首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The introgression of winter germplasm into spring canola (Brassica napus L.) represents a novel approach to improve seed yield of hybrid spring canola. In this study, quantitative trait loci (QTL) for seed yield and other traits were genetically mapped to determine the effects of genomic regions introgressed from winter germplasm into spring canola. Plant materials used comprised of two populations of doubled haploid (DH) lines having winter germplasm introgression from two related French winter cultivars and their testcrosses with a spring line used in commercial hybrids. These populations were evaluated for 2 years at two locations (Wisconsin, USA and Saskatchewan, Canada). Genetic linkage maps based on RFLP loci were constructed for each DH population. Six QTL were detected in the testcross populations for which the winter alleles increased seed yield. One of these QTL explained 11 and 19% of the phenotypic variation in the two Canadian environments. The winter allele for another QTL that increased seed yield was linked in coupling to a QTL allele for high glucosinolate content, suggesting that the transition of rapeseed into canola could have resulted in the loss of favorable seed yield alleles. Most QTL for which the introgressed allele decreased seed yield of hybrids mapped to genomic regions having homoeologous non-reciprocal transpositions. This suggests that allelic configurations created by these rearrangements might make an important contribution to genetic variation for complex traits in oilseed B. napus and could account for a portion of the heterotic effects in hybrids. Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   

2.
Allelic effects observed in QTL discovery experiments must be confirmed to be useful in subsequent breeding efforts. Two QTL affecting seed yield of spring hybrid canola (Brassica napus L.) were previously identified in two populations of inbred backcross lines (IBLs) containing germplasm introgressed from a winter cultivar. The effects of favorable alleles at these QTL were retested by crossing two selected IBLs (M5 and M31) to three spring canola lines having different genetic backgrounds. Doubled haploid (DH) lines derived from each F1 were genotyped with RFLP markers flanking the QTL and grouped into the four possible QTL genotypes. For the first field experiment, DH lines derived by crossing the M5 line to one spring line were crossed to two female testers and evaluated as individual testcross progenies in one environment. QTL genotypes had large variances and were not significantly different. A second field experiment was conducted using the DH lines from the first experiment and two other sets of DH lines derived from the M31 line crossed to two different spring canola lines. Individual lines within each QTL genotype of each set were bulked and crossed to the same testers used in Experiment 1. Bulked hybrid seeds of each QTL genotype were planted in a split-split plot randomized block design and 12 replicates. QTL genotypes had smaller variances in this experiment, and the effects of one QTL were confirmed in some genetic backgrounds. These results suggest that bulking of QTL genotypes and use of an appropriate experimental design with many replicates are needed to detect small differences between QTL genotypes.  相似文献   

3.
Previously identified alleles at quantitative trait loci (QTL) for hybrid seed yield were re-evaluated in the same genetic background (in hybrid combination with the same tester) as the original QTL mapping study and also evaluated in a different genetic background (in hybrid combination with two different testers). The QTL were identified from wide crosses of exotic germplasm sources with spring-type Brassica napus L., in which alleles from the exotic germplasm sources increased hybrid seed yield. Results from the re-evaluation of six QTL, in the same genetic background and hybrid combination, indicate that several of the exotic donor QTL alleles did increase hybrid seed yield and could be successfully used for improving the original single-cross hybrid. However, results from the evaluation of seven QTL (including the same six previous QTL) in a new genetic background, in combination with two new testers, indicate that the exotic QTL alleles were often no different or produced significantly lower hybrid seed yield than the spring QTL alleles. In all studies, the QTL were also very sensitive to environmental interactions. Thus, our results indicate that although these exotic sources contain favorable QTL alleles when introgressed into one spring hybrid background, the effects are not predictive of other genetic backgrounds or hybrid combinations. Although QTL affecting hybrid seed yield have been identified, comparisons of multiple QTL alleles are needed to determine the most favorable allele at each locus. Characterization of QTL complementation across testers will be required to predict their effects in multiple hybrid combinations.  相似文献   

4.
Sclerotinia stem rot, caused by fungus Sclerotinia sclerotiorum, is one of the most devastating diseases in rapeseed (Brassica napus L.). We report the identification of Quantitative trait loci (QTL) involved in the resistance to S. sclerotiorum in two segregating populations of DH lines: the HUA population, derived from a cross between a partially resistant Chinese winter line (Hua dbl2) and a susceptible European spring line (P1804); and the MS population, derived from a partially resistant French winter cultivar (Major) and a susceptible Canadian spring cultivar (Stellar). A petiole inoculation technique and two scoring methods, days to wilt (DW) and stem lesion length (SLL), were used for the resistance assessment. A total of eight genomic regions affecting resistance were detected in the HUA population, with four of these regions affecting both measures of resistance. Only one region, which affected both measurements, was detected in the MS population. Individual QTL explained 6–22% of the variance. At five of the QTL from both populations, alleles from the resistant parent contributed to the resistance. QTL on N2 from the HUA population had the highest LOD score and R 2 value and was detected for SLL in the first evaluation. The N12 resistance allele in Hua dbl2 was detected in a region containing a homeologous non-reciprocal transposition (HNRT) from the resistance-containing portion of N2. This result suggests that QTL in the N12.N2 HNRT enhanced the resistance of Hua dbl2 by increasing the dosage of resistance genes. The relationship of QTL from different genetic backgrounds and their associations with other agronomic traits are discussed.  相似文献   

5.
Although unadapted germplasms have been used to improve disease and insect resistance in alfalfa, there has been little effort to use these for improving forage yield. We evaluated genetic diversity and combining ability among two unadapted germplasms (Medicago sativa ssp. sativa Peruvian and M. sativa ssp. falcata WISFAL) and three Northern U.S. adapted alfalfa cultivars. Population structure analyses indicated that the WISFAL and Peruvian germplasms were genetically distinct from the cultivars, although Peruvian was relatively closer to the cultivars. Peruvian and WISFAL germplasms were intermated to generate a novel hybrid population. This population was crossed to the three cultivars as testers, and the testcross progenies were evaluated for forage yield along with the hybrid population, the original germplasms (Peruvian, WISFAL and cultivars), testcrosses of Peruvian and WISFAL to the three cultivars and a three-way hybrid of the cultivars. The experiment was carried out in the field in Temuco, Chile and Arlington, Wisconsin, USA, and forage was harvested during two seasons. Results from these evaluations showed that hybrids between the Peruvian × WISFAL population and the cultivar testers yielded as much as the cultivar testers. Heterosis was observed between Peruvian and WISFAL, and between these germplasms and the cultivar testers, suggesting that each germplasm may contain different favorable alleles. If Peruvian and WISFAL populations contain alleles at different loci that complement cultivar testers, then combining and enriching these alleles in a single population could result in improved combining ability with alfalfa cultivars.  相似文献   

6.
The value of quantitative trait loci (QTL) is dependant on the strength of association with the traits of interest, allelic diversity at the QTL and the effect of the genetic background on the expression of the QTL. A number of recent studies have identified QTL associated with traits of interest that appear to be independent of the environment but dependant on the genetic background in which they are found. Therefore, the objective of this study was to validate universal and/or mega-environment-specific seed yield QTL that have been previously reported in an independent recombinant inbred line (RIL) population derived from the cross between an elite Chinese and Canadian parent. The population was evaluated at two field environments in China and in five environments in Canada in 2005 and 2006. Of the seven markers linked to seed yield QTL reported by our group in a previous study, four were polymorphic between the two parents. No association between seed yield and QTL was observed. The result could imply that seed yield QTL were either not stable in this particular genetic background or harboured different alleles than the ones in the original mapping population. QTLU Satt162 was associated with several agronomic traits of which lodging was validated. Both the non-adapted and adapted parent contributed favourable alleles to the progeny. Therefore, plant introductions have been validated as a source of favourable alleles that could increase the genetic variability of the soybean germplasm pool and lead to further improvements in seed yield and other agronomic traits.  相似文献   

7.
Little is known about the genetic control of heterosis in the complex polyploid crop species oilseed rape (Brassica napus L.). In this study, two large doubled-haploid (DH) mapping populations and two corresponding sets of backcrossed test hybrids (THs) were analysed in controlled greenhouse experiments and extensive field trials for seedling biomass and yield performance traits, respectively. Genetic maps from the two populations, aligned with the help of common simple sequence repeat markers, were used to localise and compare quantitative trait loci (QTL) related to the expression of heterosis for seedling developmental traits, plant height at flowering, thousand seed mass, seeds per silique, siliques per unit area and seed yield. QTL were mapped using data from the respective DH populations, their corresponding TH populations and from mid-parent heterosis (MPH) data, allowing additive and dominance effects along with digenic epistatic interactions to be estimated. A number of genome regions containing numerous heterosis-related QTL involved in different traits and at different developmental stages were identified at corresponding map positions in the two populations. The co-localisation of per se QTL from the DH population datasets with heterosis-related QTL from the MPH data could indicate regulatory loci that may also contribute to fixed heterosis in the highly duplicated B. napus genome. Given the key role of epistatic interactions in the expression of heterosis in oilseed rape, these QTL hotspots might harbour genes involved in regulation of heterosis (including fixed heterosis) for different traits throughout the plant life cycle, including a significant overall influence on heterosis for seed yield.  相似文献   

8.
 Improved-processing tomato lines were produced by the molecular breeding strategy of advanced backcross QTL (AB-QTL) analysis. These near-isogenic lines (NILs) contained unique introgressions of wild alleles originating from two donor wild species, Lycopersicon hirsutum (LA1777) and L. pimpinellifolium (LA1589). Wild alleles targeted for trait improvement were selected on the basis of previously published replicated QTL data obtained from advanced backcross populations for a battery of important agronomic traits. Twenty three NILs were developed for 15 genomic regions which were predicted to contain 25 quantitative trait factors for the improvement of seven agronomic traits: total yield, red yield, soluble solids, brix×red yield, viscosity, fruit color, and fruit firmness. An evaluation of the agronomic performance of the NILs in five locations worldwide revealed that 22 out of the 25 (88%) quantitative factors showed the phenotypic improvement predicted by QTL analysis of the BC3 populations, as NILs in at least one location. Per-location gains over the elite control ranged from 9% to 59% for brix×red yield; 14% to 33% for fruit color; 17% to 34% for fruit firmness; 6% to 22% for soluble-solids content; 7% to 22% for viscosity; 15% to 48% for red yield, and 20% to 28% for total yield. The inheritance of QTLs, the implementation of the AB-QTL methodology for characterizing unadapted germplasm and the applicability of this method to other crops are discussed. Received: 27 October 1997 / Accepted: 25 November 1997  相似文献   

9.
One of the goals of plant breeding is to increase yield with improved quality characters. Plant introductions (PI) are a rich source of favorable alleles that could improve different characters in modern soybean [Glycine max (L.) Merril] including yield. The objectives of this study were to identify yield QTL underlying the genetic basis for differential adaptation of soybeans to the Canadian, United States or Chinese mega-environments (ME) and to evaluate the relationship and colocalization between yield and agronomic traits QTL. Two crosses between high-yielding Canadian cultivars and elite Chinese cultivars, OAC Millennium × Heinong 38 and Pioneer 9071 × #8902, were used to develop two recombinant inbred line (RIL) populations. Both populations were evaluated at different locations in Ontario, Canada; Minnesota, United States (US), Heilongjiang and Jilin, China, in 2009 and 2010. Significant variation for yield was observed among the RILs of both populations across the three hypothetical ME. Two yield QTL (linked to the interval Satt364–Satt591 and Satt277) and one yield QTL (linked to marker Sat_341) were identified by single-factor ANOVA and interval mapping across all ME in populations 1 and 2, respectively. The most frequent top ten high-yielding lines across all ME carried most of the high-yielding alleles of the QTL that were identified in two and three ME. Both parents contributed favorable alleles, which suggests that not only the adapted parent but also the PI parents are potential sources of beneficial alleles in reciprocal environments. Other QTL were detected also at two and one ME. Most of the yield QTL were co-localized with a QTL associated with an agronomic trait in one, two, or three ME in just one or in both populations. Results suggested that most of the variation observed in seed yield can be explained by the variation of different agronomic traits such a maturity, lodging and height. Novel alleles coming from PI can favorably contribute, directly or indirectly, to seed yield and the utilization of QTL detected across one, two or three ME would facilitate the new allele introgression into breeding populations in both North America and China.  相似文献   

10.
 Improved-processing tomato lines were produced by the molecular breeding strategy of advanced backcross QTL (AB-QTL) analysis. These near-isogenic lines (NILs) contained unique introgressions of wild alleles originating from two donor wild species, Lycopersicon hirsutum (LA1777) and L. pimpinellifolium (LA1589). Wild alleles targeted for trait improvement were selected on the basis of previously published replicated QTL data obtained from advanced backcross populations for a battery of important agronomic traits. Twenty three NILs were developed for 15 genomic regions which were predicted to contain 25 quantitative trait factors for the improvement of seven agronomic traits: total yield, red yield, soluble solids, brix×red yield, viscosity, fruit color, and fruit firmness. An evaluation of the agronomic performance of the NILs in five locations worldwide revealed that 22 out of the 25 (88%) quantitative factors showed the phenotypic improvement predicted by QTL analysis of the BC3 populations, as NILs in at least one location. Per-location gains over the elite control ranged from 9% to 59% for brix×red yield; 14% to 33% for fruit color; 17% to 34% for fruit firmness; 6% to 22% for soluble-solids content; 7% to 22% for viscosity; 15% to 48% for red yield, and 20% to 28% for total yield. The inheritance of QTLs, the implementation of the AB-QTL methodology for characterizing unadapted germplasm and the applicability of this method to other crops are discussed. Theor Appl Genet (1998) 97 : 170–180 Received: 27 October 1997 / Accepted: 25 November 1997  相似文献   

11.
Modern soybean [(Glycine max (L.) Merrill] breeding programs rely primarily on the use of elite × elite line crosses to develop high-yielding cultivars. Favorable alleles for traits of interest have been found in exotic germplasm but the successful introduction of such alleles has been hampered by the lack of adaptation of the exotic parent to local mega-environment and difficulties in identifying superior progeny from elite × exotic crosses. The objective of this study was to use a population derived from a cross between an adapted and an exotic elite line to understand the genetic causes underlying adaptation to two mega-environments (China and Canada). A cross between a high-yielding Canadian cultivar ‘OAC Millennium’ and an elite Chinese cultivar ‘Heinong 38’ was performed to develop a recombinant inbred line (RIL) population. The RIL population was evaluated in China and Canada in multiple environments from 2004 to 2006. Significant variation for seed yield was observed among the RILs in both the Chinese and Canadian environment. Individual RILs performed differently between the Chinese and Canadian environments suggesting differential adaptation to intercontinental mega-environments. Seven seed yield quantitative trait loci (QTL) were identified of which five were mega-environment universal QTL (linked to markers Satt100, Satt162, Satt277, Sat_126, and the interval of Satt139-Sat_042) and two were mega-environment-specific QTL (at marker intervals, Satt194-SOYGPA and Satt259-Satt576). Seed yield QTL located near Satt277 has been confirmed and new QTL have been identified explaining between 9 and 37% of the phenotypic variation in seed yield. The QTL located near Satt100 explained the greatest amount of variation ranging from 18 to 37% per environment. Broad sense heritability ranged from 89 to 64% among environments. Epistatic effects have been identified in both mega-environments with pairs of markers explaining between 9 and 14% of the phenotypic variation in seed yield. An improved understanding of the type of QTL action as either universal or mega-environment-specific QTL as well as their interaction may facilitate the development of strategies to introgress specific high-yielding alleles from Chinese to North American germplasm and vice versa to sustain efforts in breeding of high-yielding soybean cultivars.  相似文献   

12.
Seed yield mega-environment-universal and specific QTL (QTLU and QTLSP, respectively) linked to Satt100, Satt130, Satt162, Satt194, Satt259 Satt277 and Sat_126, have been identified in a population derived from a cross between a Chinese and a Canadian soybean [Glycine max (L.) Merrill] elite line. The variation observed in yield could be the consequence of the variation of agronomic traits. Yield-component traits have been reported in the literature, but a better understanding of their impact at the molecular level is still lacking. Therefore, the objectives of this study were to identify traits correlated with yield and to determine if the yield QTLU and QTLSP were co-localized with QTLU and QTLSP associated with an agronomic trait. A recombinant inbred line (RIL) population was developed from a cross between a high-yielding adapted Canadian and a high-yielding exotic Chinese soybean elite line. The RIL were evaluated in multiple environments in China and Canada during the period from 2004 to 2006. Four yield QTLU, tagged by markers Satt100, Satt277, Satt162 and Sat_126, were co-localized with a QTL associated with an agronomic trait, behaving as either QTLU or QTLSP for the agronomic trait. For example, the yield QTLU, tagged by marker Satt100 was associated also with 100 seed weight, pods per plant, pods per node, plant height, R1, R5, R8, oil content and protein content in all Canadian environments, but only with pods per plant, pods per node, plant height, R1, R5, R8 and oil content in two or more Chinese environments. No agronomic traits QTL were co-localized with the yield QTLU tagged by the marker Satt139 or the yield QTLSP tagged by Satt259, suggesting a physiological basis of the yield in these QTL. The results suggest that a successful introgression of crop productivity alleles from plant introductions into an adapted germplasm could be facilitated by the use of both the QTLU and QTLSP because each type of QTL contributed either directly or indirectly through yield-component traits to seed yield of RILs.  相似文献   

13.
The discovery of unbranched, monocephalic natural variants was pivotal for the domestication of sunflower (Helianthus annuus L.). The branching locus (B), one of several loci apparently targeted by aboriginal selection for monocephaly, pleiotropically affects plant, seed and capitula morphology and, when segregating, confounds the discovery of favorable alleles for seed yield and other traits. The present study was undertaken to gain deeper insights into the genetics of branching and seed traits affected by branching. We produced an unbranched hybrid testcross recombinant inbred line (TC-RIL) population by crossing branched (bb) and unbranched (BB) RILs to an unbranched (BB) tester. The elimination of branching concomitantly eliminated a cluster of B-linked seed trait quantitative trait loci (QTL) identified by RIL per se testing. We identified a seed oil content QTL linked in repulsion and a 100-seed weight QTL linked in coupling to the B locus and additional unlinked QTL, previously masked by B-locus pleiotropy. Genomic segments flanking the B locus harbor multiple loci for domestication and post-domestication traits, the effects of which are masked by B-locus pleiotropy in populations segregating for branching and can only be disentangled by genetic analyses in unbranched populations. QTL analyses of NILs carrying wild B alleles substantiated the pleiotropic effects of the B locus. The effect of the B locus on branching was masked by the effects of wild alleles at independent branching loci in hybrids between monocephalic domesticated lines and polycephalic wild ecotypes; hence, the B locus appears to be necessary, but not sufficient, for monocephaly in domesticated sunflower.  相似文献   

14.
 We report results from a breeding strategy designed to accumulate favorable QTL alleles for grain yield identified in the SteptoeבMorex’ (SM) barley germplasm. Two map lines (SM73 and SM145) from the original mapping population were selected based on their marker genotype and QTL structure. When crossed, these lines would be expected to produce progeny with most favorable QTL alleles. One hundred doubled haploid (DH) lines from the F1 hybrid of this cross were genotyped with ten RFLP markers and one morphological marker defining grain yield to monitor QTL segregation. A subset of 24 lines representing various combinations of putatively favorable and unfavorable QTL alleles, together with Steptoe, ‘Morex’, SM73, and SM145, were phenotyped for grain yield in five environments. Multiple regression procedures were used to explore phenotype and genotype relationships. Most target QTLs showed significant effects. However, significance and magnitude of QTL effects and favorable QTL allele phase varied across environments. All target QTLs showed significant QTL-by-environment interaction (QTL×E), and the QTL on chromosome 2 expressed alternative favorable QTL alleles in different environments. Digenic epistatic effects were also detected between some QTL loci. For traits such as grain yield, marker-assisted selection efforts may be better targeted at determining optimum combinations of QTL alleles rather than pyramiding alleles detected in a reference mapping population. Received: 2 June 1998 / Accepted: 17 September 1998  相似文献   

15.
Increasing seed yield is an important breeding goal of soybean [Glycine max (L.) Merr.] improvement efforts. Due to the small number of ancestors and subsequent breeding and selection, the genetic base of current soybean cultivars in North America is narrow. The objective of this study was to map quantitative trait loci (QTL) in two backcross populations developed using soybean plant introductions as donor parents. The first population included 116 BC(2)F(3)-derived lines developed using "Elgin" as the recurrent parent and PI 436684 as the donor parent (E population). The second population included 93 BC(3)F(3)-derived lines developed with "Williams 82" as the recurrent parent and PI 90566-1 as the donor parent (W population). The two populations were evaluated with 1,536 SNP markers and during 2?years for seed yield and other agronomic traits. Genotypic and phenotypic data were analyzed using the programs MapQTL and QTLNetwork to identify major QTL and epistatic QTL. In the E population, two yield QTL were identified by both MapQTL and QTLNetwork, and the PI 436684 alleles were associated with yield increases. In the W population, a QTL allele from PI 90566-1 accounted for 30?% of the yield variation; however, the PI region was also associated with later maturity and shorter plant height. No epistasis for seed yield was identified in either population. No yield QTL was previously reported at the regions where these QTL map indicating that exotic germplasm can be a source of new alleles that can improve soybean yield.  相似文献   

16.
Earliness of flowering and maturity and high seed yield are important objectives of breeding spring Brassica napus canola. Previously, we have introgressed earliness of flowering from Brassica oleracea into spring B. napus canola through interspecific crossing between these two species. In this paper, we report quantitative trait locus (QTL) mapping of days to flower and seed yield by use of publicly available markers and markers designed based on flowering time genes and a doubled haploid population, derived from crossing of the spring canola parent and an early flowering line developed from a B. napus × B. oleracea cross, tested in nine field trials for over 5 years. Five genomic regions associated with days to flower were identified on C1, C2, C3, and C6 of which the single QTL of C1 was detected in all trials; in all cases, the allele introgressed from B. oleracea reduced the number of days to flower. BLASTn search in the Brassica genomes located the physical position of the QTL markers and identified putative flowering time genes in these regions. In the case of seed yield, ten QTL from eight linkage groups were detected; however, none could be consistently detected in all trials. The QTL region of C1 associated with days to flower did not show significant association with seed yield in more than 80% of the field trials; however, in a single trial, the allele introgressed from B. oleracea exerted a negative effect on seed yield. Thus, the genomic regions and molecular markers identified in this research could potentially be used in breeding for the development of early flowering B. napus canola cultivars without affecting seed yield in a majority of the environments.  相似文献   

17.
Maize (Zea mays L.) is particularly sensitive to chilling in the early growth stages. The objective of this study was to determine quantitative trait loci (QTL) for early plant vigour of maize grown under cool and moderately warm conditions in Central Europe. A population of 720 doubled haploid (DH) lines was derived from a cross between two dent inbred lines contrasting in early vigour and were genotyped with 188 SSR markers. The DH lines per se and their testcrosses with a flint line were evaluated in field experiments across 11 environments in 2001 and 2002. Plants were harvested after six to eight leaves had been fully developed to assess fresh matter yield as a criterion of early vigour. Seven QTL were detected for line performance and ten QTL for testcross performance, explaining 64 and 49% of the genetic variance. Six out of seven QTL detected in the lines per se were also significant in their testcrosses. Significant QTL × environment interaction was observed, but no relationship existed between the size of the QTL effects and the mean temperature in the individual environment. The correlation between fresh matter yield and days to silking was non-significant, indicating that differences in early plant vigour were not simply caused by maturity differences. For three additional chilling-related traits, leaf chlorosis, leaf purpling, and frost damage seven, six, and five QTL were detected, respectively. Three QTL for leaf chlorosis, two for leaf purpling, and two for frost damage co-localized with QTL for fresh matter yield. Results are considered as a reliable basis for further genetic, molecular, and physiological investigations.  相似文献   

18.
You A  Lu X  Jin H  Ren X  Liu K  Yang G  Yang H  Zhu L  He G 《Genetics》2006,172(2):1287-1300
This study was conducted to determine whether quantitative trait loci (QTL) controlling traits of agronomic importance detected in recombinant inbred lines (RILs) are also expressed in testcross (TC) hybrids of rice. A genetic map was constructed using an RIL population derived from a cross between B5 and Minghui 63, a parent of the most widely grown hybrid rice cultivar in China. Four TC hybrid populations were produced by crossing the RILs with three maintaining lines for the widely used cytoplasmic male-sterile (CMS) lines and the genic male-sterile line Peiai64s. The mean values of the RILs for the seven traits investigated were significantly correlated to those of the F1 hybrids in the four TC populations. Twenty-seven main-effect QTL were identified in the RILs. Of these, the QTL that had the strongest effect on each of the seven traits in the RILs was detected in two or more of the TC populations, and six other QTL were detected in one TC population. Epistatic analysis revealed that the effect of epistatic QTL was relatively weak and cross combination specific. Searching publicly available QTL data in rice revealed the positional convergence of the QTL with the strongest effect in a wide range of populations and under different environments. Since the main-effect QTL is expressed across different testers, and in different genetic backgrounds and environments, it is a valuable target for gene manipulation and for further application in rice breeding. When a restorer line that expresses main-effect QTL is bred, it could be used in a number of cross combinations.  相似文献   

19.
Breeding of oilseed rape (Brassica napus ssp. napus) has evoked a strong bottleneck selection towards double-low (00) seed quality with zero erucic acid and low seed glucosinolate content. The resulting reduction of genetic variability in elite 00-quality oilseed rape is particularly relevant with regard to the development of genetically diverse heterotic pools for hybrid breeding. In contrast, B. napus genotypes containing high levels of erucic acid and seed glucosinolates (++ quality) represent a comparatively genetically divergent source of germplasm. Seed glucosinolate content is a complex quantitative trait, however, meaning that the introgression of novel germplasm from this gene pool requires recurrent backcrossing to avoid linkage drag for high glucosinolate content. Molecular markers for key low-glucosinolate alleles could potentially improve the selection process. The aim of this study was to identify potentially gene-linked markers for important seed glucosinolate loci via structure-based allele-trait association studies in genetically diverse B. napus genotypes. The analyses included a set of new simple-sequence repeat (SSR) markers whose orthologs in Arabidopsis thaliana are physically closely linked to promising candidate genes for glucosinolate biosynthesis. We found evidence that four genes involved in the biosynthesis of indole, aliphatic and aromatic glucosinolates might be associated with known quantitative trait loci for total seed glucosinolate content in B. napus. Markers linked to homoeologous loci of these genes in the paleopolyploid B. napus genome were found to be associated with a significant effect on the seed glucosinolate content. This example shows the potential of Arabidopsis-Brassica comparative genome analysis for synteny-based identification of gene-linked SSR markers that can potentially be used in marker-assisted selection for an important trait in oilseed rape. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

20.
Verticillium longisporum is a major threat to production of oilseed rape (Brassica napus) in Europe. The aim of the study was to develop new markers and obtain insights into putative mechanisms and pathways involved in the resistance reaction. A genetic approach was used to identify quantitative trait loci (QTL) for V. longisporum resistance and metabolic traits potentially influencing resistance in a B. napus mapping population. Resistance to V. longisporum was mapped in a doubled haploid (DH) population from a cross between the partially resistant winter oilseed rape variety Express 617 and a resistant resynthesized B. napus line, R53. One major resistance QTL contributed by R53 was identified on chromosome C5, while a further, minor QTL contributed by Express 617 was detected on chromosome C1. Markers flanking the QTL also significantly correlated with V. longisporum resistance in four further DH populations derived from crosses between elite oilseed rape cultivars and other resynthesized B. napus lines originating from genetically and geographically diverse brassica A and C genome donors. The tightly-linked markers developed enable the combination of favorable alleles for novel resistance loci from resynthesized B. napus materials with existing resistance loci from commercial breeding lines. HPLC analysis of hypocotyls from infected DH lines revealed that concentrations of a number of phenylpropanoids were correlated with V. longisporum resistance. QTL for some of these phenylpropanoids were also found to co-localize with the QTL for V. longisporum resistance. Genes from the phenylpropanoid pathway are suggested as candidates for V. longisporum resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号