首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Heme oxygenase (HO) catalyzes physiological heme degradation consisting of three sequential oxidation steps that use dioxygen molecules and reducing equivalents. We determined the crystal structure of rat HO-1 in complex with heme and azide (HO-heme-N(3)(-)) at 1.9-A resolution. The azide, whose terminal nitrogen atom is coordinated to the ferric heme iron, is situated nearly parallel to the heme plane, and its other end is directed toward the alpha-meso position of the heme. Based on resonance Raman spectroscopic analysis of HO-heme bound to dioxygen, this parallel coordination mode suggests that the azide is an analog of dioxygen. The azide is surrounded by residues of the distal F-helix with only the direction to the alpha-meso carbon being open. This indicates that regiospecific oxygenation of the heme is primarily caused by the steric constraint between the dioxygen bound to heme and the F-helix. The azide interacts with Asp-140, Arg-136, and Thr-135 through a hydrogen bond network involving five water molecules on the distal side of the heme. This network, also present in HO-heme, may function in dioxygen activation in the first hydroxylation step. From the orientation of azide in HO-heme-N(3)(-), the dioxygen or hydroperoxide bound to HO-heme, the active oxygen species of the first reaction, is inferred to have a similar orientation suitable for a direct attack on the alpha-meso carbon.  相似文献   

2.
Heme oxygenase (HO) catalyzes heme degradation by utilizing O(2) and reducing equivalents to produce biliverdin IX alpha, iron, and CO. To avoid product inhibition, the heme[bond]HO complex (heme[bond]HO) is structured to markedly increase its affinity for O(2) while suppressing its affinity for CO. We determined the crystal structures of rat ferrous heme[bond]HO and heme[bond]HO bound to CO, CN(-), and NO at 2.3, 1.8, 2.0, and 1.7 A resolution, respectively. The heme pocket of ferrous heme-HO has the same conformation as that of the previously determined ferric form, but no ligand is visible on the distal side of the ferrous heme. Fe[bond]CO and Fe[bond]CN(-) are tilted, whereas the Fe[bond]NO is bent. The structure of heme[bond]HO bound to NO is identical to that bound to N(3)(-), which is also bent as in the case of O(2). Notably, in the CO- and CN(-)-bound forms, the heme and its ligands shift toward the alpha-meso carbon, and the distal F-helix shifts in the opposite direction. These shifts allow CO or CN(-) to bind in a tilted fashion without a collision between the distal ligand and Gly139 O and cause disruption of one salt bridge between the heme and basic residue. The structural identity of the ferrous and ferric states of heme[bond]HO indicates that these shifts are not produced on reduction of heme iron. Neither such conformational changes nor a heme shift occurs on NO or N(3)(-) binding. Heme[bond]HO therefore recognizes CO and O(2) by their binding geometries. The marked reduction in the ratio of affinities of CO to O(2) for heme[bond]HO achieved by an increase in O(2) affinity [Migita, C. T., Matera, K. M., Ikeda-Saito, M., Olson, J. S., Fujii, H., Yoshimura, T., Zhou, H., and Yoshida, T. (1998) J. Biol. Chem. 273, 945-949] is explained by hydrogen bonding and polar interactions that are favorable for O(2) binding, as well as by characteristic structural changes in the CO-bound form.  相似文献   

3.
The crystal structure of rat heme oxygenase-1 in complex with biliverdin-iron chelate (biliverdin(Fe)-HO-1), the immediate precursor of the final product, biliverdin, has been determined at a 2.4-A resolution. The electron density in the heme pocket clearly showed that the tetrapyrrole ring of heme is cleaved at the alpha-meso edge. Like the heme bound to HO-1, biliverdin-iron chelate is located between the distal and proximal helices, but its accommodation state seems to be less stable in light of the disordering of the solvent-exposed propionate and vinyl groups. The middle of the distal helix is shifted away from the center of the active site in biliverdin(Fe)-HO-1, increasing the size of the heme pocket. The hydrogen-bonding interaction between Glu-29 and Gln-38, considered to restrain the orientation of the proximal helix in the heme-HO-1 complex, was lost in biliverdin(Fe)-HO-1, leading to relaxation of the helix. Biliverdin has a distorted helical conformation; the lactam oxygen atom of its pyrrole ring-A interacted with Asp-140 through a hydrogen-bonding solvent network. Because of the absence of a distal water ligand, the iron atom is five-coordinated with His-25 and four pyrrole nitrogen atoms. The coordination geometry deviates considerably from a square pyramid, suggesting that the iron may be readily dissociated. We speculate that the opened conformation of the heme pocket facilitates sequential product release, first iron then biliverdin, and that because of biliverdin's increased flexibility, iron release triggers its slow dissociation.  相似文献   

4.
We report the crystal structure of heme oxygenase from the pathogenic bacterium Neisseria meningitidis at 1.5 A and compare and contrast it with known structures of heme oxygenase-1 from mammalian sources. Both the bacterial and mammalian enzymes share the same overall fold, with a histidine contributing a ligand to the proximal side of the heme iron and a kinked alpha-helix defining the distal pocket. The distal helix differs noticeably in both sequence and conformation, and the distal pocket of the Neisseria enzyme is substantially smaller than in the mammalian enzyme. Key glycine residues provide the flexibility for the helical kink, allow close contact of the helix backbone with the heme, and may interact directly with heme ligands.  相似文献   

5.
Heme oxygenase (HO) catalyzes the first step in the heme degradation pathway. The crystal structures of apo- and heme-bound truncated human HO-2 reveal a primarily alpha-helical architecture similar to that of human HO-1 and other known HOs. Proper orientation of heme in HO-2 is required for the regioselective oxidation of the alpha-mesocarbon. This is accomplished by interactions within the heme binding pocket, which is made up of two helices. The iron coordinating residue, His(45), resides on the proximal helix. The distal helix contains highly conserved glycine residues that allow the helix to flex and interact with the bound heme. Tyr(154), Lys(199), and Arg(203) orient the heme through direct interactions with the heme propionates. The rearrangements of side chains in heme-bound HO-2 compared with apoHO-2 further elucidate HO-2 heme interactions.  相似文献   

6.
Heme oxygenase catalyzes the first step in the oxidative degradation of heme. The crystal structure of heme oxygenase-1 (HO-1) reported here reveals a novel helical fold with the heme sandwiched between two helices. The proximal helix provides a heme iron ligand, His 25. Conserved glycines in the distal helix near the oxygen binding site allow close contact between the helix backbone and heme in addition to providing flexibility for substrate binding and product release. Regioselective oxygenation of the alpha-meso heme carbon is due primarily to steric influence of the distal helix.  相似文献   

7.
Sperm whale myoglobin (Mb) and soybean leghemoglobin (Lba) are two small, monomeric hemoglobins that share a common globin fold but differ widely in many other aspects. Lba has a much higher affinity for most ligands, and the two proteins use different distal and proximal heme pocket regulatory mechanisms to control ligand binding. Removal of the constraint provided by covalent attachment of the proximal histidine to the F-helices of these proteins decreases oxygen affinity in Lba and increases oxygen affinity in Mb, mainly because of changes in oxygen dissociation rate constants. Hence, Mb and Lba use covalent constraints in opposite ways to regulate ligand binding. Swapping the F-helices of the two proteins brings about similar effects, highlighting the importance of this helix in proximal heme pocket regulation of ligand binding. The F7 residue in Mb is capable of weaving a hydrogen-bonding network that holds the proximal histidine in a fixed orientation. On the contrary, the F7 residue in Lba lacks this property and allows the proximal histidine to assume a conformation favorable for higher ligand binding affinity. Geminate recombination studies indicate that heme iron reactivity on picosecond timescales is not the dominant cause for the effects observed in each mutation. Results also indicate that in Lba the proximal and distal pocket mutations probably influence ligand binding independently. These results are discussed in the context of current hypotheses for proximal heme pocket structure and function.  相似文献   

8.
Heme oxygenase (HO) catalyzes the degradation of heme to biliverdin. The crystal structure of human HO-1 in complex with heme reveals a novel helical structure with conserved glycines in the distal helix, providing flexibility to accommodate substrate binding and product release (Schuller, D. J., Wilks, A., Ortiz de Montellano, P. R., and Poulos, T. L. (1999) Nat. Struct. Biol. 6, 860-867). To structurally understand the HO catalytic pathway in more detail, we have determined the crystal structure of human apo-HO-1 at 2.1 A and a higher resolution structure of human HO-1 in complex with heme at 1.5 A. Although the 1.5-A heme.HO-1 model confirms our initial analysis based on the 2.08-A model, the higher resolution structure has revealed important new details such as a solvent H-bonded network in the active site that may be important for catalysis. Because of the absence of the heme, the distal and proximal helices that bracket the heme plane in the holo structure move farther apart in the apo structure, thus increasing the size of the active-site pocket. Nevertheless, the relative positioning and conformation of critical catalytic residues remain unchanged in the apo structure compared with the holo structure, but an important solvent H-bonded network is missing in the apoenzyme. It thus appears that the binding of heme and a tightening of the structure around the heme stabilize the solvent H-bonded network required for proper catalysis.  相似文献   

9.
HasASM, a hemophore secreted by the Gram-negative bacteria Serratia marcescens, extracts heme from host hemoproteins and shuttles it to HasRSM, a specific hemophore outer membrane receptor. Heme iron in HasASM is in a six-coordinate ferric state. It is linked to the protein by the heretofore uncommon axial ligand set, His32 and Tyr75. A third residue of the heme pocket, His83, plays a crucial role in heme ligation through hydrogen bonding to Tyr75. The vibrational frequencies of coordinated carbon monoxide constitute a sensitive probe of trans ligand field, FeCO structure, and electrostatic landscape of the distal heme pockets of heme proteins. In this study, carbonyl complexes of wild-type (WT) HasASM and its heme pocket mutants His32Ala, Tyr75Ala, and His83Ala were characterized by resonance Raman spectroscopy. The CO complexes of WT HasASM, HasASM(His32Ala), and HasASM(His83Ala) exhibit similar spectral features and fall above the line that correlates nuFe-CO and nuC-O for proteins having a proximal imidazole ligand. This suggests that the proximal ligand field in these CO adducts is weaker than that for heme-CO proteins bearing a histidine axial ligand. In contrast, the CO complex of HasASM(Tyr75Ala) has resonance Raman signatures consistent with ImH-Fe-CO ligation. These results reveal that in WT HasASM, the axial ImH side chain of His32 is displaced by CO. This is in contrast to other heme proteins known to have the His/Tyr axial ligand set, wherein the phenolic side chain of the Tyr ligand dissociates upon CO addition. The displacement of His32 and its stabilization in an unbound state is postulated to be relevant to heme uptake and/or release.  相似文献   

10.
The majority of the active site residues of cyanide-inhibited, substrate-bound human heme oxygenase have been assigned on the basis of two-dimensional NMR using the crystal structure of the water-ligated substrate complex as a guide (Schuller, D. J., Wilks, A., Ortiz de Montellano, P. R., and Poulos, T. L. (1999) Nat. Struct. Biol. 6, 860-867). The proximal helix and the N-terminal portion of the distal helix are found to be identical to those in the crystal except that the heme for the major isomer ( approximately 75-80%) in solution is rotated 180 degrees about the alpha-gamma-meso axis relative to the unique orientation in the crystal. The central portion of the distal helix in solution is translated slightly over the heme toward the distal ligand, and a distal four-ring aromatic cluster has moved 1-2 A closer to the heme, which allows for strong hydrogen bonds between the hydroxyls of Tyr-58 and Tyr-137. These latter interactions are proposed to stabilize the closed pocket conducive to the high stereospecificity of the alpha-meso ring opening. The determination of the magnetic axes, for which the major axis is controlled by the Fe-CN orientation, reveals a approximately 20 degrees tilt of the distal ligand from the heme normal in the direction of the alpha-meso bridge, demonstrating that the close placement of the distal helix over the heme exerts control of stereospecificity by both blocking access to the beta, gamma, and delta-meso positions and tilting the axial ligand, a proposed peroxide, toward the alpha-meso position.  相似文献   

11.
Heme oxygenase (HO) catalyzes the regiospecific cleavage of the porphyrin ring of heme using reducing equivalents and O2 to produce biliverdin, iron, and CO. Because CO has a cytoprotective effect through the p38-MAPK pathway, HO is a potential therapeutic target in cancer. In fact, inhibition of the HO isoform HO-1 reduces Kaposi sarcoma tumor growth. Imidazole-dioxolane compounds have recently attracted attention because they have been reported to specifically inhibit HO-1, but not HO-2, unlike Cr-containing protoporphyrin IX, a classical inhibitor of HO, that inhibits not only both HO isoforms but also other hemoproteins. The inhibitory mechanism of imidazole-dioxolane compounds, however, has not yet been characterized. Here, we determine the crystal structure of the ternary complex of rat HO-1, heme, and an imidazole-dioxolane compound, 2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-1,3-dioxolane. This compound bound on the distal side of the heme iron, where the imidazole and 4-chlorophenyl groups were bound to the heme iron and the hydrophobic cavity in HO, respectively. Binding of the bulky inhibitor in the narrow distal pocket shifted the distal helix to open the distal site and moved both the heme and the proximal helix. Furthermore, the biochemical characterization revealed that the catalytic reactions of both HO-1 and HO-2 were completely stopped after the formation of verdoheme in the presence of the imidazole-dioxolane compound. This result should be mainly due to the lower reactivity of the inhibitor-bound verdoheme with O2 compared to the reactivity of the inhibitor-bound heme with O2.  相似文献   

12.
Cytochrome bd is a quinol oxidase of Escherichia coli under microaerophilic growth conditions. Coupling of the release of protons to the periplasm by quinol oxidation to the uptake of protons from the cytoplasm for dioxygen reduction generates a proton motive force. On the basis of sequence analysis, glutamates 99 and 107 conserved in transmembrane helix III of subunit I have been proposed to convey protons from the cytoplasm to heme d at the periplasmic side. To probe a putative proton channel present in subunit I of E. coli cytochrome bd, we substituted a total of 10 hydrophilic residues and two glycines conserved in helices I and III-V and examined effects of amino acid substitutions on the oxidase activity and bound hemes. We found that Ala or Leu mutants of Arg9 and Thr15 in helix I, Gly93 and Gly100 in helix III, and Ser190 and Thr194 in helix V exhibited the wild-type phenotypes, while Ala and Gln mutants of His126 in helix IV retained all hemes but partially lost the activity. In contrast, substitutions of Thr26 in helix I, Glu99 and Glu107 in helix III, Ser140 in helix IV, and Thr187 in helix V resulted in the concomitant loss of bound heme b558 (T187L) or b595-d (T26L, E99L/A/D, E107L/A/D, and S140A) and the activity. Glu99 and Glu107 mutants except E107L completely lost the heme b595-d center, as reported for heme b595 ligand (His19) mutants. On the basis of this study and previous studies, we propose arrangement of transmembrane helices in subunit I, which may explain possible roles of conserved hydrophilic residues within the membrane.  相似文献   

13.
A ligand binding pocket has been created on the proximal side of the heme in porcine myoglobin by site-directed mutagenesis. Our starting point was the H64V/V68H double mutant which has been shown to have bis-histidine (His68 and His93) heme coordination [Dou, Y., Admiraal, S. J., Ikeda-Saito, M., Krzywda, S., Wilkinson, A. J., Li, T., Olson, J. S., Prince, R. C., Pickering, I. J., George, G. N. (1995) J. Biol. Chem. 270, 15993-16001]. The replacement of the proximal His93 ligand by noncoordinating Ala (H64V/V68H/H93A) or Gly (H64V/V68H/H93G) residues resulted unexpectedly in a six-coordinate low-spin species in both ferric and ferrous states. To test the hypothesis that the sixth coordinating ligand in the triple mutants was the imidazole of His97, this residue was mutated to Phe, in the quadruple mutants, H64V/V68H/H93A/H97F and H64V/V68H/H93G/H97F. The ferric quadruple mutants show a clear water/hydroxide alkaline transition and high cyanide and CO affinities, characteristics similar to those of wild-type myoglobin. The nu(Fe-CO) and nu(C-O) stretching frequencies in the ferrous-CO state of the quadruple mutants indicate that the "proximal" ligand binding heme pocket is less polar than the distal pocket in the wild-type protein. Thus, we conclude that the proximal heme pocket in the quadruple mutants has a similar affinity for exogenous ligands to the distal pocket of wild-type myoglobin but that the two pockets have different polarities. The quadruple mutants open up new approaches for developing heme chemistry on the myoglobin scaffold.  相似文献   

14.
Prostaglandin-endoperoxide H synthases (PGHSs) have a cyclooxygenase that forms prostaglandin (PG) G2 from arachidonic acid (AA) plus oxygen and a peroxidase that reduces the PGG2 to PGH2. The peroxidase activates the cyclooxygenase. This involves an initial oxidation of the peroxidase heme group by hydroperoxide, followed by oxidation of Tyr385 to a tyrosyl radical within the cyclooxygenase site. His386 of PGHS-1 is not formally part of either active site, but lies in an extended helix between Tyr385, which protrudes into the cyclooxygenase site, and His388, the proximal ligand of the peroxidase heme. When His386 was substituted with alanine in PGHS-1, the mutant retained <2.5% of the native peroxidase activity, but >20% of the native cyclooxygenase activity. However, peroxidase activity could be restored (10-30%) by treating H386A PGHS-1 with cyclooxygenase inhibitors or AA, but not with linoleic acid; in contrast, mere occupancy of the cyclooxygenase site of native PGHS-1 had no effect on peroxidase activity. Heme titrations indicated that H386A PGHS-1 binds heme less tightly than does native PGHS-1. The low peroxidase activity and decreased affinity for heme of H386A PGHS-1 imply that His386 helps optimize heme binding. Molecular dynamic simulations suggest that this is accomplished in part by a hydrogen bond between the heme D-ring propionate and the N-delta of Asn382 of the extended helix. The structure of the extended helix is, in turn, strongly supported by stable hydrogen bonding between the N-delta of His386 and the backbone carbonyl oxygens of Asn382 and Gln383. We speculate that the binding of cyclooxygenase inhibitors or AA to the cyclooxygenase site of ovine H386A PGHS-1 reopens the constriction in the cyclooxygenase site between the extended helix and a helix containing Gly526 and Ser530 and restores native-like structure to the extended helix. Being less bulky than AA, linoleic acid is apparently unable to reopen this constriction.  相似文献   

15.
Vuletich DA  Falzone CJ  Lecomte JT 《Biochemistry》2006,45(47):14075-14084
The recombinant two-on-two hemoglobin from the cyanobacterium Synechoccocus sp. PCC 7002 (S7002 rHb) is a bishistidine hexacoordinate globin capable of forming a covalent cross-link between a heme vinyl and a histidine in the C-terminal helix (H helix). Of the two heme axial histidines, His46 (in the E helix, distal side) and His70 (in the F helix, proximal histidine), His46 is displaced by exogenous ligands. S7002 rHb can be readily prepared as an apoglobin (apo-rHb), a non-cross-linked hemichrome (ferric iron and histidine axial ligands, rHb-R), and a cross-linked hemichrome (rHb-A). To determine the effects of heme binding and subsequent cross-linking, apo-rHb, rHb-R, and rHb-A were subjected to thermal denaturation and 1H/2H exchange. Interpretation of the latter data was based on nuclear magnetic resonance assignments obtained with uniformly 15N- and 13C,15N-labeled proteins. Apo-rHb was found to contain a cooperative structural core, which was extended and stabilized by heme binding. Cross-linking resulted in further stabilization attributed mainly to an unfolded-state effect. Protection factors were higher at the cross-link site and near His70 in rHb-A than in rHb-R. In contrast, other regions became less resistant to exchange in rHb-A. These included portions of the B and E helices, which undergo large conformational changes upon exogenous ligand binding. Thus, the cross-link readjusted the dynamic properties of the heme pocket. 1H/2H exchange data also revealed that the B, G, and H helices formed a robust core regardless of the presence of the heme or cross-link. This motif likely encompasses the early folding nucleus of two-on-two globins.  相似文献   

16.
Liu Y  Zhang X  Yoshida T  La Mar GN 《Biochemistry》2004,43(31):10112-10126
Heme oxygenase, HO, from the pathogenic bacterium Neisseria meningitidis catabolizes heme for the iron necessary for infection. The enzyme, labeled HemO, exhibits less sequence homology to mammalian HO than another studied HO from Corynebacterium diphtheriae. Solution 1H NMR has been utilized to define the active site molecular and electronic structure of the cyanide-inhibited, substrate-bound complex for comparison with those provided by several crystal structures. Extensive assignments by solely 1H NMR 2D methods reveal a structure that is very strongly conserved with respect to the crystal structure, although 1H/2H exchange indicates dynamically much more stable distal and proximal helices than those for other HOs. Several residues found with alternate orientations in crystal structures of water- and NO-ligated complexes were shown to occupy positions found solely in the NO complex, confirming that there are structural accommodations in response to ligating the substrate complex with a diatomic, H-bond acceptor ligand. The observed dipolar shifts allow the determination of the magnetic axes that show that the Fe-CN unit is tilted approximately 10 degrees toward the alpha-meso position, thereby facilitating the alpha-stereoselectivity of the enzyme. Numerous labile protons with larger than usual low-field bias are identified and, in common with the other HO complexes, shown to participate in an extended, distal side H-bond network. This H-bond network orders several water molecules, most, but not all, of which have been detected crystallographically. A series of three C-terminal residues, His207-Arg208-His209, are not detected in crystal structures. However, 1H NMR finds two residues, His207 and likely Arg208 in contact with pyrrole D, which in crystal structures is exposed to solvent. The nature of the NOEs leads us to propose a H-bond between the proximally oriented His207 ring and the carboxylate of Asp27 and a salt-bridge between the terminus of Arg208 and the reoriented 7-propionyl carboxylate. While numerous ordered water molecules are found near both propionates in the crystal structure, we find much larger water NOEs to the 6- than 7-propionate, suggesting that water molecules near the 7-propionate have been expelled from the cavity by the insertion of Arg208 into the distal pocket. The conversion of the 7-propionate link from the N-terminal region (Lys16) to the C-terminal region (Arg208) in the ligated substrate complex both closes the heme cavity more tightly and may facilitate product exit, the rate-limiting step in the enzyme activity.  相似文献   

17.
The truncated hemoglobin (Hb) from the cyanobacterium Synechocystis sp. PCC 6803 is a bis-histidyl hexacoordinate complex in the absence of exogenous ligands. This protein can form a covalent cross-link between His117 in the H-helix and the heme 2-vinyl group. Cross-linking, the physiological importance of which has not been established, is avoided with the His117Ala substitution. In the present work, H117A Hb was used to explore exogenous ligand binding to the heme group. NMR and thermal denaturation data showed that the replacement was of little consequence to the structural and thermodynamic properties of ferric Synechocystis Hb. It did, however, decelerate the association of cyanide ions with the heme iron. Full complexation required hours, instead of minutes, of incubation at optical and NMR concentrations. At neutral pH and in the presence of excess cyanide, binding occurred with a first-order dependence on cyanide concentration, eliminating distal histidine decoordination as the rate-limiting step. The cyanide complex of the H117A variant was characterized for the conformational changes occurring as the histidine on the distal side, His46 (E10), was displaced. Extensive rearrangement allowed Tyr22 (B10) to insert in the heme pocket and Gln43 (E7) and Gln47 (E11) to come in contact with it. H-bond formation to the bound cyanide was identified in solution with the use of (1)H(2)O/(2)H(2)O mixtures. Cyanide binding also resulted in a change in the ratio of heme orientational isomers, in a likely manifestation of heme environment reshaping. Similar observations were made with the related Synechococcus sp. PCC 7002 H117A Hb, except that cyanide binding was rapid in this protein. In both cases, the (15)N chemical shift of bound cyanide was reminiscent of that in peroxidases and the orientation of the proximal histidine was as in other truncated Hbs. The ensemble of the data provided insight into the structural cooperativity of the heme pocket scaffold and pointed to the reactive 117 site of Synechocystis Hb as a potential determinant of biophysical and, perhaps, functional properties.  相似文献   

18.
The development of inhibitors specific for heme oxygenases (HO) aims to provide powerful tools in understanding the HO system. Based on the lead structure (2S, 4S)-2-[2-(4-chlorophenyl)ethyl]-2-[(1H-imidazol-1-yl)methyl]-4-[((4-aminophenyl)thio)methyl]-1,3-dioxolane (azalanstat, QC-1) we have synthesized structural modifications to develop novel and selective HO inhibitors. The structural study of human HO-1 (hHO-1) in complex with a select group of the inhibitors was initiated using X-ray crystallographic techniques. Comparison of the structures of four such compounds each in complex with hHO-1 revealed a common binding mode, despite having different structural fragments. The compounds bind to the distal side of heme through an azole “anchor” which coordinates with the heme iron. An expansion of the distal pocket, mainly due to distal helix flexibility, allows accommodation of the compounds without displacing heme or the critical Asp140 residue. Rather, binding displaces a catalytically critical water molecule and disrupts an ordered hydrogen-bond network involving Asp140. The presence of a triazole “anchor” may provide further stability via a hydrogen bond with the protein. A hydrophobic pocket acts to stabilize the region occupied by the phenyl or adamantanyl moieties of these compounds. Further, a secondary hydrophobic pocket is formed via “induced fit” to accommodate bulky substituents at the 4-position of the dioxolane ring.  相似文献   

19.
L-Tryptophan is the least abundant essential amino acid in humans. Indoleamine 2,3-dioxgyenase (IDO) is a cytosolic heme protein which, together with the hepatic enzyme tryptophan 2,3-dioxygenase, catalyzes the first and rate-limiting step in the major pathway of tryptophan metabolism, the kynurenine pathway. The physiological role of IDO is not fully understood but is of great interest, because IDO is widely distributed in human tissues, can be up-regulated via cytokines such as interferon-gamma, and can thereby modulate the levels of tryptophan, which is vital for cell growth. To identify which amino acid residues are important in substrate or heme binding in IDO, site-directed mutagenesis of conserved residues in the IDO gene was undertaken. Because it had been proposed that a histidine residue might be the proximal heme ligand in IDO, mutation to alanine of the three highly conserved histidines His16, His303, and His346 was conducted. Of these, only His346 was shown to be essential for heme binding, indicating that this histidine residue may be the proximal ligand and suggesting that neither His303 nor His16 act as the proximal ligand. Site-directed mutagenesis of Asp274 also compromised the ability of IDO to bind heme. This observation indicates that Asp274 may coordinate to heme directly as the distal ligand or is essential in maintaining the conformation of the heme pocket.  相似文献   

20.
The x-ray crystal structure of Synechocystis hemoglobin has been solved to a resolution of 1.8 A. The conformation of this structure is surprisingly different from that of the previously reported solution structure, probably due in part to a covalent linkage between the heme 2-vinyl and His117 that is present in the crystal structure but not in the structure solved by NMR. Synechocystis hemoglobin is a hexacoordinate hemoglobin in which the heme iron is coordinated by both the proximal and distal histidines. It is also a member of the "truncated hemoglobin" family that is much shorter in primary structure than vertebrate and plant hemoglobins. In contrast to other truncated hemoglobins, the crystal structure of Synechocystis hemoglobin displays no "ligand tunnel" and shows that several important amino acid side chains extrude into the solvent instead of residing inside the heme pocket. The stereochemistry of hexacoordination is compared with other hexacoordinate hemoglobins and cytochromes in an effort to illuminate factors contributing to ligand affinity in hexacoordinate hemoglobins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号