首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Natural selection should favor females that avoid ovipositing where risk of predation is high for their progeny. Despite the large consequences of such oviposition behavior for individual fitness, population dynamics, and community structure, relatively few studies have tested for this behavior. Moreover, these studies have rarely assessed the mode of detection of predators, compared responses in prey species that vary in vulnerability to predators, or tested for the behavior in natural habitats. In an outdoor artificial pool experiment, we tested the oviposition responses of two dipteran species, Culiseta longiareolata (mosquito) and Chironomus riparius (midge), to the hemipteran predator, Notonecta maculata. Both dipteran species have similar life history characteristics, but Culiseta longiareolata larvae are highly vulnerable to predation by Notonecta, while Chironomus riparius larvae are not. As their vulnerabilities would suggest, Culiseta longiareolata, but not Chironomus riparius, strongly avoided ovipositing in pools containing Notonecta. An experiment in natural rock pools assessing oviposition by Culiseta longiareolata in response to Notonecta maculata yielded an oviposition pattern highly consistent with that of the artificial pool experiment. We also demonstrated that the cue for oviposition avoidance by Culiseta longiareolata was a predator-released chemical: Notonecta water (without Notonecta replenishment) repelled oviposition for 8 days. Oviposition avoidance and mode of detection of the predator have important implications for how to assess the true impact of predators and for the use of commercially produced kairomones for mosquito control.  相似文献   

2.
Models of defence against multiple enemies predict that specialized responses to each enemy should evolve only under restrictive conditions. Nevertheless, tadpoles of Rana temporaria can differentiate among several predator species. Small tadpoles used a refuge when Notonecta backswimmers were in the pond, but showed a weaker hiding response to adult Triturus alpestris newts and no response to aeshnid dragonfly larvae (Aeshna and Anax). All predators caused a decline in feeding and swimming activity. Large tadpoles reserved the strongest behavioural response for dragonflies, while Triturus caused no response. The shift during development suggests that tadpoles distinguished among predators, rather than exhibiting a graded dosage response to a single cue associated with predation. Information on habitat distributions of predators suggests that they are regularly encountered, which would facilitate evolution of adaptive behavioural responses. Morphological responses to all predators were similar, perhaps because similar morphologies defend against all four predators. The evolutionary maintenance of specialized responses to multiple predators may be possible because adaptive responses do not conflict and the predators themselves do not interact strongly.  相似文献   

3.
Most research on ontogenetic niche shifts has focused on changes in habitat or resource use related to food resource distribution and heterospecific size-limited predation. Cannibalism, an intraspecific interaction, can also affect habitat selection or resource use by vulnerable size classes. Morphological defenses, such as spines, increase the effective size of an individual, making it more difficult to consume. The importance of such defense structures in affecting niche shifts in early life history stages is unclear. Using a combination of field observations and experiments in aquaria and wading pools, we examined the relative roles of cannibalism and morphology in determining juvenile habitat use in two populations of threespine stickleback that differ in pelvic spine morphology. Juveniles were categorized into three size classes: small (5–10 mm), medium (11–15 mm), and large (15–25 mm). In experiments assessing the relative vulnerability of juveniles to cannibalism by adults, we documented a significant difference among size classes in the number of juveniles eaten such that more large juveniles were eaten from the population lacking pelvic spines. The natural distribution of small and large juveniles in two distinct littoral microhabitats, open water and vegetation, was determined in each lake. In both populations, small juveniles were more abundant in vegetation. In the population with pelvic spines, a greater proportion of large juveniles was observed in open water than in vegetation. In the population without pelvic spines, the proportion of large juveniles did not differ between the two habitats. Experiments comparing juvenile habitat use in the presence or absence of adult conspecifics suggest that differences in habitat use may not only depend on the size of the individual, or the size of the individual relative to the size of the adult predator, but also on the degree of development or expression of defensive structures.  相似文献   

4.
Abstract.
  • 1 We assessed experimentally the effects of the predatory backswimmer, Notonecta maculata, on naturally colonizing mosquito populations in artificial outdoor pools in the Negev Desert, Israel. A single Notonecta adult per pool (8–15 litres water) had a very large negative impact on populations of Culiseta longiareolata, the most common species found in natural local pools. Notonecta caused large reductions of Culiseta egg rafts and early-instar larvae (instars I and II) and virtually 100% reductions of late-instar Culiseta larvae (instars III and IV) and pupae.
  • 2 Notonecta also caused a trophic cascade in the experimental pools; by preying on periphyton-feeding Culiseta larvae, Notonecta indirectly caused significantly higher densities of diatoms, the major component of the periphyton.
  • 3 Surveys of nearby natural pools taken between March and May supported the experimental results: a strong negative association between Notonecta and Culiseta among pools occurred as Notonecta increased in numbers and became more widely distributed. Anopheles (occurring only in May) and Culex mosquito immatures were not negatively associated with Notonecta. Culiseta was not associated with surface vegetation whereas both Culex and Anopheles showed strong positive associations with surface vegetation both among and within pools. We attribute the negative association between the predator and Culiseta to local prey extinctions caused by Notonecta in individual pools. Culiseta, being an open water species, is apparently more prone to predation by Notonecta than the vegetation-dwelling Culex and Anopheles.
  相似文献   

5.
P. Gaudin 《Hydrobiologia》1985,122(3):267-270
In laboratory conditions, where predation by sculpins (Cottus gobio L.) upon brown trout fry (Salmo trutta L.) was strong, predation was shown to be closely linked to total length of prey and predator. The limit of this predation can be defined by the equation: Y = 0.484 X + 5.8 (Y = total length of the trout fry in mm and X = total length of the sculpin in mm).
  相似文献   

6.
Caroline Ross 《Oecologia》1992,92(3):383-390
Morphological and life history traits of two clones of the cladoceran Daphnia pulex were measured in the presence and absence of size-selective insect predators, the midge larva Chaoborus flavicans, which preys on small Daphnia, and the water bug Notonecta glauca, which preys on large Daphnia. The aim was to detect predator-induced phenotypic changes, particularly the effect of simultaneous exposure to both types of predators. Other work has shown that in the presence of Chaoborus americanus, Daphnia pulex produce a socalled neck spine which may carry several teeth. The morphological modifications are supposed to serve as an anti-predator device. Furthermore, females exposed to Chaoborus often delay their maturation; this has been interpreted as a cost that balances the benefits of the neck teeth. In this investigation, females of both clones produced fewer but larger offspring than control animals when reared in the presence of Chaoborus flavicans. The offspring showed the typical neck spine and delayed first reproduction. In the presence of Notonecta glauca, one of the clones produced more and smaller offspring, and maturation occurred at earlier instars. The other clone also produced more offspring than the control but there was no size difference. When both predators were present, in most cases the reactions of the daphnids were similar to those in the Notonecta experiment. The response to Chaoborus appeared to be suppressed. The observed modifications are interpreted as evolved strategies that reduce the impact of size-selective predation. They are consistent with predictions of life-history theory.  相似文献   

7.
Summary Impacts of predators, food levels and cannibalism on population growth of G. buenoi were studied in two experiments using field exclosures. In the first experiment, experiments using field exclosures. In the first experiment, impacts of (1) predation by freshwater invertebrates and (2) food limitation on gerrid populations were considered in a 2 x 2 factorial design, using food supplements and elimination of predators as the experimental treatments. In the second experiment, the possible contribution of intraspecific predation to fitness of gerrid cannibals was assessed.Presence of invertebrate predators decreased egg-adult survivorship 2–3 fold and decreased the range of juvenile development times. The main predators noted in this study were fishing spiders (Dolomedes), backswimmers (Notonecta), larvae of predaceous diving beetles (Dytiscus), and dragonfly naiads (Aeshna). Food supplements, at 50–200% (by weight) of average natural surface fall, did not significantly effect survivorship but were associated with decreases in mean development time and with increases in whole body dry mass of teneral adults. Increases were greater for females than for males, suggesting that females are more likely to be protein limited under field conditions. Absence of predators was associated with smaller body size among teneral adults of G. buenoi, suggesting that screening out aquatic predators also had significant impact on food available to semi-aquatic bugs.Results of the second experiment demonstrate that the food cache hypothesis (Polis 1980) does not hold for G. buenoi. Neither survival to the adult stage nor dry mass of teneral males differed significantly between groups with or without access to early stages as potential prey. Dry mass of teneral females with access to younger stages during their own development was significantly less than for those without access to gerrid prey, suggesting that competition among stages for food was more important than cannibalism in, this experiment.A more comprehensive version of a paper presented at the XVII Int Cong Entomol, Hamburg, Federal Republic of Germany as part of a symposium entitled Phylogeny, Bionomics and Ecology of Waterstriders (Hemiptera, Gerridae)  相似文献   

8.
Early breeding intraguild predators may have advantages over late breeding predators via priority effects; early breeding predators may reduce shared prey resources before late breeders appear and may also prey upon the late breeders. Here we show that predatory larvae of the late-breeding predatory banded newt, Triturus vittatus vittatus, occupy the same temporary pond toward the end of the developmental period of the early-breeding predatory fire salamander, Salamandra salamandra, resulting in a large size disparity between larvae of these two species while they co-occur. We conducted outdoor artificial pool experiments to assess priority effects of large larval Salamandra at the end of their larval development period, on recently hatched larval Triturus. We also assessed how artificial vegetation may influence larval Triturus performance in the presence or absence of Salamandra Salamandra, introduced into the experimental pools two weeks prior to the newt larvae, strongly reduced invertebrate prey abundance shared by these two predatory urodeles and with only a one week period of overlap, strongly reduced abundance of Triturus larvae. The artificial vegetation had only a small ameliorating effect on Triturus survival when Salamandra was present. Triturus size at metamorphosis (snout-tail length) was significantly larger in the Salamandra pools, presumably due to a combination of a strong “thinning effect” and greater vulnerability of smaller Triturus individuals to predation by Salamandra. Time to metamorphosis was not significantly affected by Salamandra. These results have conservation implications as T. v. vittatus is listed as highly endangered and may also explain the largely negative spatial association of the two species. Handling editor: K. Martens  相似文献   

9.
Hampton SE 《Oecologia》2004,138(3):475-484
Environmental heterogeneity can promote coexistence of conflicting species by providing spatial or temporal refuges from strong interactions (e.g., intraguild predation, competition). However, in many systems, refuge availability and effectiveness may change through time and space because of variability in habitat use by either species. Here I consider how the intensity of intraguild predation risk varies from day to night for aquatic insects that use both vegetated and open water habitats. Large (1,265 l) and small (42 l) mesocosms were used to test the hypothesis that Buenoa would choose an open-water habitat that minimized predation by the ambush predator Notonecta during the day, but that at night Buenoa would safely use both vegetated and open water. Regardless of container size, Notonecta remained in vegetated water during the day and exploited both habitats at night, despite exhibiting greatest instantaneous predation rates in open water during the day. In contrast, Buenoa maintained an even distribution throughout the mesocosms during day and night, even though habitat-specific predation risks were fivefold lower in open waters than in vegetation during the day and habitat-specific predation risk would have been reduced threefold by fully exploiting open waters. Thus, temporal heterogeneity was both beneficial and detrimental to Buenoa; darkness of night reduced predation, but spatial refuges also disappeared. Together, these patterns suggest that while environmental heterogeneity can dampen intense biotic interactions, enemies do not select habitats solely on the basis of conflict avoidance. Instead, it appears that habitat-specific variation in other biotic (e.g., visual predators) or physical factors (e.g., UV radiation) may also mediate species interactions by influencing habitat selection.  相似文献   

10.
Predation can have strong direct and indirect effects on the behavior of prey. We investigated whether predation by chain pickerel (Esox niger) caused adult eastern mosquitofish (Gambusia holbrooki) to alter their habitat use and whether pickerel predation influenced survival of adult and neonate mosquitofish. The number of adult mosquitofish using the riskier of three habitats was lowest when two predators occupied the risky habitat, intermediate in the treatment with one predator, and highest when no predators occurred there. More mosquitofish neonates survived high predation treatments than treatments lacking pickerel. We conclude that pickerel predation causes adult mosquitofish to shift to refuge habitats. The pattern of neonate survival suggests that adult habitat use may create a refuge from cannibalism for neonate mosquitofish, resulting in higher neonate survival in treatments with more pickerel. Hence, pickerel predation has a direct effect on adult mosquitofish behavior and a strong indirect effect on neonate survival. Both interspecific and intraspecific predation can effect prey populations and can interact to produce important indirect effects.  相似文献   

11.
Studies on spatial avoidance behaviour of predators by prey often ignored the fact that prey typically face multiple predators which themselves interact and show a spatial pattern in abundance and predation rates (PRs). In a series of laboratory experiments, we investigated predation risk (PRI) and horizontal migration of the cladoceran Daphnia magna between open water and vegetation in response to two important invertebrate predators with a contrasting spatial distribution: pelagic Choaborus and vegetation-associated Ischnura. As expected, PRI by Chaoborus was higher in open water due to higher numbers and higher PRs of Chaoborus, while for Ischnura, PRI was highest in the vegetation due to higher densities, despite lower PRs of Ischnura. In accordance with this, Daphnia moved into the vegetation in the presence of the pelagic Chaoborus alone. In the presence of Ischnura alone, however, Daphnia showed no response. We hypothesize this may be the result of a constitutive behaviour of Daphnia to avoid pelagic fish, which impedes a response to the open water. In the combined predator treatment, Daphnia migrated to the open water zone. The increased risk of predation in the vegetation, due to a facilitating effect of Chaoborus on Ischnura PRs is believed to have caused this migration of the Daphnia. This response of Daphnia declined through time and Daphnia moved toward the vegetation. A decline in the activity of the Ischnura larvae through time may have switched the risk balance in favour of the vegetation environment.  相似文献   

12.
An increasing number of studies show that animals adjust their reproductive effort to the risk of predation. However, to maximize lifetime reproductive success this adjustment should depend on the animals'' current and future reproductive potential. Here I tested this hypothesis by allowing threespine stickleback males (Gasterosteus aculeatus), differing in current and future mating probabilities, to reproduce in pools in both the presence and absence of predators. As expected, males adjusted their reproductive effort to the risk of predation. Fewer males bred, and all males developed less nuptial coloration in the presence of predators. However, males with a low current mating probability took less risk than males with a higher mating probability, whereas all males increased risk taking when future reproductive opportunities decreased. The results thus support the hypothesis that males are able to assess both the risk of predation and their current versus future mating probability, and adjust their reproductive decisions accordingly. The study further suggests that predation risk may have less effect on sexual selection than previously assumed, as the males which refrained from reproducing in the presence of predators were mainly males with a low mating probability.  相似文献   

13.
Size-selective predation by fish is often considered to be a primary driver of seasonal declines in large-bodied Daphnia populations. However, large Daphnia commonly exhibit midsummer extinctions in ponds lacking planktivorous fish. A number of empirical and theoretical studies suggest that resource competition and its interaction with nutrient enrichment may determine variable dominance by large Daphnia. Low resource levels may favor competitive dominance by small-bodied taxa while large Daphnia may be favored under high resource conditions or following a nutrient/productivity pulse. Nutrient enrichment may also influence the strength of invertebrate predation on Daphnia by affecting how long vulnerable juveniles are exposed to predation. We investigated these hypotheses using an in situ mesocosm experiment in a permanent fishless pond that exhibited seasonal losses of Daphnia pulex. To explore the effects of nutrient enrichment, Daphnia plus a diverse assemblage of small-bodied zooplankton were exposed to three levels of enrichment (low, medium, and high). To explore the interaction between nutrient enrichment and invertebrate predation, we crossed the presence/absence of Notonecta undulata with low and high nutrient manipulations. We found no evidence of competitive reversals or shifts in dominance among nutrient levels, Daphnia performed poorly regardless of enrichment. This may have been due to shifts in algal composition to dominance by large filamentous green algae. Notonecta had significant negative effects on Daphnia alone, but no interaction with nutrient enrichment was detected. These results suggest that Daphnia are not invariably superior resource competitors compared to small taxa. Though predators can have negative effects, their presence is not necessary to explain poor Daphnia performance. Rather, abiotic conditions and/or resource-based effects are probably of greater importance.  相似文献   

14.
This study examined the formation of morphological defences by two coexisting Daphnia species, the large-sized D. pulicaria (2 mm) and the small-sized D. mendotae (1.4 mm), in response to the presence of young-of-the-year (YOY) yellow perch (Perca flavescens) and invertebrate predators (Chaoborus, Leptodora) during summer in a mesotrophic lake. We hypothesized that due to differential size-selective predation risk by YOY fish and invertebrates, the large-sized and the small-sized Daphnia species would show different morphological responses to predation threats. We followed changes in two morphological traits (relative length of the tail spine in D. pulicaria and of the helmet in D. mendotae) among different periods during summer according to YOY fish and invertebrate predation. We defined four YOY fish predation periods based on the presence of YOY perch in the pelagic zone of the lake and the relative abundance of Daphnia preys in their gut contents, and two invertebrate predation periods based on exclusive or mutual occurrence of the invertebrate predators. The large-sized (D. pulicaria) and the small-sized (D. mendotae) species showed different morphological responses to YOY fish and invertebrate predators, respectively. The tail spine ratio of the juveniles and adults of D. pulicaria did not change in response to YOY fish predation or to invertebrate predation. A gradual increase in the helmet ratio was observed in the small-sized D. mendotae over the summer period. This change was related to the co-occurrence of the invertebrate predators (Chaoborus and Leptodora) and to YOY fish predation. The warmer temperature cannot be accounted for helmet elongation since it was constant across depths, and not related with the co-occurrence of D. mendotae and YOY perch. Guest editor: Piet Spaak Cladocera: Proceedings of the 7th International Symposium on Cladocera  相似文献   

15.
Mechanisms of natural selection can be identified using experimental approaches. However, such experiments often yield nonsignificant effects and imprecise estimates of selection due to low power and small sample sizes. Combining results from multiple experimental studies might produce an aggregate estimate of selection that is more revealing than individual studies. For example, bony pelvic armour varies conspicuously among stickleback populations, and predation by vertebrate and insect predators has been hypothesized to be the main driver of this variation. Yet experimental selection studies testing these hypotheses frequently fail to find a significant effect. We experimentally manipulated length of threespine stickleback (Gasterosteus aculeatus) pelvic spines in a mesocosm experiment to test whether prickly sculpin (Cottus asper), an intraguild predator of stickleback, favours longer spines. The probability of survival was greater for stickleback with unclipped pelvic spines, but this effect was noisy and not significant. We used meta‐analysis to combine the results of our mesocosm experiment with previously published experimental studies of selection on pelvic armour. We found evidence that fish predation indeed favours increased pelvic armour, with a moderate effect size. The same approach found little evidence that insect predation favours reduced pelvic armour. The causes of reduced pelvic armour in many stickleback populations remain uncertain.  相似文献   

16.
Reiji Masuda 《Hydrobiologia》2009,616(1):269-277
Commensal behavior of jack mackerel Trachurus japonicus (Temminck & Schlegel) with jellyfishes has been widely observed but its ecological function is still unclear. The goal of the present research is to examine the function of association behavior with jellyfish in the laboratory and in field observations with an emphasis on ontogenetic changes. In the laboratory, jack mackerel juveniles (mean standard length (SL) = 11, 19, 38, and 55 mm) were placed in 500-l polycarbonate tanks with two live moon jellyfish, Aurelia aurita (Linné), and one artificial jellyfish made of silicon. Association behavior with either live or artificial jellyfish was visually observed under the following conditions: control, presence of a predator model, before and after feeding live Artemia, 1 h and 3 h after feeding, and at night. Jack mackerel at 11 mm SL associated with both the moon jellyfish and artificial jellyfish, unrelated to the presence of a predator model or feeding. Juveniles at 19 mm associated with moon jellyfish only in the presence of a predator model. Larger juveniles associated with moon jellyfish at 1 h and 3 h after feeding. Thus the ecological function of association was proposed to develop first from school formation, next as a hiding place from predators, and then as a food source. Underwater observations of jack mackerel associating with giant jellyfish Nemopilema nomurai (Kishinouye) in two different areas in the Sea of Japan supported this hypothesis. High predation pressure from benthic piscivorous fishes in the southern area (Tsushima) may encourage association with jellyfish, whereas pressure from pelagic predators in the northern area (Maizuru) may encourage settlement to rocky reef habitats in temperate waters. Thus the jellyfish may also function as a vehicle for the northward migration of this species. Guest editors: K. A. Pitt & J. E. Purcell Jellyfish Blooms: Causes, Consequences, and Recent Advances  相似文献   

17.
Summary This work aimed to elucidate conflicting factors that may explain the narrow and synchronous emergence in salmonids. Fry are highly vulnerable to predation and stand a better chance of surviving if they emerge synchronously. On the other hand, fry that leave the gravel first should increase their chance of obtaining one of the limited number of feeding territories. The risk involved in early emergence for Atlantic salmon fry was evaluated by exposing them to predatorySalmo trutta. Yolk sac alevins were incubated in an artificial redd in order to catch them by their time of emergence. Early-, peak- and late-emerging fry were then successively marked and transferred to flume tanks in which the predators were either present from the start or not introduced until all fry had been added. When the predators were initially present, the predation pressure differed depending on the time of fry emergence, resulting in survival rates of 11.6, 44.9 and 51% in early-, peak- and late-emerging fry, respectively. By assuming that the predation rate of the three emergence groups was dependent both on time of emergence and fry density the survival rates were calculated to be 7.5, 41.1 and 53.5% in groups I, II and III, respectively. These figures corresponded well to the observed rates. When the predators were added after completed emergence the resulting survival rates were 56.9, 39.7 and 25.2% in early-, peak- and late-emerging fry, respectively. Thus, predation after complete emergence gave a survival probability that varied across the three emergence-date groups, despite being exposed to a predator during the same number of days. The presence of fish predators in combination with a limited territorial space seems to make both early and late emergence hazardous and favours synchronous swimming movements.  相似文献   

18.
Synopsis Juvenile bluegill sunfish, Lepomis macrochirus, are known to use beds of aquatic vegetation as a refuge from predators. This study examines the effects of increasing plant stem density on juvenile bluegill foraging. Three stem densities (100, 250 and 500 stems m−2), varying in their refuge potential for bluegills from predators, were tested. Results demonstrate that stem densities chosen as a refuge from predation (i.e. 500 stems m−2) significantly reduced bluegill foraging success and increased time required to capture prey. Therefore, juvenile bluegills seeking safety in vegetation may be faced with a trade-off between foraging success and effective refuge from predation when choosing among plant stem densities.  相似文献   

19.
In the Kanzawa spider mite, Tetranychus kanzawai, adult males locate pre-reproductive quiescent females and engage in precopulatory mate guarding. We found that re-reproductive quiescent females preferred to be near veins, rather than other leaf parts, and moreover, adult males spent more time along the vein than on other parts. Consequently, T. kanzawai males found more quiescent females along veins than those on other parts. However, the predatory mite Neoseiulus womersleyi also found more quiescent T. kanzawai females along veins than those on other parts. Moreover, N. womersleyi found more guarding males than solitary males of T. kanzawai. Thus, we experimentally examined the effects of predation risk on the mating behavior of T. kanzawai. The presence of N. womersleyi reduced T. kanzawai female preference for vein vicinity as a quiescent site. Although the predation risk of guarding T. kanzawai males was lower than that of solitary males after detection by predators, the presence of N. womersleyi also reduced the proportion of guarding T. kanzawai males. These results suggest that the possible benefits of preferring vein vicinity as quiescent sites by T. kanzawai females is outweighed by predation risk in the presence of predators, and that the risk of detection by predators would be more important for T. kanzawai males than the risk of being preyed upon.  相似文献   

20.
We examined near-shore habitat use by larval shortnose and Lost River suckers in the lower Williamson River and Upper Klamath Lake of south-central Oregon. Emergent macrophytes Scirpus, Sparganium and Polygonum supported significantly more, larger, and better-fed larvae than submergent macrophytes, woody vegetation, or open water. Abundance, size, and gut fullness were similar for sucker larvae collected from different emergent macropytes. During the larval period, there was no evidence of density dependant effects or habitat shifts. Ranked catch per unit effort data indicated potential predators also were more likely to use emergent macrophytes, but ordination indicated larvae and potential predators were differentially distributed along a vegetation structure-water depth gradient with larvae in shallow vegetated areas. Between-habitat differences appeared to be due to larval sucker selection for, or better survival in, emergent macrophytes, rather than differential access or exclusion from other habitats. The importance of emergent macrophytes appears to be related to increased foraging success and reduced predation. Because larvae in emergent macrophytes have a size and gut fullness advantage, the amount of emergent habitat could affect early survival. However, interannual differences in recruitment to the adult population may or may not be dependent on larval dynamics. Our results suggest larval sucker access to emergent macrophytes may be necessary, but perhaps not sufficient, for promoting good year class formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号