardiness between different photoperiodic treatments.The results indicate that the frost hardening competence ofScots pine changes during quiescence. Climate change; frost hardiness; hardening competence; photoperiod; Pinus sylvestris, Scots pine; temperature  相似文献   

15.
Methods of sampling and sections preparaction were the same as reported previously. Except that sampling was made at monthly intervals between May 20 and July 30, then at 7–14 day-intervals between July 30 and October 14, and then at monthly intervals between October 14 and March 25 in the next year. The stored starch in various tissues was stained with PAS reaction. During active period of cambium in Broussonetia papyrifera after July 30, the cell layers of immature xylem and phloem decreased progressively, and the formation of mature xylem and phloem increased rapidly. The formation of late wood started early in August, formation of xylem ceased after September 5, followed by ceasation of phloem formation about 1.5 months later. Increasing and decreasing of stored starch were closely related to the periodicity of cambial activity during the year. Starch grains decreased progressively after cambial activity was resumed in early spring until they disappeared in all the stem tissues. Then, starch accumulated progressively again after cambial activity slowed down, particularly after the ceasation of xylem formation. However, after the formation of phloem had ceased, the stored starch once again disappeared progressively until the end of December, and accumulated again. Such changes might be related to the transition of cambium activity involving two periods of dormancy.  相似文献   

16.
Seedlings of five mountain birch populations (Betula pubescens Ehrh. ssp. czerepanovii) from Fennoscandia and Iceland were raised and grown at natural daylengths at Tromsø, Norway (69°N) and different temperatures during late summer and fall season, followed by winter temperature treatment at ambient and +4 °C above ambient temperatures at Bergen, Norway (60°N). The experiment took place during two seasons (2000/01 and 2001/02). The following summer shoot and biomass growth were reduced as a result of winter warming and subsequent premature dehardening in early flushing provenances and treatments. Biomass increased in plants grown at low hardening temperature when compared with high temperature treatment. As a conclusion, increased winter temperatures would tend to increase the risk of spring frost damage and reduce growth in birch seedlings, because the differences between the frost hardening and ambient temperatures are decreasing, and because the time from budbreak to dehardening is shortened. The results are discussed in relation to simultaneous experiments with frost hardiness in the same populations and treatments.  相似文献   

17.
构树形成层的活动周期及其淀粉贮量的变化   总被引:7,自引:2,他引:5  
在构树(Broussonetia papyrifera (L.) Vent.)形成层活动周期中,每年7月末以后,未成熟的木质部和韧皮部逐渐减少,成熟的木质部和韧皮部急剧增多。8月初开始分化晚材。进入9月后木质部的形成逐渐停止,而一个半月以后才停止形成韧皮部。淀粉贮量的消长与形成层的活动周期有很强的相关关系。早春形成层恢复活动后,淀粉贮量逐渐减少直至消失。尔后,形成层活动减慢,特别是木质部分化停止后,淀粉又开始积累。当韧皮部分化也停止后,淀粉又消失,直至翌年1月才重新积累,这似乎与两个休眠期的转化有关  相似文献   

18.
Differences in the timing of cambial reactivation and the initiation of xylem differentiation in response to the sum of daily maximum temperatures were studied in two Cryptomeria japonica trees with cambium of different ages under natural and locally heated conditions. In addition, we observed the effects of low temperature on cambial activity. The timing of cambial reactivation and of the initiation of xylem differentiation differed between 55- and 80-year-old cambium under natural conditions. In the 55-year-old cambium, cambial reactivation occurred when the cambial reactivation index (CRI), calculated on the basis of daily maximum temperatures in excess of 10°C, was 94 and 97°C in 2007 and 2008, respectively. In 80-year-old cambium, cambial reactivation occurred when the CRI, calculated on the basis of daily maximum temperatures in excess of 11°C, was 69 and 71°C in 2007 and 2008, respectively. After cambial reactivation in 2007, normal cell division was evident in the cambium even though the minimum temperature had fallen between −2 and −3°C. Under natural conditions, xylem differentiation started 38–44 days after cambial reactivation. In heated stems, the time between cambial reactivation and the initiation of xylem differentiation ranged from 14 to 16 days, a much shorter time than under natural conditions, indicating that continuous exposure to an elevated temperature had induced earlier xylem differentiation. Our observations indicate that the sensitivity to reactivation inducing stimuli of the cambium depends on both the stage of dormancy and tree age of the cambium.  相似文献   

19.
Mature stems of Sesuvium sesuvioides (Fenzl) Verdc. were found to be composed of successive rings of xylem alternating with phloem. Repeated periclinal divisions in the parenchyma outside the primary phloem gave rise to conjunctive tissue and the lateral meristem that differentiate into the vascular cambium on its inner side. After the formation of the vascular cambium, the lateral meristem external to it became indistinct as long as the cambium was functional. As the cambium ceased to divide, the lateral meristem again became apparent prior to the initiation of the next cambial ring. The cambium was exclusively composed of fusiform cambial cells with no rays. In the young saplings, the number of cambial cylinders in the axis varied from the apex to the base, indicating formation of several rings within the year. In each successive ring of the lateral meristem, small segments differentiated into the vascular cambium and gave rise to vessels, axial parenchyma, fibres and fibriform vessels towards the inside, and secondary phloem on the outer side. In the old stems, non‐functional phloem of the innermost rings was replaced by a new set of sieve tube elements formed by periclinal divisions in the cambial segments associated with the non‐functional phloem. In some places the cambial segments completely differentiate into derivatives leaving no cambial cells between the xylem and phloem. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 548–555.  相似文献   

20.
Mature needles and elongating current year's needles of Pinus strobus growing in Massachusetts and P. brutia growing in Israel were collected monthly or bimonthly for seasonal analysis of leaf cambial activity. Mature needles produced secondary phloem but no xylem, and, regardless of the season, had a cambial zone from 2 to 3 cell layers wide. In the current year's needles maturation was basipetal and the procambium differentiated into primary xylem, primary phloem, and the phloem-producing vascular cambium before needle maturity. One- and 2-year-old needles of Pinus strobus produced slightly over 4 cell layers of phloem between April 15 and September 1 of 1983, with a peak production rate of about 2 cell layers per month in May and early June. One-year-old needles of P. brutia produced about 6 phloem cell layers in 1983, with phloem being produced throughout the year except in midsummer. This was contrasted by fall and winter dormancy in needles of P. strobus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号